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Nicolò Gozzi1 Michele Tizzoni2 Matteo Chinazzi3 Leo Ferres4,5

Alessandro Vespignani3,2 Nicola Perra1,3∗

1Networks and Urban Systems Centre, University of Greenwich, London, UK
2ISI Foundation, Turin, Italy

3Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern
University, Boston, MA USA

4Data Science Institute, Universidad del Desarrollo, Santiago, Chile
5Telefónica R&D, Santiago, Chile

Abstract

We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized
mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing
the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these
data into a mechanistic epidemic model calibrated on surveillance data. As of August 1st 2020, we es-
timate a detection rate of 102 cases per 1,000 infections (90% CI: [95 - 112 per 1,000]). We show that
the introduction of a full lockdown on May 15th, 2020, while causing a modest additional decrease
in mobility and contacts with respect to previous NPIs, was decisive in bringing the epidemic under
control, highlighting the importance of a timely governmental response to COVID-19 outbreaks. We
find that the impact of NPIs on individuals’ mobility correlates with the Human Development Index
of comunas in the city. Indeed, more developed and wealthier areas became more isolated after
government interventions and experienced a significantly lower burden of the pandemic. The hetero-
geneity of COVID-19 impact raises important issues in the implementation of NPIs and highlights
the challenges that communities affected by systemic health and social inequalities face adapting
their behaviors during an epidemic.

1 Introduction

As of September 1st, 2020, Chile has reported more than 400, 000 cases and 590 SARS-CoV-2 deaths per
million, becoming one of the worst COVID-19 epidemic globally [1]. Officially, the first SARS-CoV-2 case
in Chile was detected on March 3rd, 2020 [2]. Although other cases were rapidly confirmed all over the
country, the urban area of the capital city, Santiago Metropolitan Region, quickly became the epicenter
of the national epidemic. Indeed, as of September 1st, 2020, about 70% of the total cases in the nation
have been reported in the comunas (i.e. municipalities) of Santiago, making it one of the largest urban
COVID-19 outbreak in the world. The first set of non-pharmaceutical interventions (NPIs) were put in
place in mid-March, when schools were closed, public gatherings were banned, and passengers traveling
from high-risk countries were mandated to self-isolate for 14 days. However, the adopted measures were
not able to contain the contagion: after a sharp increase in cases, a full lockdown was instituted to the
whole area of Santiago on May 15th [3].

In this work, we model the spatial and temporal spread of COVID-19 in 37 comunas of the urban
area of Santiago. We aim to provide a data-driven characterization of the unfolding of the COVID-19
epidemic and an estimation of the impact of NPIs on its spreading. To this end, we study the reduction
of mobility and contacts inferred from mobile devices as input for a spatially structured epidemic model.
In fact, mobile devices data can be used to evaluate, in near real-time, the effects of interventions and
self-initiated behavioral changes on the mobility of people and to inform large scale epidemic models
[4–8]. Here, we use anonymised data provided by a major mobile phone operator in South America
(Telefónica Movistar), with a market share of 24.61% as of March 2020.
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To characterize the changes of mobility and physical contacts during the outbreak, we used anonymised
data from 1.4 million mobile devices (about 22% of the total population in the comunas under consid-
eration). We find consistent downward trends coinciding with the NPIs issued by local and national
authorities. We estimate that the first set of NPIs issued on 16/03 led to a reduction of about 48% in
the number of travels between comunas. An additional 17% reduction is observed with the introduction
of the full lockdown on 15/05. Furthermore, we find that changes in mobility patterns strongly correlate
with the economic and development indicators of the comunas.

We develop a stochastic mechanistic epidemic model integrating the real-time mobility, physical
contacts, and census data. The model suggests that the full lockdown, while causing a modest additional
decrease in mobility and physical contacts with respect to the NPIs already in place, was decisive in
bringing the epidemic under control. This relatively small additional decrease in mobility and contacts
was enough to push the effective reproductive number below the critical value of 1, a clear example of
the threshold effects characterizing epidemic dynamics on structured mobility networks [9]. We estimate
that the full lockdown prevented an additional 34.7% (95% CI: [27.2%, 44.1%]) increase in the total
number of deaths. Additionally, we estimate the critical impact of the timing of the full lockdown
through counterfactual scenarios: an additional week of delay would have corresponded to an 18.1%
(95% CI: [6.0%, 34.0%]) more intense incidence peak according to our estimates. The model captures
the heterogeneous burden of COVID-19 across comunas, observed in the epidemiological data reported
by the national surveillance. This highlights how communities exhibiting systemic social disparities are
affected in a differential way by government-mandated NPIs due to challenges faced in reducing their
mobility and contacts, raising the issue of health disparities in the management of emerging infectious
diseases such as COVID-19.

2 Results

We evaluate the effects of NPIs policies, government-mandated mobility limitations by integrating mobile
phone data and an epidemic model. We identify three phases of the epidemic management in Santiago:
i) before 16/03 (business as usual, baseline) ii) between 16/03 and 15/05 (first set of NPIs interventions),
and iii) after 15/05 (full lockdown). For convenience, we will refer to the period 16/03-15/05 as the partial
lockdown and to the period after 15/05 as the full lockdown. It is important to notice how the timeline of
interventions is fairly complex. It includes night curfews, dynamic quarantine, and lockdowns restricted
to a few comunas across the region studied here and in other parts of Chile [2]. However, as we see below,
the data suggest that those measures did not have a significant impact on people’s behaviors, thus for
simplicity we consider the two main sets of NPIs only. We characterize the three phases outlined above
in terms of a) mobility among comunas, and b) contacts reduction between individuals. Commuting
describes the (varying) rates at which people travel among different comunas, while contacts reduction
parameters estimate to what extent physical contacts drop in each comuna (more details in the Materials
and Methods section).

2.1 Effects of NPIs and Social Inequalities

In Fig. 1A we provide an overview of mobility in Santiago during the period of study. As a proxy for
general mobility, we consider the number of devices visiting a comuna that is different from their home
one (see Material and Methods section). We observe a sharp drop following the first set of interventions on
16/03. Afterwards, mobility remains fairly constant until the introduction of the full lockdown on 15/05,
when we observe an additional ∼ 15% decrease. As we will show below, this intervention represented an
important tipping point of the epidemic in Santiago.

More in detail, we represent changes in commuting among comunas in Fig. 1B. The partial lockdown
causes an average drop of about 48%, while, with the introduction of the full lockdown, commuting drops
by 65% with respect to the baseline. For each comuna we also consider the mean percentage decrease
in commuting after 16/03 and compare it with the Human Development Index (HDI), a coefficient that
measures key aspects of human development, such as life expectancy, education, and per capita income
[10]. In Fig. 1C, we observe that a greater decrease in mobility is generally associated with a higher
HDI (Pearson correlation coefficient ρ = −0.80, p < 0.001). The same trend is observed in the absolute
change of mobility (see the Supplementary Information) suggesting that wealthier and more developed
comunas became more isolated after the interventions. This result is in line with previous studies that
showed how changes in mobility patterns following government-issued interventions, and the extent to
which people can afford social distancing, vary across different socio-demographic groups [11].
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Figure 1: Mobility and contacts changes in Santiago. A) Overview of mobility changes, we consider
the number of devices visiting a comuna different from their home one as a proxy for general mobility
(grey areas represent weekends). Changes are expressed as percentages with respect to 26/02. B)
Percentage changes in commuting rates (with respect to commuting before 16/03). On the left drop
in commuting after the partial lockdown, on the right after the full lockdown. Color and dots size are
scaled according to the magnitude of the change. C) Average percentage commuting decreases after
16/03 versus HDI of different comunas. D) Scatter plot of contacts reduction parameters during partial

(rpartialj ) and full (rfullj ) lockdown. Dots size is proportional to the distance from the diagonal (bigger
dots indicate comunas where contacts decreased more after the full lockdown).

In Fig. 1D, we represent contacts reduction parameters. Across the board, contacts drop by 36%
with the first set of NPIs policies and by an additional 11% with the lockdown. Since all points are below
the diagonal, we conclude that, with the introduction of the full lockdown, contacts decrease further in
all comunas. Also, the decrease is consistent with the existing reductions after the partial lockdown. In-
deed rpartialj and rfullj show a high significant correlation (Kendall rank correlation coefficient τ = 0.79,
p < 0.001).
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2.2 The Spread of COVID-19 in Santiago

We use the mobility data to develop and to inform a stochastic mechanistic metapopulation epidemic
model (see Materials and Methods for details) and simulate the spread of COVID-19 in the comunas of
Santiago. The model is calibrated on official surveillance data and takes as initial seeding the realistic
projections of active cases on March 1st, 2020 in the Metropolitan area of Santiago from Ref. [7].

We use an Approximate Bayesian Computation (ABC) approach [12, 13] (see details in the Materials
and Methods section) to find the posterior distribution of the reproductive number in Santiago (median
R0=2.66, 95% CI: [2.58, 2.72]), which is in line with previous findings that identify the value of R0 of
SARS-CoV-2 to be in the range between 2 and 3 in different countries [14–16]. In Fig. 2A we report
the number of weekly deaths projected by the model together with official figures (used for calibration).
The two time series show a good agreement with a high correlation (ρ = 0.99, p < 0.001) and a median
absolute percentage error of 12%. Interestingly, the agreement between data and model starts to deviate
in the last two data points (end of July early August). We can speculate that, at least in part, this might
be due to a lockdown fatigue. In fact, while the official restrictions were relaxed later (mid of August),
a decrease in compliance, linked to the reduction of cases/deaths, could have taken place earlier. The
period is outside our current data coverage. Hence, we leave testing such hypothesis to future work.

As of August 1st, 2020, the median projected fraction of infected individuals in the area under study
is 38.7% (95% CI: [35.1%, 41.6%]). This estimate is about tenfold the official reported figures. We are
not aware of publicly available seroprevalence studies that we can use as a comparison and validation.
For this reason, we can only consider qualitative evidence hinting that the Chilean outbreak has affected
a significant fraction of the population. For example, the share of positive COVID-19 tests peaked at
59.10% on June 18th, and in the Santiago Metropolitan Region the occupation of ICU beds reached
almost saturation level (95%) in May. Also, a recent epidemiological study aimed at characterizing
the first wave in Chile showed significant under-reporting of symptomatic cases (around 50%) based on
estimates of the Case Fatality Rate [2]. Finally, previous seroprevalence studies conducted, for example,
in the United States [17] and Spain [18], showed that the actual number of COVID-19 infections is several
times (factors vary from 4 to 20) those reported by the official surveillance. As a sensitivity check, we
repeated the calibration considering the upper limit of the 95% credible interval for the infection fatality
rate from Ref. [19]. This leads to a projected median prevalence of 28.3% (95% CI: [23.5%, 32.3%]) but
to a sensibly worse fit of the data (ρ = 0.82, median percentage error of 49%).

Projected cases present a good significant correlation with official numbers as can be observed in
Fig. 2B (ρ = 0.84, p < 0.001). Besides, we compare the dates when 200 infections have been reached
in different comunas according to our model and official surveillance, finding a significant correlation
(Kendall rank correlation coefficient τ = 0.61, p < 0.001). Similar results are found considering in-
stead the dates when 50, 100, and 500 cases have been reached (see the Supplementary Information).
Interestingly, the same dates estimated through modeling are much earlier, hinting that many of the
infections in the initial phase of the spreading went unreported. In Fig. 2C we show the attack rates
versus the HDI of different comunas. We find a strong correlation between attack rates computed on
officially reported cases and HDI (ρ = −0.74, p < 0.001), providing evidence that wealthier comunas
experienced significantly smaller outbreaks. In addition, the very same picture emerges from our mod-
elling results. Indeed, simulated attack rates present a high significant correlation with HDI (ρ = −0.69,
p < 0.001). Finally, in Fig. 2D we show the number of deaths per 1, 000 versus the HDI of different
comunas. We find a significant correlation between HDI and both simulated (ρ = −0.50, p < 0.002)
and officially reported (ρ = −0.40, p < 0.02) deaths, hinting that wealthier comunas experienced also
a smaller burden in terms of casualties. We note that the correlations obtained in this case are lower
than those found previously for the attack rates. This may be due to the interplay between diverse age
distributions and age-dependent mortality rates. Indeed comunas with higher HDI have a higher mean
age and the infection fatality rate for COVID-19 is significantly higher in older age brackets.

2.3 Counterfactual Scenarios

To assess the impact of heterogeneous responses to the spreading we run a hypothetical scenario in which
commuting and contacts decrease uniformly across comunas, starting on 16/03. More in detail, we apply
to all comunas the average reduction in commuting and contacts observed for the 4th quartile of HDI
(i.e. 25% comunas with higher HDI). See the Supplementary Information for more details. According
to our simulations, this leads to a significant decrease of cases and deaths: -83.8% (95% CI: [-77.6%,
-88.6%]) fewer cases and -70.5% (95% CI: [-55.0%, -80.9%]) fewer deaths as of May 15th, the date when
the full lockdown was enforced. Interestingly, the uniform reduction we are imposing implies a relatively

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.08.20204750doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.08.20204750
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: COVID-19 spreading in Santiago. A) We represent the simulated and reported weekly
deaths used for model calibration. B) Left, scatter plot of reported versus simulated cases as of
2020/08/01. Right, scatter plot of days (since 2020/01/01) needed to reach 200 in each comuna as
reported by official surveillance and as projected by our model. C) Scatter plot of HDI versus attack
rate as of 2020/08/01 in different comunas as projected by our model (left) and as reported by official
surveillance (right). Size of dots are scaled according to commuting drops after 16/03 (bigger bullets in-
dicate bigger decreases in commuting). D) Scatter plot of HDI versus deaths per 1, 000 as of 2020/08/01
in different comunas as projected by our model (left) and as reported by official surveillance (right). Size
of dots are scaled according to commuting drops after 16/03.

modest additional decrease to commuting and contacts with respect to the ones estimated through mobile
phone data. In this hypothetical scenario, with the partial lockdown commuting rates drop by 55% and
contacts by 49% (versus respectively the 48% and the 36% estimated in our main analysis). Although
such homogeneous reduction across comunas is a theoretical exercise that does not consider complex
socio-economic constraints, that go from the collective need to keep key supply chains active to the
individual imperative to feed their own family, it crystallizes the dramatic effects of inequality on disease
spreading on the one side, and it shows the positive benefits of equal, early, and strong responses on the
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other.
We also use the model to investigate counterfactual scenarios aimed at estimating the impact of NPIs

on the spread of COVID-19 in Santiago. As a first counterfactual scenario, we simulated the epidemic
in the absence of a full lockdown. From Fig. 3A we observe that this leads on average to a 21.6% (95%
CI: [7.5%, 41.3%]) more intense incidence peak and 34.7% (95% CI: [27.2%, 44.1%]) more deaths. To
estimate the impact of the timing of the full lockdown, we run simulations where we anticipate or delay
it up to four weeks. According to results in Fig. 3B, an earlier lockdown implies a less intense incidence
peak (from around -20% to -35%). It is interesting to note, however, that a delay of 1-2 weeks has a
very similar effect of no intervention at all in terms of incidence peak intensity. More specifically, one
week delay causes a 18.1% (95% CI: [6.0%, 34.0%]) while two weeks delay cause a 21.6% (95% CI: [7.4%,
41.1%]) more intense incidence peak. The timing of the full lockdown also has a significant effect on the
number of deaths. According to our estimates in Fig. 3B, just one week of delay implies a 7.7% (95%
CI: [1.3%, 13.7%]) increase in mortality.

2.4 Effective Reproduction Number

In Fig. 3C we show the evolution of the effective reproduction number Rt estimated using the method
from Ref. [20] on the simulated and the official reported incidence. In the simulated Rt time series we
observe the two discontinuities after the implementation of government-issued NPIs. However, we note
that the partial lockdown had the sole effect of slowing down the epidemic. Indeed, after March 16th

the estimated Rt is still greater than 1. After the full lockdown, instead, Rt was pushed below 1 making
the containment possible. This is visible both in the simulated and the reported time series. This result
underlines the importance of the full lockdown that, despite causing a relatively small effect on mobility,
had a decisive role in bringing the outbreak under control. It is worth stressing this result. The full
lockdown constituted a key tipping point for the evolution of the epidemic pushing the reproductive
number below its critical threshold. A similar finding has been recently reported for the evolution
of the pandemic in Germany [21]. Indeed, also in that context, only the subsequent compounding of
interventions was able to bring the reproductive number below one thus curbing the spreading the virus.

3 Discussion

The analysis presented here shows that the effects of NPIs issued by the government strongly correlate
with a measure of human development, such as the HDI. In particular, comunas with higher HDI were
able to reduce more significantly their mobility. This, in turn, is reflected in both data and modeling
estimates by a lower burden of COVID-19 (cases, deaths) in the comunas characterized by a higher
HDI. The combination of these results raises policy-making concerns. Indeed, while lockdowns are
unquestionably effective in mitigating the epidemic activity, they may as well augment social and health
inequalities, penalizing more vulnerable communities. Other studies have found that mobility restrictions
unequally affected different regions of France [8], Italy [22], United States [11], Colombia, Mexico, and
Indonesia [23] with a higher income being associated to a larger capacity to afford social distancing.
Furthermore, observations in the United States [11, 24–26], Singapore [27] and the UK [28, 29] show that
socio-economic inequalities are linked to worst health outcomes during the current pandemic.

Our data-driven analysis also shows that the timeliness of NPIs is just one variable influencing the
outcome of the mitigation effort. The case of Santiago is emblematic. NPIs were introduced early
respect to other countries. Only two days after the first 50 confirmed cases. For comparison, Denmark
introduced measures after five, Austria after nine, Italy and Germany after fifteen days of reaching that
threshold [30]. These measures were followed by a considerable reduction in mobility and contacts, but
cases soared anyway in the metropolitan area. According to our analysis, the first set of NPIs significantly
slowed down transmissions but not enough to stop the epidemic. It was only after the introduction of
the second additional lockdown that the Santiago outbreak was brought under control. This indicates
that earlier implementation of more stringent NPIs may be beneficial in quickly mitigating the outbreak
without extending for a long time policies that potentially might unequally affect communities.

The present work comes with limitations. First, we focused only on the epidemic evolution within
the Santiago Metropolitan Area and we overlooked both national and international importations after
March 1st, 2020. While it is reasonable to assume that after this date the epidemic was largely sustained
by the internal spreading (especially considering the various restrictions on international and national
mobility), we acknowledge this as a possible limitation. Second, compared to other approaches [31–33],
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Figure 3: Impact of non-pharmaceutical interventions on COVID-19 spreading. A) Model
estimates of percentage increases in deaths and incidence peak intensity without the implementation of
the full lockdown. B) Model estimates of percentage changes in deaths and in incidence peak intensity
moving the date of the full lockdown of −4/+ 4 weeks. C) Effective Reproductive Number Rt estimated
on simulated and officially reported cases. The two time series show a high positive Pearson correlation
coefficient (ρ = 0.78, p < 0.001).

we considered a relatively simple disease dynamics. Lastly, we acknowledge that our mobile phone users’
sample was not selected to be representative of the whole population, but we know that Telefónica
Movistar data can well represent the different socio-demographic groups of Santiago [34].

Overall, our study characterizes the unfolding of SARS-CoV-2 in one of the largest metropolitan
areas in South America; a region that so far has received far less attention than others. It quantifies the
unequal effects across communities of behavioral changes introduced by governmental measures as well
as individual (re)actions and provides evidence that even small delays in the implementation of NPIs
can have a significant impact on the unfolding of the epidemic.
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4 Materials and Methods

4.1 Measuring Mobility and Contacts

In this work, we use phone data in the form of eXtended Detail Records (XDR). This stream records
every interaction (e.g. packet request) between devices and antennas. An entry in our dataset can be
formalized as a tuple 〈d, t, a〉 indicating a packet request to antenna a made by device d at time t. We
approximate the position of d with that of the antenna, which has a fixed latitude and longitude. We also
assign a home antenna to each device by finding the most active antenna during night hours. Finally,
we assign antennas to correspondent comunas according to their position. The dataset includes data for
the period 2020/02/26 − 2020/06/01 for 1.4 million devices which correspond to the 22% of the total
population in the area considered. To preserve the privacy of device owners, we analyze and display only
anonymous and aggregated results. Furthermore, no other information about the users (i.e. gender, age
etc..) was used nor available.

As specified in the previous sections, we characterize the three phases of the outbreak in terms of
commuting and contacts reduction. Commuting is measured considering the fraction of devices traveling
between comunas. Formally, for each day t we build a commuting rate matrix Σ(t) ∈ RN×N whose
element σij(t) is the fraction of devices living in comuna i that visited j on day t. We average these
daily rates during the three phases to obtain three distinct matrices describing commuting i) before any
restrictions, ii) during the partial lockdown, and iii) during the full lockdown.

It is important to notice that the data does not provide direct information about physical contacts be-
tween users. Having the privacy of the users in mind, and considering the various non-trivial assumptions
one would need to make, we do not attempt to estimate/infer such contacts. Instead, we focus on a metric
that allows us to capture the variation before and after the various interventions. As we describe be-
low, the epidemic model considers a homogeneous mixing approximation within each subpopulation (i.e.
comuna) hence the only important variable is an estimate of contacts reduction rather than the actual
contacts. To this end, contacts reduction is estimated by looking at the variation in the number of users
co-located in the same antenna. Each antenna a in comuna j has a resident population Naj . On day t, the
total number of visitors from the same comuna is vaj (t). Assuming homogeneous mixing, the maximum
number of contacts in antenna a is caj (t) =

(
Naj + vaj (t)

)
×
(
Naj + vaj (t)− 1

)
/2 ∼ (Naj + vaj (t))2/2.

Then, we assume the reduction of contact during the partial and full lockdown to be equal to:

rpartialaj =

avg
16/03<t<15/05

[caj (t)]

avg
t<16/03

[caj (t)]
rfullaj =

avg
t>15/05

[caj (t)]

avg
t<16/03

[caj (t)]
(1)

In other words, the reduction of contacts during the partial and full lockdown is considered as the
variation of the maximum number of contacts before and after each intervention. Finally, we aggregate
at the level of comunas taking the median of these quantities over all antennas located in the same
comuna.

4.2 Modeling the spread of COVID-19 in Santiago

The model used in this work to simulate the spread of COVID-19 is largely inspired by the Global
Epidemic and Mobility Model (GLEAM) [35, 36]. In this section, we present the conceptual framework
but a full mathematical description is provided in the Supplementary Information.

The comunas of Santiago are represented as single subpopulations in a metapopulation network.
Inside each one, we divide individuals into K = 16 five-year age brackets respecting the demographic
of different comunas [37] and we use the country-specific contact matrix from Ref. [38] to define the
rates at which different age groups mix with each other. Individuals are also divided into compartments
according to their health status. We consider a SLIR (Susceptible, Latent, Infectious, Removed) com-
partmentalization setup. A similar approach has been used in several modeling studies in the context of
COVID-19 [7, 39, 40]. Interacting with Infectious, Susceptibles move to the Latent stage in which they
are not infectious yet. Only after the incubation period, Latent become Infectious. Lastly, Infectious
transit to the Removed compartment at a rate inversely proportional to the infectious period.

Individuals can get the infection interacting with infected in their home and in other connected
metapopulations. To model this aspect, we consider the commuting network previously introduced to
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describe the coupling (i.e. the strength of connection) between comunas. Technically, we define a “force
of infection” λkj that expresses the infection rate for individuals in age group k residing in comuna j:

λkj =
λkjj

1 + σj/τ
+
∑
i

λkjiσji/τ

1 + σj/τ
(2)

Where τ set the time scale of commuting (here τ−1 = 1/3 day) and σj =
∑
i σji is the total commuting

rate of population j. In particular, the first term in Eq. 2 represents the contribute from active infec-
tions in comuna j, and the summation from cases in other connected comunas i (see Supplementary
Information for full details).

Government interventions are implemented by changing the commuting network on 16/03 (partial
lockdown commuting) and again on 15/05 (full lockdown commuting) to reflect the corresponding vari-
ations in mobility. Similarly, on these dates, we multiply the age contact matrix of each comuna by
rpartialj and rfullj , respectively. We do not explicitly account for school closure since its effect is already
included into the changes inferred from mobile devices data.

The model is fully stochastic and transitions among compartments are simulated through chain
binomial processes. In the main text we present results for an incubation period of 4 days and an
infectious period of 2.5 days, which imply a generation time TG = 6.5 days, in line with current estimates
[41, 42]. We simulate deaths considering the estimates of the Infection Fatality Rate from Ref. [19] and
a delay ∆ after the transition to the Removed compartment.

Initial seeding is done using the projections of active cases on March 1st, 2020 in the Metropolitan area
of Santiago from Ref. [7] and assigning infections to different comunas proportionally to the population
distribution. The calibration is performed on weekly deaths using an Approximate Bayesian Computation
(ABC) Rejection method [12, 13]. At each step of the ABC algorithm, a set of parameters θ is sampled
from a prior distribution and an instance of the model is generated using these parameters. Then, an
output quantity E′ of the model is compared to the corresponding real quantity E using a distance
measure s(E′, E). If this distance is greater (smaller) than a predefined tolerance ε, then the sampled
set of parameters is discarded (retained). After a sufficient number of iterations, the distribution of
accepted sets will approximate the posterior distribution of parameters P (θ,E) given the evidence E
from the data. In this work, we set a flat uniform prior on the parameters (R0 ∈ [2, 4] in steps of 0.02
and ∆ ∈ [14, 21] days in steps of 1 day) and we perform calibration using the median absolute percentage
error as a distance metric with a tolerance of 20% on weekly deaths. We run 140, 000 iterations which
correspond to about 200 stochastic realizations for each possible parameters set. We use the official data
issued by the Department of Statistics of the Chilean Minister of Health [43]. We consider both COVID-
19 ”confirmed” and ”suspected” deaths to perform the calibration, in the Supplementary Information
we support this decision showing that considering only confirmed COVID-19 deaths we still obtain a
significant anomaly in mortality. Model projections are produced sampling parameter sets directly from
the posterior distribution and generating an ensemble of trajectories. In this work we generate model
estimates sampling 5, 000 sets on which we compute median and confidence intervals.
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A Supplementary Information

A.1 Sensitivity Analysis

In this section we provide a sensitivity analysis on the data used for model calibration, on model param-
eters, on the correlation between mobility changes and sociodemographics, and finally on the number of
days needed to reach N infections according to our estimates and official surveillance in different comunas.

Deaths Data for Calibration. We calibrate the model using COVID-19 deaths data issued by the
Department of Statistics of the Chilean Minister of Health (DEIS) [43]. The dataset includes both
”confirmed” (i.e. supported by a clinical test, ICD code: U07.1) and ”suspected” deaths (i.e. supported
only by symptoms, ICD code: U07.2). In Fig. 4A we compare 2020 all-cause deaths with historical
median and 95% confidence intervals. We observe that, excluding only COVID-19 confirmed from 2020
deaths we still obtain a significant anomaly. Excluding also suspected, instead, we obtain a trend that is
within confidence intervals. For this reason, we decide to calibrate the model considering both COVID-19
confirmed and suspected deaths.

Here, we perform also calibration considering only confirmed COVID-19 deaths. In Fig. 4B we ob-
serve that the estimates for R0 obtained in this case do not change significantly (median R0 of 2.58, 95%
CI: [2.50, 2.64]). Moreover, this approach leads to a worse fit of the data (median absolute percentage
error of 28% with respect to the 12% obtained considering also suspected deaths).

Figure 4: Impact of COVID-19 on mortality rate in Santiago. A) We plot 2020 all-cause weekly
deaths in the comunas of Santiago and the historical median with 95% confidence interval computed on
2010-2019 data. We report also 2020 deaths time series excluding only COVID-19 confirmed (ICD code:
U07.1) and also suspected (ICD code: U07.2) deaths. B) R0 estimates considering only confirmed and
also suspected COVID-19 deaths.

Incubation and Infectious Period. In the main text we considered an incubation period (TIC) of 4
days and an infectious period (TIF ) of 2.5 days. Here, we run simulations where we vary these param-
eters and we observe the impact on our findings. In particular, we consider estimated R0, prevalence
and increase in deaths without the full lockdown for longer incubation (TIC ∈ [5, 6] days) and infectious
periods (TIF ∈ [3, 3.5] days). In Fig. 5 we represent results of the sensitivity analysis. From Fig. 5A we
observe that the median R0 for the different parameters explored remains in the range [2, 3]. Also, from
Fig. 5B we note that the median projected prevalence as of August 1, 2020 in Santiago varies of at most
5.9%. Finally, the results of the counterfactual analysis in which we do not introduce the full lockdown
are very robust across different parameters explored. Indeed, the median projected increase in deaths as
of August 1, 2020 varies of at most 3.0%.

Mobility and Sociodemographics. In the main text, we showed that the change in commuting
correlates with the Human Development Index (HDI) of different comunas. Here, we show that this
pattern holds for other economic and development indicators too. In particular, we consider separately
the components of the HDI, namely the Life Expectancy Index (LEI), the Education Index (EI), and the
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Figure 5: Results of sensitivity analysis A) Basic reproductive number estimates for different param-
eters explored in the sensitivity analysis. B) Model projections of prevalence in Santiago as of August
1, 2020 for different parameters. C) Increase in deaths (in percentage) as of August 1, 2020 without the
full lockdown for different parameters.

Income Index (II) [10]. In Fig. 6 we see that the correlation between these indicators and the average
commuting drop after 16/03 of the 37 comunas considered is still high, significant, and consistent with
the results presented in the main text for the HDI.

Figure 6: Correlation between mobility and sociodemographics. We represent the scatter plot
and the correlations between average percentage drop in commuting after 16/03 and the Life Expectancy
Index (LEI), the Education Index (EI), and the Income Index (II).

Also, in the main text we showed the significant correlation between HDI and the average percentage
decrease in commuting after March 16th, 2020. Here, we show that this finding hold also for absolute
commuting decreases. This sensitivity check is needed since a higher percentage decrease does not im-
ply necessarily a lower mobility after the introduction of NPIs (for example, the mobility baseline of
wealthier comunas can be generally higher). We define the outflow as the average number of outgoing
travels per device observed for a comuna during a given period. In Fig. 7 we represent (left) the outflow
before March 16th, 2020 versus the HDI of different comunas. We observe no significant correlation
(ρ = 0.01, p = 0.94). On the right, instead we represent the scatter plot of the absolute reduction in
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outflow before/after March 16th, 2020 versus the HDI of comunas. In this case we find a strong, positive,
and significant correlation (ρ = 0.55, p < 0.0001), hinting that wealthier comunas reduced more their
mobility also in absolute terms.

Figure 7: HDI and absolute mobility changes. On the left, scatter plot of outflow (normalized)
before March 16th, 2020 versus HDI of different comunas. On the right, scatter plot of the absolute
reduction in outflow after March 16th, 2020, versus HDI of different comunas. Points size is scaled
according to population.

Projected cases. In the main text, we assessed the performance of the model comparing via the Kendall
rank correlation coefficient the number of days (since 2020/01/01) needed to reach 200 infections in
different comunas according to our projections and official surveillance. We found a good, significant
correlation and we remarked that dates estimated through modeling were generally earlier to those
officially reported. In Fig. 8 is shown that this pattern holds also for different numbers of infections. In
particular, we consider the amount of days needed to reach 50, 100, 200, and 500 infections.

B Homogeneous NPIs Effect - Counterfactual Scenario

In the main text we present a hypothetical scenario in which we assign to all comunas the average
decrease in commuting rates and contacts observed after the partial lockdown for the 4th quartile of HDI
(i.e. 25% comunas with higher HDI). In Fig. 9A we represent the percentage change in total COVID-19
deaths and cases as of 2020/05/15, date of the 2nd lockdown. We observe that the effect on the spreading
is significant: -83.8% (95% CI: [-77.6%, -88.6%]) fewer cases and -70.5% (95% CI: [-55.0%, -80.9%]) fewer
deaths. In Fig. 9B we represent the percentage change in COVID-19 cases as of May 15th in different
comunas. We observe that, in general, the uniform reduction in mobility and contacts brings benefits
also to comunas with higher HDI. This hints that a more equal distribution of behavioral responses to
the NPIs in place would be advantageous not only for the most vulnerable but to the community as a
whole.

C Metapopulation Model with Age Structure

The model presented here is largely based on Ref. [36]. We consider N populations and K age groups.
We introduce the matrix Cj ∈ RK×K whose element Cjkk′ indicates the contacts rate between age group
k and k′ in population j. Similarly, we introduce the matrix Σ ∈ RN×N , whose element σji indicates the
commuting rate from population j to i. We consider a SLIR compartmentalization setup with traveling
Infectious, analogous to the case described in the main text (Tab. 1). In the following, we will use
the notation Xk

ji to indicate individual in age bracket k and compartment X living in population j and

traveling to i. In these settings, we define the force of infection λkj as the probability that a susceptible
individual in age group k and in population j transit to the Latent compartment in the unit of time.
This force of infection has two contributions, from the contacts occurred in the home population (λkjj)

and in other connected populations (λkji). These can be written down as:

λkjj =
β

N∗j

[∑
k′

Cjkk′I
k′

jj +
∑
i

∑
k′

Cjkk′I
k′

ij

]
(3)
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Figure 8: Days to reach N infections in different comunas. We consider the number of days since
2020/01/01 needed to reach 50, 100, 200, and 500 infections in different comunas as projected by our
model and as confirmed by official surveillance.

λkji =
β

N∗i

[∑
k′

Cikk′I
k′

ii +
∑
l

∑
k′

Cikk′I
k′

li

]
(4)

Where β is the probability of becoming infected as a result of a single contact, and N∗j is the effective
number of individuals in population j (more details below).

To use these expressions, we need to substitute the equilibrium values for Ik
′

jj and Ik
′

ij . For a general
compartment X, holds for consistency the following relation:

Xk
j = Xk

jj(t) +
∑
i

Xk
ji(t) (5)

For Xk
jj(t) and Xk

ji(t) we can write the following rate equations:

dtX
k
jj = −

∑
i

σjiX
k
jj(t) + τ

∑
i

Xk
ji(t) (6)

dtX
k
ji = σjiX

k
jj(t)− τXk

ji(t) (7)

Where τ set the time scale of commuting (results in the main text are obtained for τ−1 = 1/3 day).
From Eq. 5 we derive

∑
iX

k
ji(t) = Xk

j −Xk
jj(t). We substitute this expression in Eq. 6 and we define

the total commuting rate of population j as σj =
∑
i σji:

dtX
k
jj = τXk

j − (σj + τ)Xk
jj(t) (8)

We solve Eq. 8 for Xk
jj(t):

Xk
jj(t) =

τXk
j

σj + τ
+

[
Xk
jj(0)−

τXk
j

σj + τ

]
e−(σj+τ)t (9)
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Figure 9: Homogeneous NPIs Effect - Counterfactual Scenario. A) Drop (%) in total number
of COVID-19 deaths and cases as of 2020/05/15, date of the 2nd lockdown. b) Drop (%) in COVID-19
cases in different comunas.

When t→∞, we obtain the equilibrium value:

Xk
jj =

Xk
j

1 + σj/τ
(10)

We take Eq. 7 and we impose the equilibrium condition σjiX
k
jj − τXk

ji = 0. Then, substituting the

result just derived, we obtain the equilibrium value also for Xk
ji:

Xk
ji =

Xk
j σji/τ

1 + σj/τ
(11)

Therefore, substituting the equilibrium values in Eq. 3 and 4 we obtain:

λkjj =
β

N∗j

[∑
k′

Cjkk′
Ik

′

j

1 + σj/τ
+
∑
i

∑
k′

Cjkk′
Ik

′

i σij/τ

1 + σi/τ

]
(12)
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Table 1: Transitions between compartments
Transition Type Rate
Skj → Lkj Contagion λkj
Lkj → Ikj Spontaneous ε
Ikj → Rkj Spontaneous µ

λkji =
β

N∗i

[∑
k′

Cikk′
Ik

′

i

1 + σi/τ
+
∑
l

∑
k′

Cikk′
Ik

′

l σli/τ

1 + σl/τ

]
(13)

Then, the total force of infection λkj can be written as the the sum of these two contributions weighted,
respectively, by the probability of finding a susceptible in age group k from population j in the home
population (Skjj/S

k
j = 1/(1+σj/τ) using Eq. 10), and in a connected population i (Skji/S

k
j = (σji/τ)/(1+

σj/τ) using Eq. 11):

λkj =
λkjj

1 + σj/τ
+
∑
i

λkjiσji/τ

1 + σj/τ
(14)

Finally, we still have to give an expression to N∗j , the effective number of individuals in population
j introduced in Eq. 3. This effective population must consider both the individual from j present in j
and those traveling to j from connected populations i. Using the equilibrium values derived in Eq. 10
and Eq. 11:

N∗j =
Nj

1 + σj/τ
+
∑
i

Niσij/τ

1 + σi/τ
(15)

Mobility restrictions are implemented changing the commuting matrix Σ at the start of the partial
and the full lockdown. Contacts reduction, instead, is implemented multiplying the contacts matrix Cj

of each population (comunas) by the respective parameter. For example, the general element of the

contacts matrix Cj during the partial lockdown for comuna j is rpartialj Cjkk′ .

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 13, 2020. ; https://doi.org/10.1101/2020.10.08.20204750doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.08.20204750
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	Effects of NPIs and Social Inequalities
	The Spread of COVID-19 in Santiago
	Counterfactual Scenarios
	Effective Reproduction Number

	Discussion
	Materials and Methods
	Measuring Mobility and Contacts
	Modeling the spread of COVID-19 in Santiago

	Supplementary Information
	Sensitivity Analysis

	Homogeneous NPIs Effect - Counterfactual Scenario
	Metapopulation Model with Age Structure

