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Abstract 

Background: Antidepressants are an effective treatment for major depressive disorder 

(MDD), although individual response is unpredictable and highly variable. Whilst the mode 

of action of antidepressants is incompletely understood, many medications are associated 

with changes in DNA methylation that are plausibly linked to their mechanisms. Studies of 

DNA methylation may therefore reveal the biological processes underpinning the efficacy 

and side effects of antidepressants. 

 

Methods: We performed an epigenome-wide association study (EWAS) of self-reported 

antidepressant use accounting for lifestyle factors and MDD in the Generation Scotland 

cohort (N=6,428).  

 

Results: We found 10 CpG sites significantly associated with self-reported antidepressant 

use, with the top CpG located within a gene previously associated with mental health 

disorders, ATP6V1B2 (β=-0.055, pcorrected=0.005). Other top loci, annotated to genes including 

CASP10, TMBIM1, MAPKAPK3, and HEBP2, have previously been implicated in the innate 

immune response. We also identified a number of disease-associated single nucleotide 

polymorphisms as trans and cis methylation quantitative trait loci (mQTLs) for CpG sites 

identified here. Next, using penalised regression, we trained a methylation-based score (MS) 

of self-reported antidepressant use in 3,799 individuals that predicted antidepressant use in a 

second subset of Generation Scotland (N=3,360,β=0.377, p=3.12x10-11,R2=2.12%). Lastly, in 

an EWAS analysis of SSRI antidepressant prescribing data from electronic health records, we 

showed convergent findings with those based on self-report. 

 

Conclusions: Antidepressants may exert their effects through epigenetic alterations in 

regions previously associated with mental health disorders and those involved in the innate 

immune system. These changes predicted self-reported antidepressant use in a subset of 

Generation Scotland and identify processes that may be relevant to our mechanistic 

understanding of clinically relevant antidepressant drug actions and side effects. 
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Introduction  

 Major Depressive Disorder (MDD) is a leading cause of disability worldwide (1) and 

is caused by a combination of environmental and genetic factors (2). MDD has a number of 

effective treatments, with antidepressant drugs amongst the most commonly prescribed 

evidence-based therapies worldwide (3,4). Response to antidepressants is nevertheless 

unpredictable and highly variable, with approximately 50% of individuals achieving 

remission after two treatments (5). The unmet needs of many individuals with MDD indicate 

the urgency of understanding the mechanisms of effective antidepressant action (6) so that 

their efficacy can be improved and their delivery targeted to those most likely to benefit. 

The mode of action of antidepressants was originally assumed to be through the 

inhibition of monoamine re-uptake. However, since synaptic monoamine concentration 

poorly mirrors the trajectory of symptomatic improvement, their mechanism of action 

remains uncertain (7). Studies of antidepressants in both animal and human studies have 

implicated a number of possible modes of action. These include evidence that antidepressants 

lead to changes in DNA methylation (DNAm) and gene expression in a number of potentially 

relevant pathways (8). Francois et al. (2015) (9) demonstrated that stress leads to changes in 

gene expression and DNAm of 5-HT1A that is partly reversed by antidepressants in an 

animal model. Zimmermann et al. (2012) (10) found that antidepressants affect activity of 

DNA methyltransferase 1 (DNMT1) (10). The studies above demonstrate that antidepressants 

lead to epigenetic alterations that may help to reveal their biologically relevant properties and 

modes of action. 

Epigenetic processes are associated with alterations in DNA activity without 

alterations to the underlying genome sequence (11). DNAm is perhaps the most commonly 

investigated epigenetic change, owing to the availability of reliable high-throughput array 

technologies that can identify changes in DNAm at over 800K locations throughout the 

genome. Epigenome-wide association studies (EWAS) have begun to identify a number of 

cytosine-phosphate-guanine (CpG) sites that are associated with MDD (12) and relevant 

environmental factors (13). Some DNAm changes may therefore act as an environmental 

archive capturing the effects of exogenous factors, including drug treatments that may be 

relevant to the onset and maintenance of MDD. 

Recent studies have also shown the potential of a DNAm-based risk score to predict 

MDD and its associated lifestyle and environmental factors, including antidepressant use 

(14,15). Barbu et al. (2020) (15) trained a DNAm predictor of MDD in 3,047 individuals 

using a penalised regression model and showed that it was significantly associated with self-
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reported antidepressant use in an independent cohort. This suggests that CpG sites conferring 

risk to MDD may also be linked to antidepressant use. A methylation-based predictor of self-

reported antidepressant use may therefore be able to predict antidepressant use and its effects 

in other samples, and may signpost the development of clinical biomarkers quantifying drug 

action. 

Here, we sought to identify the DNAm changes associated with self-reported 

antidepressant use in 6,428 individuals (Nantidepressant use=740) from the Generation Scotland 

study using the Illumina Infinium MethylationEPIC array (16), capturing DNAm at 

approximately 850K sites. Further, by splitting the Generation Scotland cohort into two 

DNAm datasets, we were able to train a DNAm-based methylation score (MS) of self-

reported antidepressant use in one dataset (N=3,799; Nantidepressant use=585), and test its ability 

to predict self-reported antidepressant use in a second (N=3,360; Nantidepressant use=317). We 

also addressed confounding by indication and by smoking in planned sensitivity analyses 

(17). Using linked National Health Service (NHS) Scotland medication prescribing data, we 

were able to identify whether the EWAS findings from self-report were also found when 

using contemporaneous electronic healthcare information collected around the time of the 

blood draw. 
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Methods 

 

Study population: Generation Scotland – the Scottish Family Health Study (GS:SFHS) 

 GS:SFHS is a family-based population cohort designed to investigate the genetic and 

environmental causes of common diseases and well-being in approximately 24,000 

participants aged 18-98 years in Scotland. Baseline data was collected between 2006 and 

2011 (18,19) and contains detailed information on a broad range of variables, including 

lifestyle and environmental factors, medication, mental health, and linkage to comprehensive 

routine healthcare records. DNA is also available from blood samples taken on more than 

20,000 consenting participants. 

GS:SFHS received ethical approval from NHS Tayside Research Ethics Committee 

(REC reference number 05/S1401/89) and has Research Tissue Bank Status (reference: 

15/ES/0040). Written informed consent was obtained from all participants. 

 

Phenotypes  

Self-reported antidepressant use 

 For self-reported antidepressant use, a text-based questionnaire was used for 

participants recruited between June 2009 and March 2011. The questionnaire recorded 

medication use through a “yes/no” checkbox with the following accompanying question: 

“Are you regularly taking any of the following medications?”, where available options 

included “Antidepressants”. Data on individuals with self-reported antidepressant use is 

presented in Table 1. Participants with no self-reported antidepressant use were defined as 

those individuals who answered “No” to the “Antidepressants” sub-section of the 

questionnaire medication. There were 7,174 individuals with available self-reported data who 

also had DNAm data available; this number decreased when including environmental and 

lifestyle variables in statistical analyses (see Table 1). 

 

Selective serotonin reuptake inhibitors (SSRI) prescription and data linkage 

 Almost all individuals registered with a General Practitioner (GP) in Scotland are 

assigned a Community Health Index (CHI) number which acts as a unique identifier. The 

CHI number was used to record-link GS:SFHS data collected in self-reported questionnaires 

to the national Prescribing Information System (PIS) administered by NHS National Services 
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Scotland Information Services Division (20). PIS provides information on patient-level 

prescriptions since April 2009 and allows the identification of medications by approved drug 

name or paragraph code within the British National Formulary (BNF) (21). GS:SFHS 

obtained PIS-prescription data for April 2009-March 2011. 

Here, we selected antidepressants from BNF paragraph code 4.3.3 containing the 

following SSRIs: Citalopram, Escitalopram, Fluoxetine, Fluvoxamine Maleate, Paroxetine, 

and Sertraline (21). To investigate DNAm signatures of SSRI use, we restricted analyses to 

those individuals with SSRI dispensing records within the 12 months prior to blood draw 

date. Individuals that had any number of dispensed prescriptions within 12 months before the 

blood draw date were marked as cases (N=487). Individuals with DNAm data that did not 

have any SSRI dispensed prescription records were marked as controls (N=7,463; this 

number decreased when including environmental and lifestyle variables in statistical 

analyses, see Table 1). 

We used dates of dispensing, not prescription, when restricting antidepressant use 

based on time interval. The total number of prescriptions dispensed for each of the 6 SSRIs 

during the 12 months (where one participant may have multiple dispensed prescriptions) is 

presented in Table 1. 

 

Lifestyle factors and MDD status 

 Body mass index (BMI) was computed using height (cm) and weight (kg) as 

measured by clinical staff at baseline recruitment. Participants reported the number of units 

of alcohol consumed during the past week and their smoking status (never, former, current); 

pack years was used to measure heaviness of smoking in current smokers (22). 

MDD status was assessed using the Structured Clinical Interview of the Diagnostic 

and Statistical Manual, version IV (SCID) (23). Participants with no MDD were defined as 

those individuals who did not fulfil criteria for a current or previous MDD diagnosis 

following the SCID interview (24). Further details are presented in the Supplementary 

Materials. 

 

DNA methylation 

 Genome-wide DNAm data profiled from whole blood samples was available for 

9,873 individuals in GS:SFHS using the Illumina Human-MethylationEPIC BeadChip (16). 

DNAm data for individuals was initially released in two waves (wave 1N=5101; wave 

2N=4,450). The raw data for all participants in the present study was pre-processed and 
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quality checked for all individuals, after participant removal due to a number of reasons, 

including having more than 1% CpG sites with a detection p-value > 0.05, showing evidence 

of dye bias, being an outlier for bisulphite conversion control probes, and having a median 

methylated signal intensity more than 3 standard deviations lower than expected. A total of 

10,495 CpG sites were removed due to low beadcount, poor detection p-value, and sub-

optimal binding.  

 Firstly, R package “minfi” was used to read in the IDAT files, compute M and beta 

values, and remove probes with large detection p-values, and to compute principal 

components (PC) of control probes. Secondly, correction was applied for (1) technical 

variation, where M values were included as outcome variables in a mixed linear model 

adjusting for appointment date and Sentrix ID (random effects), jointly with Sentrix position, 

batch, clinic, year, weekday, and 10 PCs (fixed effects); and (2) biological variation by fitting 

residuals of (1) as outcome variables in a second mixed linear model adjusting for genetic 

and common family shared environmental contributions (random effects classed as G: 

common genetic; K: kinship; F: nuclear family; C: couple; and S: sibling) and sex, age, and 

estimated cell types proportions (CD8T, CD4T, NK, Bcell, Mono, Gran) (fixed effects) (25). 

The final number of CpG sites that converged for these analyses was 736,940 across the 22 

autosomes. 

 

Statistical methods 

Epigenome-wide association 

 We used linear regression models run in the “limma” package (26) in R to analyse the 

association of each CpG site, included as an outcome variable, with self-reported 

antidepressant use included as the predictor variable. The R code for the current analyses is 

available in the Supplementary Materials. The following covariates were included: age, sex, 

20 PCs, wave (indicating different data pre-processing waves), as well as BMI, alcohol units, 

smoking status, and pack years to observe whether the inclusion of lifestyle factors attenuates 

the effect of self-reported antidepressant use. MDD status was also included to observe 

whether associations between CpG sites and self-reported antidepressant use were influenced 

by the presence of MDD and potentially confounded by the indication for prescription, as 

some individuals not classed as having MDD have indicated antidepressant use. There were 

713,522 CpG sites available after QC and a Bonferroni correction (0.05/713,522) was used to 

define epigenome-wide significance (p≤7.007×10−8). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 6, 2020. ; https://doi.org/10.1101/2020.10.06.20207621doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.06.20207621
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

 We also performed the above linear regression using SSRI prescribing data as a 

predictor, to identify whether there are differences in DNAm in relation to antidepressant use 

when using SSRI PIS data as a phenotype. We restricted SSRI dispense dates to 12 months 

prior to the blood draw date for each individual. The covariates included here are the same as 

in the model specified above. 

Overlap with disease-associated single nucleotide polymorphisms (SNPs)  

To identify SNPs associated with both disease traits and CpG sites that play a role in 

antidepressant use, we analysed the overlap between disease-associated SNPs (27–31) and 

SNPs identified as mQTLs (Bretherick et al., in preparation) for the CpG sites we identified 

in the current EWAS. Candidate diseases were selected based on their association with genes 

annotated to CpGs identified in the current EWAS. 

 We used methylation quantitative trait loci (mQTL) analyses carried out in the 

Generation Scotland wave 1 and GWAS for a number of disease traits, specifically MDD, 

schizophrenia, cardiovascular disease (CVD), inflammatory bowel syndrome (IBS), and 

rheumatoid arthritis (RA), to find potential disease-associated mQTLs for CpG sites 

identified in the current EWAS. The mQTL analysis investigated associations between SNPs 

and methylation levels at 638,737 CpG sites, and only those associations with p<1x10-3 were 

kept. SNPs associated with MDD (NSNPs=125), schizophrenia (NSNPs=128), CVD (NSNPs=46), 

IBS (NSNPs=7), and RA (NSNPs=107) at genome-wide significance (p<5x10-8) were identified 

from: Howard et al.’s (2019) (27) MDD GWAS results (excluding Generation Scotland from 

the meta-analysis); Ripke et al. (2014) (28); Deloukas et al. (2013) (29); Bonfiglio et al. 

(2018) (30) and Yarwood et al. (2016) (31), respectively. Further details of these analyses are 

provided in each publication.  

 

DNAm score analysis 

 We separated individuals in DNAm waves 1 and 2 into training and testing datasets, 

respectively. In wave 1, self-reported antidepressant use (N=3,799; antidepressant users=585) 

was first residualised for sex, age, and 10 genetic PCs. The R package “biglasso” was then 

used to train DNAm predictors, where probes were restricted to only those available on the 

Illumina 450K array (N=365,837), to maximise the availability and use of our predictor to 

other cohorts using the 450K array. Penalised regression was applied using the “cv.lasso” 

function and 10-fold cross validation. Non-zero coefficients from this model, with the lambda 

value corresponding to the mean square error, were then used to create MS for self-reported 

antidepressant use in Generation Scotland wave 2. 
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 Due to the known association between smoking and DNAm (17), we also trained 

DNAm predictors on a set of non-smokers in wave 1, to exclude potentially confounding 

smoking signals within our predictor. This was achieved by excluding those individuals who 

had a smoking history (i.e. answered “yes” to the question, “have you ever smoked 

tobacco?”) from all individuals with self-reported antidepressant use data (N 

excluded=1,847). The training dataset here consisted of 1,952 individuals (226 antidepressant 

users). Similarly, self-reported antidepressant use was residualised for age, sex, and 10 

genetic PCs, and penalised regression was applied as above. 

 Finally, to exclude MDD-associated effects within our predictor, we trained a further 

DNAm score on a set of individuals with no MDD diagnosis in wave 1 (MS-control). The 

training dataset consisted of 2,791 individuals (antidepressant users=195). 

 There were 76, 20, and 35 CpG sites identified for the full (MS), smoker-excluded 

(MS-ns), and MDD-excluded (MS-control) datasets described above, respectively. The list of 

CpG sites and their corresponding weights are presented in Supplementary Tables 1, 2, and 3. 

MS, MS-ns, and MS-control were created for each individual in wave 2 (N=3,360; 

antidepressant users=317) by taking the sum of the product of the identified DNAm 

residualised M-values and supplied model coefficient values. Regression models were then 

run to identify associations between the scores and self-reported antidepressant use, as well 

as a number of lifestyle factors and MDD. 

 

Pathway and regulatory element overlap analysis 

 We used the Infinium MethylationEPIC BeadChip database to annotate significantly-

associated CpG sites to genes (16). The database provides information with regards to genes, 

chromosome location, start and end sites, and other features.  

To assess pathway enrichment for differentially methylated CpG sites while 

correcting for biases in the representation of genes on the Infinium BeadChip, we used 

missMethyl (32), accessed via methylGSA (33). Gene Ontology (GO) terms were accessed 

using the msigdbr package (34). Pathways included in the analysis were all GO Biological 

Process pathways of size 20-500 genes inclusive. CpG sites included in the analysis were 

those significant at a threshold of p<1x10-5, as used in previous studies (35).  

To assess overlap of differentially methylated CpG sites with the 15 chromatin states 

across 127 tissues from the Consolidated Roadmap Epigenomics dataset, we used eFORGE 

2.0 (36), accessed via the web tool at https://eforge.altiusinstitute.org and using default 

settings. 
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Results 

Demographic characteristics 

 Individuals with self-reported antidepressant use who had incomplete lifestyle (BMI, 

alcohol consumption, and smoking) and disorder (MDD status) data were excluded. There 

were 6,428 individuals in the final EWAS of self-reported antidepressant use (Nantidepressant use: 

740). Descriptive and demographic characteristics for these individuals, as well as individuals 

with prescribing data, are presented in Table 1. 

 

Self-reported antidepressant use 

EWAS identified 10 CpG sites that were associated with self-reported antidepressant 

use (p≤7.007x10-8). Nine CpG sites were significantly hypomethylated in antidepressant 

users, while 1 site (cg26277237) was hypermethylated. Information about each CpG site is 

shown in Table 2 and depicted as a Manhattan plot in Figure 1. 

 The EWAS catalogue (http://www.ewascatalog.org/) includes CpG sites represented 

on the Illumina 450K methylation array that have shown associations with traits at p ≤ 1x10-4 

in genome-wide analyses. The catalogue was used to cross-reference all CpG sites associated 

with self-reported antidepressant use with the wider literature. Eight of the CpG sites were 

represented only on the Infinium MethylationEPIC BeadChip (containing approximately 

850K CpG sites), and were therefore not included in the catalogue. Searches conducted on 

other databases, including EWASdb (37) indicate that these 8 CpG sites have not been 

previously associated with any trait. 

cg05603985 was previously found to be associated with smoking (p=1.8x10-43; (17)), 

alcohol consumption (p=7.9x10-13 in African ancestry and p=1.9x10-8 in European ancestry; 

(38)) and gestational age (p=4.8x10-5; (39)); cg27589594 was found to be associated with 

smoking (p=6.9x10-5; (17)) and gestational age (p=3.5x10-16; (39)). 

 

Overlap with disease-associated SNPs  
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We found several disease-associated SNPs to be cis and trans mQTLs for CpGs 

identified here; results are indicated in Table 3. Regional visualisation plots for all SNPs are 

presented in Supplementary Figures 1-12. 

For MDD, the association between antidepressant treatment and DNAm was negative 

for both CpGs, and the same direction of effect was shown in the association between the two 

CpGs and the risk alleles at the associated SNPs. rs2056445 was not previously associated 

with any phenotypes. As indicated in the GWAS catalogue (https://www.ebi.ac.uk/gwas/), 

rs3793577 was previously associated with depressive symptoms (p=7x10-13; (40)), 

neuroticism (p=7x10-13 in (40); p=4x10-7 in (41)), and well-being (p=7x10-13; (40)), in 

addition to depression (27).  

The two schizophrenia-associated SNPs were positively associated with the CpGs 

identified here, while the CpG-antidepressant use association was negative. rs8044995 and 

rs7523273 were not found to be previously associated with any traits in addition to 

schizophrenia (28). 

Similarly, for CVD, the direction of effect for the SNP-CpG association was positive, 

whereas it was negative for the antidepressant use-CpG association. In addition to CVD (29), 

rs3184504 was previously associated with a host of traits, including leukocyte count 

(p=8x10-222; (42)); hypothyroidism (p=1x10-114; (42)); smoking status (p=6x10-67; (43)); 

diastolic blood pressure (p=2x10-64; (44)); and coronary artery disease (p=5x10-30; (45)). 

There were 6 RA-associated SNPs that were found to be mQTLs for CpGs identified 

here; 3 were in the same direction of effect as the antidepressant use-CpG association 

(rs6715284, rs2075876, rs6732565), and 4 were opposite (rs13330176, rs6732565, 

rs10774624, rs2075876). rs6732565 was found to be an mQTL for both cg05186879 and 

cg20494891. Interestingly, rs6715284, rs2075876, rs6732565, rs13330176, and rs2075876 

were not associated with other traits with the exception of RA. rs10774624 was found to be 

associated with eosinophil count (p=1x10-300; (42)); vitiligo (p=6x10-23; (46)); systolic blood 

pressure (p=3x10-19; (47)); and intraocular pressure measurement (p=3x10-10; (48)), in 

addition to RA (31). 

Finally, IBS-associated SNPs were not identified as mQTLs for any CpGs. 

 

DNAm score analysis 

 LASSO regression selected 76, 20, and 35 CpGs to calculate MS, MS-ns, and MS-

control for self-reported antidepressant use, respectively, in Generation Scotland wave 2.  
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Briefly, the MS was associated with self-reported antidepressant use in a model 

adjusted for age, sex, and 10 genetic PCs (β=0.377, p=3.12x10-11, R2=2.12%); when 

including BMI, alcohol units, smoking status, pack years, and MDD as covariates, this 

association was still significant, although the variance explained decreased (β=0.213, 

p=0.0035, R2=0.56%). The association between MS-ns and self-reported antidepressant use 

was in the same direction but became non-significant, both in the covariate-free model 

(β=0.106, p=0.075, R2=0.16%) and in the model with the above covariates included (β= 0.04, 

p=0.565, R2=0.02%). Finally, MS-control was significantly associated with self-reported 

antidepressant use in the covariate-free model (β=0.254, p=1.15x10-5, R2=0.93%), but not 

when including covariates (β=0.064, p=0.381, R2=0.05%). Table 4 below indicates further 

associations uncovered for all scores. 

 

SSRI 

EWAS conducted using individuals with dispensing data identified additional CpG 

sites, all hypomethylated, associated with SSRI use (the most commonly prescribed treatment 

for depression) within 12 months prior to blood draw date, which are shown in 

Supplementary Table 4 and Supplementary Figure 13. 

Additionally, all 10 CpG sites that were associated with self-reported antidepressant 

use (p≤7.007x10-8) were found to be nominally significant (p<0.05) in the EWAS including 

SSRI dispensing records as a phenotype. The direction of effect was consistent for all CpG 

sites identified in the self-report EWAS: 9 were hypomethylated and 1 was hypermethylated, 

presented in Supplementary Figure 13 and Supplementary Table 5 (β and p-value for smallest 

and largest associations included cg09511513 (β=-0.026, p=0.028) and cg26277237 

(β=0.027, p=3.09x10-7). In turn, a majority of CpG sites identified in the EWAS of SSRI 

dispense records in the 12 months prior to blood draw date were nominally significant in the 

EWAS where the self-report variable was input as the predictor (Supplementary Table 6).  

 

Pathway and regulatory element overlap analysis 

 To assess whether differentially methylated regions associated with antidepressant use 

preferentially affect specific pathways, we used missMethyl (32) to perform an over-

representation analysis of GO Biological Pathways for the set of genes annotated to the 144 

CpG sites differentially expressed at p<1x10-5. Following FDR adjustment for multiple 

comparisons, the only over-represented pathways were related to regulation of myeloid cell 
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differentiation (GO Negative Regulation of Myeloid Cell Differentiation and GO Negative 

Regulation of Myeloid Leucocyte Differentiation, padjusted=0.04 for both). Enrichment of these 

pathways was driven by hypomethylation in the on-antidepressant group in the body or 

5’UTR of the following genes: GAT2, HOXA7, INPP5D, MEIS1, RAR and UBASH3B.  

We also used eFORGE (36) to test for any tissue-specific signal in the overlap of 

differentially methylated CpG sites with regulatory elements. Testing for overlap of 

differentially methylated CpG sites at p<1x10-5 with chromatin states in 127 tissues from the 

Roadmap Epigenomics Consortium, the greatest enrichment was seen in blood cell tissues. 

Of the peripheral blood cell subsets tested, the cell type showing the greatest enrichment was 

monocytes (Figure 2), with significant enrichment for monocyte enhancers (q=4x10-11) and 

regions flanking active transcription start sites in monocytes (q=1x10-9). 

We repeated the tests for enrichment of gene sets and tissue-specific chromatin states 

using the results from the EWAS of antidepressant prescriptions, including CpGs significant 

at p<1x10-5 (N=484 CpGs). We did not find 

enrichment of any specific GO biological processes, but replicated the finding from the self-

reported antidepressant use EWAS that monocytes were the peripheral blood cell subset most 

enriched for the EWAS signal (enhancers in primary monocytes from peripheral blood were 

enriched at q=4x10-94) and also found strong enrichment for enhancers in peripheral blood 

neutrophils (q=4x10-79). 
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Discussion 

 Self-reported antidepressant use is associated with differences in DNAm at 10 CpG 

sites that have previously been associated with psychiatric disorders and the innate immune 

system. We found that all 10 CpG sites were also nominally associated with antidepressant 

prescription data obtained from the electronic health record, indicating agreement between 

self-reported and record linkage data. A DNAm score trained on one sub-sample was 

associated with self-reported antidepressant use, 4 lifestyle factors, and MDD in a second 

unrelated sample from the same study. Lastly, we found 2 SNPs previously associated with 

MDD to be trans mQTLs for 2 CpG sites identified here. 

 The CpG site that had the strongest association with self-reported antidepressant use 

in terms of effect size was cg09511513 (β=-0.055, pcorrected=0.005), located in ATP6V1B2. 

This CpG site has not been associated with any other traits previously, to the best of our 

knowledge. ATP6V1B2 encodes a component of vacuolar ATPase, which is a multisubunit 

enzyme that mediates the acidification of eukaryotic intracellular organelles, including 

endosomes and lysosomes, and may be involved in neurotransmission (49). Importantly, a 

single nucleotide polymorphism (SNP) within ATP6V1B2, rs1106634, has been associated 

with MDD (p=   7x10-7) and bipolar disorder (p=5.63x10-6) in previous GWAS (50–52). 

 Two SNPs-CpG trans associations were identified, one of which was novel 

(rs2056445–cg03864397). Interestingly, the mQTL for cg27589594, rs3793577, was 

previously associated with neuroticism, depressive symptoms, and wellbeing, in addition to 

MDD (27,40,41). In addition to MDD-associated mQTLs, we identified a number of disease-

associated SNPs, including schizophrenia (28), CVD (29), and RA (31), to be both trans and 

cis mQTLs for CpGs identified here. Most disease-associated variants are non-coding and 

may exert their effects through gene expression modifications (53). Further, the direction of 

effect in the current study differed according to disease when investigating the two CpGs in 

relation to SNPs and antidepressant use. The results here indicate that genetic liability for 
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disease-associated traits may influence DNAm alterations at the same loci associated here 

with antidepressant use. Further work is required to disentangle the effects of antidepressants 

on DNAm from the effects of the conditions they are prescribed for. 

 We were able to show that a MS for self-reported antidepressant use was associated 

with a number of lifestyle and environmental factors in a subset of Generation Scotland. This 

included self-reported antidepressant use, MDD status, and 4 lifestyle factors (BMI, alcohol 

units, smoking status, and pack years). In addition, when excluding MDD-associated signals 

in a second DNAm score (MS-control), we found that the predictor was still associated with 

antidepressant use, although with reduced variance explained (MS R2=2.12%; MS-control 

R2=0.93 %). This suggests that, although antidepressant use may in part be a marker of MDD 

effects on DNAm, antidepressant prescription effects may be partly independent from the 

condition they are prescribed for. Further, only one CpG overlaps between the CpG sites in 

our MS and CpG sites comprising an MDD DNAm risk score in Barbu et al. (2020) (15). 

This CpG (cg09935388) has been associated with smoking in previous studies (54,55), and 

may therefore capture smoking-associated effects with both MDD and antidepressant use. It 

should also be noted that in the current study, the decreased variance explained may be in 

part due to differences in the training sample sizes for the two scores (MSN=3,799, 

antidepressant users=585; MS-controlN=2,791, antidepressant users=195), although variation 

explained in lifestyle factors is comparable between the two scores (MS R2: BMI=0.75%; 

alcohol units=1.93%; smoking status=6.11%; pack years=9.14%; MS-control R2: 

BMI=0.53%; alcohol units=1.56%; smoking status=5.08%; pack years=8.09%).  

When smokers were excluded from the training sample, MS-ns associations with all 

variables remained in the same direction but became non-significant. This suggests that 

smoking may partially confound the associations between antidepressant use and DNAm, 

being associated with both antidepressant use and DNAm alterations. Similarly to MS-

control, these results may be due to differences in the training sample sizes for the two scores 

(MSN=3,799; MS-nsN=1,952), and the reduced number of antidepressant users included in 

the training sets (MSN=585; MS-nsN=226). Future studies would benefit from training 

DNAm predictors of self-reported antidepressant use in larger samples of lifelong non-

smokers. 

Using missMethyl, we identified altered DNAm nearby several genes involved in 

myeloid cell differentiation. Myeloid cells play an important role in the innate immune 

response, and their activation and differentiation depend in part on epigenetic mechanisms 

(56). Several of the genes annotated to CpGs identified at genome-wide significance here 
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were associated with the innate immune response in previous GWAS; this may complement 

the finding that genes annotated to the 144 CpG sites differentially expressed at p<1x10-5 are 

enriched for myeloid cell differentiation. 

The role of the innate immune system has previously been investigated in relation to 

psychiatric disorders. In MDD, studies have found a number of pro-inflammatory cytokines, 

such as TNF-α and IL-6, to have higher concentrations in depressed individuals, as compared 

to healthy controls (57). Importantly, antidepressants, particularly SSRIs, have been shown to 

exert effects on the immune system by causing a reduction in inflammatory markers. 

Generally, antidepressants have been found to reduce pro-inflammatory cytokine levels, such 

as TNF-α, IL-6, and IL-1β, although their effects are complex and incompletely understood 

(57). The current study may provide novel links between DNAm, antidepressants, and their 

association with processes involved in the innate immune system. Studies that investigate 

whether antidepressants exert their effect through the alteration of DNAm at CpG sites that 

are known to be associated with the expression of innate immune system, myeloid cell 

differentiation, and MDD-specific genes may be of interest. 

 The most commonly dispensed SSRI in the current study was citalopram (Table 1; 

Nprescriptions=1,243). Kanherkar et al. (2018) (58) investigated the effect of citalopram 

(administrated for 30 days) on in vitro genome-wide DNAm in HEK-293 cells (human 

embryonic kidney cells). They found that 626 gene promoters (2.46% of a total of 25,437 

genes) showed significant differential methylation. Specifically, of the 626 gene promoters, 

272 were hypomethylated and 354 were hypermethylated in treated individuals as compared 

to controls. Among the top gene networks that were differentially regulated were pathways 

involved in depression, nervous system development and function, as well as cellular growth 

and proliferation (58). The above study indicates that citalopram may be one of the SSRIs 

that may have widespread effects on the methylome. It may be that some of the findings in 

the current study are driven by citalopram, although replication and longitudinal studies 

including other SSRIs and other classes of antidepressants would be needed to verify this. 

Self-reported antidepressant use was not restricted to specific dates prior to the blood 

draw date, as this variable was measured using a single question that asked individuals 

whether they had ever taken antidepressants. This may explain the different top CpG sites 

based on the predictor input in EWAS. Nonetheless, as indicated in Supplementary Table 6, 

most of the CpG sites significantly associated with SSRI use within 12 months prior to blood 

draw date were nominally significant in the EWAS where self-reported antidepressant use 

was fit as the predictor. This pattern was also observed when investigating the top 10 CpG 
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sites associated with the self-reported measure in the SSRI use EWAS (Supplementary Table 

5). The findings above indicate there is agreement between different forms of data collection, 

specifically self-reported medication use and record linkage to PIS. The variables have 

previously been investigated in a study by Hafferty et al. (2018) (59), who showed that self-

reported antidepressant use in GS:SFHS showed very good agreement with record linkage 

data at 3- and 6-month fixed time windows (59). 

There are a number of potential limitations to the current study that should be taken 

into account when considering the main findings. Firstly, there are differences between the 

antidepressant use phenotypes used in EWAS, specifically a self-reported measure and PIS 

data. While agreement has previously been shown between these two variables in GS:SFHS 

(59), the different CpG sites identified in each EWAS may be due in part to the non-

overlapping individuals used in each analysis. Nevertheless, since all self-reported EWAS 

associations were also nominally significant in the SSRI EWAS utilising prospectively 

collected dispensing data before the blood draw, our findings are unlikely to be false 

positives or due to recall bias. 

Secondly, as we identified two trans mQTLs that were previously associated with 

MDD, it is possible that these changes in DNAm were as a result of liability to MDD rather 

than antidepressant prescribing. It is however also possible that antidepressant use may lead 

to epigenetic changes in genes that have been previously implicated in the aetiology of MDD.  

Since we chose to restrict PIS data linkage to 12 months before the blood draw date, it 

seems likely that the DNAm changes reported may occur in response to antidepressant 

treatment, although this requires further replication. Nevertheless, the DNAm data provided 

here is cross-sectional, and it is not possible to show how the trajectory of DNAm at each 

CpG site evolved over time. Future studies should therefore collect DNAm at multiple time 

points and further address the possibility of confounding by antidepressant indication. 

It should also be noted that SSRI prescribing data is unable to confirm whether 

individuals took the medication as prescribed (60). The current study is also based 

exclusively on a European ancestry cohort, and the generalisability to diverse ancestries is 

unknown. 

In conclusion, we conducted an EWAS of self-reported antidepressant use and 

identified 10 novel CpG sites located in genes previously associated with mental health 

disorders, implicating the innate immune system. Further, MS predictors were associated 

with self-reported antidepressant use, MDD, and a number of lifestyle factors in a second 

sample from the same study. Finally, SSRI use derived from linkage health records showed 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 6, 2020. ; https://doi.org/10.1101/2020.10.06.20207621doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.06.20207621
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

convergent effects indicating agreement with the findings derived using only self-report. Our 

findings highlight biological processes that may be relevant to furthering our understanding 

of antidepressant actions and their side effects. 
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 Self-reported AD use sample SSRI sample from NHS Scotland 
records 

Demographic 
characteristics 

AD use  
(N=740) 

No AD use  
(N=5,688) 

SSRI use in 12-
month interval 

(N=487) 

No SSRI use 
(N=6,705) 

Age      

Mean (SD), range 
51.33 (11.07), 

18 - 87 
49.5 (13.73), 

18 - 87 
49.16 (12.35), 

18 – 85 
50.21 (13.65), 

18 - 94 
Sex (%)     

Female 564 (76%) 3,336 (59%) 364 (75%) 3,631 (54%) 
Male  176 (24%) 2,352 (41%) 123 (25%) 3,074 (46%) 

Wave (%)     
1 480 (65%) 2,918 (51%) 321 (66%) 3,389 (51%) 
2 260 (35%) 2,770 (49%) 166 (34%) 3,316 (49%) 

BMI     

Mean (SD), range 
28.17 (5.58), 
16.11 – 51.29 

26.60 (4.95), 
14.78 – 67.62 

28.37 (5.97), 
17.50 – 51.29 

26.68 (4.96), 
15.93 – 67.62 

Alcohol units     

Mean (SD), range 
8.99 (11.75), 

0 - 105 
10.56 (11.36), 

0 – 146 
9.46 (10.59), 

0 – 72 
10.91 (12.24), 

0 - 326 
Smoking status (%)     

Current smoker  192 (26%) 861 (15%) 125 (27%) 1,006 (15%) 
Former smokers (quit < 

1 year ago)  
15 (2%) 146 (2%) 14 (3%) 154 (2%) 

Former smokers (quit > 
1 year ago) 

229 (31%) 1,634 (29%) 138 (28%) 1,907 (29%) 

Never smoked tobacco  304 (41%) 3,047 (54%) 202 (42%) 3,638 (54%) 

Pack years     

Mean (SD), range 
11.03 (16.03), 

0 - 116 
7.01 (13.51), 

0 - 133 
9.59 (14.58), 

0 – 72.85 
7.27 (14.07), 

0 - 133 

MDD status (%)     
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Cases 420 (57%) 740 (13%) 250 (51%) 706 (11%) 

Controls 320 (43%) 4,948 (87%) 237 (49%) 5,999 (89%) 

SSRI dispensing 
records 

  N=2,476  

Citalopram 

N/A N/A 

1,243 

N/A 

Escitalopram 162 
Fluoxetine 733 

Fluvoxamine maleate 0 
Paroxetine 135 
Sertraline 203 

Table 1. Demographic characteristics for individuals with self-reported antidepressant use 
and SSRI prescribing data in EWAS, including lifestyle variables and MDD. The time 
interval indicated in the SSRI sample from NHS Scotland records represents dispensed SSRIs 
within 12 months prior to the blood draw date. SSRI dispensing records refer to the total 
number of dispensed SSRIs by any individuals within those 12 months; AD=antidepressant. 
 

 

CpG 
site Gene Chrom β P-value P-corr CpG site 

information Gene information 

cg0560
3985 

SKI 1 -0.022 
3.92×�10−1

0 
0.0002 

Smoking, alcohol 
consumption, 

gestational age 

Red cell distribution 
width; lung function; 

body height; self-
reported educational 

attainment 

cg0527
3171 

PNKD; 
TMBIM1 

2 -0.013 2.35×�10−8 0.017 - 

PNKD: systolic blood 
pressure; body height; 

waist-hip ratio; 
leukocyte count; 
neutrophil and 

eosinophil count 
TMBIM1: 

cardiovascular disease; 
inflammatory bowel 
syndrome; height; 

Crohn’s disease; related 
pathways: innate 
immune system 

cg0386
4397 

CASP10 2 -0.030 1.05×�10−8 0.007 - 

Mean corpuscular 
haemoglobin; trans 

fatty acid levels; 
chronic lymphocytic 

leukaemia, rheumatoid 
arthritis 

cg0518
6879 

MAPKAPK3; 
CISH 

3 -0.023 3.3 ×�10−9 0.002 - 

MAPKAPK3: 
schizophrenia, self-
reported educational 

attainment 
CISH: eosinophil count 
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cg1631
5329 

CISH; 
MAPKAPK3 

3 -0.039 2.52×�10−8 0.018 - 

MAPKAPK3: 
schizophrenia, self-
reported educational 

attainment 
CISH: eosinophil count 

cg2575
3411 

HEBP2 6 -0.036 
2.89×�10−1

0 
0.0002 - 

Related pathways: 
innate immune system 

cg0951
1513 

ATP6V1B2 8 -0.055 6.73×�10−9 0.005 - 

Depression; mental or 
behavioural disorder; 

myeloperoxidase 
measurement; 

erythrocyte cadmium 
measurement 

cg2627
7237 

KANK1 9 0.024 2.87×�10−8 0.020 - 
Pulmonary function 

decline; height; energy 
intake 

cg2049
4891 

MYO1E 15 -0.026 2.32×�10−8 0.017 - 

Serum metabolite 
measurement, social 

communication 
impairment, BMI, 

coronary artery 
calcification 

cg2758
9594 

SLC5A10 17 -0.025 4.91×�10−9 0.004 
Gestational age, 

smoking 

1.5 anhydroglucitol 
measurement; 

schizophrenia; response 
to paliperidone; 

schizophrenia symptom 
severity measurement 

Table 2. CpG sites significantly associated with self-reported antidepressant use (N=6,428; 
antidepressant use=740) along with gene annotations, chromosome, standardised effect size, 
nominal and multiple comparison-corrected p-values. Background information for each CpG 
site (CpG site information) and gene (Gene information) was extracted from EWAS 
(http://www.ewascatalog.org/; association between traits and CpGs on Illumina 450K array at 
p ≤ 1.0x10-4); and GWAS (https://www.ebi.ac.uk/gwas/; associations between traits and 
SNPs at p < 1.0x10-5) catalogue databases. 
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CpG site 
(chr) 

MDD SNPs 
(chr); β, p 

Schizophrenia SNPs 
(chr); β, p 

Cardiovascular disease 
SNPs (chr); β, p 

Rheumatoid arthritis 
SNPs (chr); β, p 

cg05603985 
(1) 

    

cg05273171 
(2) 

   
rs13330176 (16); 
β=0.078, p=0.0009 

cg03864397 
(2) 

rs2056445 
(13); 

β= -0.075, 
p=0.0009 

  
rs6715284 (2); β=      -

0.176, p=3.39x10-7 

cg05186879 
(3)    

rs6732565 (2); 
β= 0.086, p=2.31x10-5 

cg16315329 
(3) 

  
rs3184504 (12); 

β= 0.108, 
p=6.43x10-8 

rs10774624 (12); 
β=0.102, p=4.89x10-7 

cg25753411 
(6)  

*rs8044995 (16); β= 
0.230, p=5.2x10-17  

rs2075876 (21); 
β=-0.109, p=0.0009 

cg09511513 
(8) 

    

cg26277237 
(9) 

   
rs10175798 (2); β=    -

0.075, p=0.0002 
cg20494891 

(15) 
   

rs6732565 (2); β= 
0.073, p=0.0003 

cg27589594 
(17) 

rs3793577 (9); 
β=-0.076, 
p=0.0001 

rs7523273 (1); β= 
0.086, p=6.62x10-5   

Table 3. Disease-associated SNPs found to be mQTLs for CpGs associated with self-reported 
antidepressant disease here. Chromosome number for each CpG site and each SNP is 
indicated in brackets. β and p-values represent the association between each SNP and each 
CpG reported. Inflammatory bowel syndrome SNPs were not found to be mQTLs for any of 
the 10 CpGs identified here and is therefore not represented in the table above. 
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 MS MS-ns MS-control 
Outcome 

variable (N) 
β p-value R2 

β p-
value 

R2 
β p-value R2 

AD use 
(3,360) 

0.377 3.12 x 10
-11

 2.12% 0.106 0.075 0.16% 0.254 1.15 x 10
-5

 0.93% 

 AD use* 
(3,009) 

0.213 0.0035 0.56% 0.04 0.565 0.02% 0.064 0.381 0.05% 

MDD 
(3,360) 

0.28 5.78 x 10-7 1.14% 0.158 0.007 0.35% 0.202 0.0004 0.57% 

BMI (3336) 0.088 2.54 x 10
-7

 0.75% 0.021 0.23 0.01% 0.075 1.33 x 10
-5

 0.53% 

Alcohol units 
(3099) 

0.141 < 2 x 10
-16

 1.93% 0.007 0.665 0% 0.127 5.08 x 10
-14

 1.56% 

Smoking 
status (3,322) 

0.632 < 2 x 10
-16

 6.11% 0.077 0.028 0.11% 0.567 < 2 x 10
-16

 5.08% 

Pack years 
(3,310) 

0.305 < 2 x 10
-16

 9.14% 0.061 0.0004 0.34% 0.287 < 2 x 10
-16

 8.09% 

Table 4. Association between MS, MS-ns, and MS-control, and self-reported antidepressant 
use, MDD, and 4 lifestyle factors (BMI, smoking status, pack years, alcohol units). All 
regression models include age, sex, and 10 genetic principal components as covariates, 
except for the row marked *, which also includes BMI, smoking status, pack years, alcohol 
units, and MDD as covariates. Effect sizes represent standardized betas. MS=Methylation 
score, MS-ns=Methylation score trained on non-smokers, MS-control=Methylation score 
trained on individuals with no MDD diagnosis. R2 represents the variance explained in the 
outcome variables by each score. The number of individuals in each model varies based on 
different available data for each variable. 
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Figure 1. Manhattan plot showing EWAS of self-reported antidepressant use in GS:SFHS. 
The black line defines the threshold for epigenome-wide significance (p≤7.007x10-8) and the 
dotted line defines the threshold for nominal significance (p≤0.05). Epigenome-wide 
significant hits are labelled on the graph. 
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Figure 2. Differentially methylated CpG sites at p<1x10-5 enriched for peripheral blood cell 
subsets. The x-axis represents peripheral blood cell types, while the y-axis indicates corrected 
p-value.  
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