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Abstract. Complex diseases, including cancer, are highly heterogeneous, and large molecular 7 

datasets are increasingly part of describing an individual’s unique experience. Gene expression 8 

is particularly attractive because it captures both genetic and environmental consequences. Our 9 

new approach, SPECTRA, provides a framework of agnostic multi-gene linear transformations 10 

to calculate variables tuned to the needs of complex disease studies. SPECTRA variables are 11 

not supervised to an outcome and are quantitative, linearly uncorrelated variables that retain 12 

integrity to the original data and cumulatively explain the majority of the global population 13 

variance. Together these variables represent a deep dive into the transcriptome, including both 14 

large and small sources of variance. The latter is often overlooked but holds the potential for the 15 

identification of smaller groups of individuals with large effects, important for developing 16 

precision strategies. Each spectrum is a quantitative tissue phenotype that can be considered a 17 

phenotypic outcome, providing new avenues to explore disease risk. As a set, SPECTRA 18 

variables are ideal for modeling alongside other predictors for any clinical outcome of interest. 19 

We demonstrate the flexibility of SPECTRA variables for multiple endpoints using RNA 20 

sequencing from 767 myeloma patients in the CoMMpass study. SPECTRA enhances the 21 

ability to incorporating expression phenotypes in studies to advance precision screening, 22 

prevention, intervention, and survival. 23 

 24 

Introduction 25 

To identify risk and prognostic factors and understand complex diseases in a population, 26 

numerous data types are often collected on study participants. Transcriptomes represent the 27 
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combined effects of inherited and somatic insults as well as epigenetic and non-genetic factors 1 

and thus appeal to researchers interested in both genetic and environmental risk factors. For 2 

this reason, gene expression studies are gaining momentum in new fields, such as genomic 3 

epidemiology.1–13 The need to incorporate transcriptomes in multivariable models alongside 4 

other risk factors brings new demands for techniques designed with this in mind.  5 

Here we develop the SPECTRA approach to determine multi-gene transformations and 6 

calculate transcriptome variables with desirable attributes for multivariable modeling. 7 

Specifically, variables that optimize coverage of the global variance, are quantitative, 8 

uncorrelated and that retain integrity to the original data. A ‘variable’ has more power for 9 

modeling if it represents the variance in the population. Multiple variables may be required for 10 

broad coverage (a ‘deep dive’). Knowledge of how much variance transcriptome variables 11 

represent is also important to understand the limitations of a study. Furthermore, truly 12 

quantitative variables can achieve greater power than if discretized.14 Uncorrelated variables 13 

provide parsimony in penalized modeling and are often simpler to interpret in multivariable 14 

analyses. The integrity of variables to the original data (preservation of ‘distance’ between 15 

samples) is important for interpretation. Our goal for such attributes contrasts with the more 16 

common strategy to use transcriptome data to categorize samples or patients, reducing the 17 

transcriptome data to a single variable consisting of mutually exclusive categories, often called 18 

‘subtypes’.15 19 

We focus on agnostic derivation. Current techniques for characterizing transcriptomes 20 

largely have a computational biology emphasis, interwoven with and constrained by biological 21 

knowledge. While these have had great success advancing our understanding of mechanism 22 

and pathway,16–23 there remains room for complementary approaches. Sources of heterogeneity 23 

are complex and we require methods that match that complexity. Common diseases, and 24 

cancers, in particular, are multifactorial, where a wealth of other covariates may be equally 25 

important to an endpoint. New approaches that can embrace this complexity will enhance the 26 

toolset available for interrogating transcriptomes. Conceptually, the advantage of an agnostic 27 
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data-driven approach is the liberty to discover signals that may challenge conventional wisdom 1 

or defy “known” rules. Our agnostic approach is complementary and adds to current approaches 2 

for the analysis of tumor etiology, risk, treatment, and mortality.  3 

Finally, our motivation is for universal measures, and hence our approach is 4 

unsupervised. SPECTRA produces a framework of multi-gene transformations to describe the 5 

expression space. The calculated SPECTRA variables can be used for different outcomes, 6 

providing the flexibility to explore the same variables across several different models (e.g. 7 

overall survival, progression-free survival, and time-to-treatment-failure). This can support 8 

interpretation and comparisons, improving the ability to decipher the true nature of associations 9 

and explore differences. Furthermore, the same framework of transformations can be 10 

implemented in external studies, increasing our ability to compare findings across multiple 11 

studies.  12 

To satisfy these ideals, the core of our approach utilizes principal components analysis 13 

(PCA). PCA is an agnostic and unsupervised procedure that provides an isometry to provide a 14 

new set of orthogonal (linearly uncorrelated) variables that optimize the representation of the 15 

variance. In simple terms, PCA reveals the internal structure of the data in a way that best 16 

explains the variance in the data. Paramount in this approach is careful attention to quality 17 

control, normalization, and batch correction to ensure the variables capture meaningful 18 

variance. The results of the subsequent PCA are the rotation matrix that describes the multi-19 

gene linear transformations; and the transformed data matrix, the quantitative variables for each 20 

individual that we refer to as a SPECTRA variables, or simply, spectra. Each measure is a 21 

spectrum that combined are spectra. The set of linear transformations provides a new reduced-22 

dimension framework for the expression space. The SPECTRA variables are linearly 23 

independent, each providing additional coverage of the variance.  24 

We previously used PCA to define a framework for the PAM50, a targeted and 25 

standardized gene-panel for breast cancer.1,24 Using a population cohort of breast tumors, we 26 

used PCA to reduce the 50-gene space to five multi-gene expression variables. When the 27 
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framework was implemented in an external dataset of tumors from high-risk breast cancer 1 

pedigrees, these quantitative PCA variables as phenotypes proved superior to the standard 2 

PAM50 subtypes for gene mapping.1,25 Further, when implemented in a second external clinical 3 

trial dataset, PCA variables were able to predict response to paclitaxel.24  Here, we extend the 4 

approach to the whole transcriptome.  5 

Improved representation of an individual’s tissue (normal or diseased) will be vital to 6 

improving our ability to identify expression characteristics that are important phenotypic traits 7 

(predict disease risk) and/or important expression variables to predict patient outcomes. Figure 8 

1 uses a color analogy to illustrate the conceptual shift of SPECTRA, contrasting our goal of 9 

quantitative variables for direct use in outcome modeling with a more conventional 10 

categorization approach using hierarchical clustering. In our approach, each spectrum in Figure 11 

1 (𝑥", 𝑥$, 𝑥%) are independent variables that can be directly used to model any outcome (𝑦'), and 12 

other covariates/predictors can also be easily included (Figure 1d). Conversely, unsupervised 13 

hierarchical clustering uses the spectra to categorize patients into groups (Figure 1c), flattening 14 

the multiple spectra to a single categorical variable and reducing statistical power. For example, 15 

in Figure 1 analogy, 𝑥"	cannot be captured by any group ordering and associations for that 16 

spectra variable would be lost. An alternate convention is to supervise clustering to an outcome. 17 

But, while supervised clustering can improve power over unsupervised clustering for prediction 18 

of a single outcome, it also tethers the groups to the particular trained outcome and doesn’t 19 

facilitate comparison to other outcomes.  20 

We illustrate SPECTRA using the Multiple Myeloma Research Foundation (MMRF) 21 

CoMMpass Study data.26 We derive the gene transformations (framework) for bulk whole 22 

transcriptome RNA sequencing (RNAseq) data from CD138+ myeloma cells. As a proof-of-23 

concept, we utilize the spectra variables in various regression models to identify associations 24 

with several outcomes, including established risk scores, patient characteristics, and clinical 25 

endpoints.  26 

 27 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.06.20206714doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.06.20206714


5 
 

Results 1 

SPECTRA, a quantitative transcriptome approach 2 

The motivation is the derivation of well-behaved, quantitative variables from RNAseq 3 

data to capture transcriptome variation that can be used universally as predictors for any 4 

outcome, and as novel phenotypes. The approach requires a dataset to derive the framework of 5 

transformations for the SPECTRA variables. Then multiple spectra are calculated for each 6 

individual in the dataset. An overview of the SPECTRA approach is shown in Figure 2. As an 7 

agnostic technique, the goal is to retain only those aspects of the RNAseq data that can 8 

represent meaningful variance. Accordingly, rigorous quality control (QC), normalization, and 9 

batch correction are performed before the derivation of the variables. Genes likely to lack 10 

precision are removed. Only coding genes with sufficient coverage across the dataset are 11 

considered. An internal normalization procedure accounts for feature-length, library size, and 12 

RNA composition. This normalization avoids the need for reference samples, real or synthetic, 13 

and provides the potential for spectra to be ported to follow-up samples and external datasets. 14 

Finally, skew and outliers are dealt with before PCA is performed. Specific details are listed in 15 

the Methods. 16 

PCA is a well-established, data-driven method that, based on the covariance of a 17 

dataset, produces a matrix factorization which is a unique solution of linear transformations 18 

(framework, rotation matrix) and transformed values (spectra, transformed data). The linear 19 

transformations preserve the variance in the data, i.e., the transformed values preserve the 20 

distance between the sample data for individuals. Integrity to the original data provides 21 

meaningful comparisons between individuals. The resulting transformed values are quantitative 22 

variables that are orthogonal (linearly uncorrelated). For dimension reduction, components are 23 

ordered according to the amount of global variance they explain and the first k (S1, …, Sk) 24 

selected, for which the proportion of total variance explained can be described. This reduces 25 

attention from 60,000+ expression features in a transcriptome to a handful of spectra 26 

specifically derived to represent independent components of the natural global variation across 27 
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the dataset studied; precisely the type of variables with power to identify differences and 1 

important for prediction. The procedure is unsupervised, describing only intrinsic variance in the 2 

data, hence the spectra can be incorporated into modeling any outcome in an unbiased way, 3 

and the framework of transformations can be implemented in external datasets. 4 

When modeling, the significance and effect size for each individual spectrum as a 5 

predictor can be determined. In addition, the aggregate effect of all spectra in the model can be 6 

determined to describe the impact of the transcriptome as a whole. We define the aggregate 7 

effect of all spectra in a model as the poly-spectra liability (PSL) score for the outcome. This is 8 

the weighted sum of the spectra based on the model. 9 

 10 

Illustrative case study: CD138+ spectra in multiple myeloma 11 

The ultimate value of SPECTRA will be its use in the discovery of novel tissue 12 

phenotypes and predictors or outcomes in etiological studies. Here, as a proof-of-concept that a 13 

SPECTRA framework can capture meaningful information, we present associations between a 14 

set of spectra to several well-established outcomes or risk groups for multiple myeloma, across 15 

several different model types. These are not presented to suggest spectra could replace current 16 

clinical tests, but to illustrate the flexibility of SPECTRA to provide a universal transcriptome 17 

framework and set of variables for use in various models with disparate outcomes. We applied 18 

SPECTRA to transcriptome data for CD138+ cells from the MMRF CoMMpass study.26  We 19 

investigated associations of CD138+ spectra with 1) existing expression-based risk scores;27,28 20 

2) clinically-relevant DNA aberrations; 3) clinical prognostic outcomes, and 4) patient 21 

demographic groups with elevated myeloma risk. Also, we illustrate the potential to track 22 

transcriptome changes over time.  23 

The CoMMpass dataset is the most extensive sequencing effort in multiple myeloma 24 

patients to date. Multiple myeloma is a malignancy of plasma cells (CD138+ cells). The publicly 25 

available transcriptome data (IA14) comprised RNAseq data for 887 CD138+ samples on 794 26 

unique patients. Here, data for 768 patients with treatment naïve samples collected at diagnosis 27 
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were the focus. We used transcript-based expression estimates from Salmon,29 generated by 1 

the CoMMpass study (https://research.themmrf.org). From the total 54,324 features, 7,436 2 

genes and 767 patients’ treatment-naïve CD138+ RNAseq data met quality control. The 3 

transcriptome framework and spectra were derived in a quality controlled, normalized and batch 4 

corrected data from these treatment naïve samples. The first k = 39 spectra (S1—S39) were 5 

selected, based on a scree test, which captured 𝑣 = 65% of the global variation. No spectra 6 

showed association with batch (F-statistic, all 𝑝 > 0.8). The details from each step of the QC 7 

process, the linear transformations necessary to calculate the 39 spectra, and the individual-8 

level spectra variables for the patients in the IA14 CoMMpass data are provided in 9 

Supplemental Data. R markdown notebooks containing the code used to generate CD138+ 10 

spectra in the IA14 dataset, full model analyses, and results are provided in the Supplemental 11 

Materials.  12 

As linearly uncorrelated variables, each of the 39 CD138+ spectra captures a different 13 

source of variance, and hence any spectrum has the potential to explain patient differences and 14 

provide insight. Figure 3 shows spectra charts for 4 patients and illustrates that while patients 15 

may be similar at a high-level (overall patterning), that individual spectra may not follow that 16 

apparent high-level similarity.  17 

Common approaches to prediction modeling include penalized or stepwise techniques to 18 

address concerns about multicollinearity and improve fit and parsimony. Here, we included all 19 

39 spectra into each model for simplicity and to ease comparison across results. Association 20 

results for the full 39-spectra models for several different outcomes are described below. Overall 21 

model significance and the significance for individual spectra in those models are summarized 22 

in Figure 4.  23 

 24 

CD138+ spectra and established expression-based risk scores. The most widely adopted and 25 

first supervised expression risk score in myeloma is the University of Arkansas UAMC 70-gene 26 

panel, developed in microarray data, and used to classify patients as low- or high-risk for 27 
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relapse.27 Using the established classifier, we calculated each patient’s risk UAMC-70 risk score 1 

and their risk status (low or high). In a multivariable linear regression with UAMC-70 risk score 2 

as a continuous outcome variable, 30 spectra were individually significant (p<0.05, Figure 4) 3 

and the full model predicted the UAMC 70-gene risk score with high accuracy and significance 4 

(R2 = 0.86, F39,727 = 118.1, p < 10-50).	 A more recent supervised expression risk score is the 5 

Shahid Bahonar University of Kerman 17-gene prognostic score (SBUK-17) published in 2020 6 

by Zamani-Ahmadmahmudi et al.28 We calculated each patient’s SBUK-17 prognostic score. In 7 

a linear regression with SBUK-17 as a continuous outcome, 25 spectra were significant (Figure 8 

4) and the full model predicted the SBUK 17-gene score with excellent accuracy and 9 

significance (R2 = 0.93, F39,272 = 252.9, p < 10-50). Figure 5 illustrates the high correlation 10 

between the model PSL scores and the previously established risk scores and shows spectra 11 

can recapitulate previously established supervised expression risk scores. These results 12 

indicate that the spectra framework captures important prognostic signals. 13 

 14 

CD138+ spectra and clinical risk. Large somatic chromosomal DNA aberrations detected by 15 

cytogenetics are used clinically to define prognostic risk groups in myeloma.30 Clinical risk 16 

categories defined by mSMART31 include: high risk (del(17p) and t(14;16)); intermediate risk 17 

(amp(1q) and t(4;14)); and standard risk (t(11;14)). Models for each of these five chromosomal 18 

aberrations (Figure 4) showed different spectra individually significant, with some spectra 19 

unique to only one aberration. Interestingly, while the models for all three translocations and 20 

amp(1q) were highly significant (all p < 2x10-10), the full 39-spectra model for del(17p) was not. 21 

To investigate the possibility that the model was over-parameterized, we repeated the del(17p) 22 

analysis using a stepwise procedure. This produced a significant model containing only 3 23 

spectra (p = 0.014, Supplemental Material). These results indicate transcriptome spectra 24 

capture signals from DNA chromosomal changes in CD138+ cells (Figure 6a-b).  25 

The international staging system (ISS) for myeloma is also used to classify and stratify 26 

patients at diagnosis, based on somatic cytogenetics, levels of beta-2 microglobulin, albumin, 27 
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and lactate dehydrogenase in the blood.32 In an ordinal logistic regression with the ISS stage at 1 

diagnosis as the outcome, 13 spectra were significant, providing a model that significantly 2 

differentiated the three clinical stages (Figure 6c). These results indicate spectra can capture 3 

signals for the disease stage. 4 

 5 

CD138+ spectra and disease course. We used Cox proportional hazards analysis to associate 6 

spectra with overall survival (OS), and time to first-line treatment failure (TTF). Spectra 7 

significantly predicted OS (179 events, likelihood ratio test, p = 3.1x10-17, C-statistic = 0.74), with 8 

12 spectra individually significant. A Cox proportional hazards model for TTF was also 9 

successful (369 events, likelihood ratio test, p = 7.9x10-10, C-statistic = 0.66), with 8 spectra 10 

significant. Spectrum significant in both models had effects in the same direction (Figure 4).  11 

Patients were categorized into three equal tertiles based on PSL scores for OS and TTF. 12 

Kaplan Meier curves for these three equal groups for OS and TTF are shown in Figure 7. For 13 

OS, patients in OS-PLS tertile 3 had hazard ratios of 6.7 (2.9-15.3) and 8.8 (5.1-15.3) at 1 year 14 

and 3 years, respectively, compared to patients in tertile 1. For TTF, comparing TTF-PLS tertile 15 

3 to tertile 1, hazard ratios were 4.8 (3-7.7) and 7.2 (4.3-12) at 1 year and 3 years, respectively. 16 

These results indicate spectra can capture signals and differentiate patients for disease course. 17 

 18 

CD138+ spectra and demographic risk groups. Myeloma is an adult-onset malignancy, most 19 

frequently diagnosed at ages 65-74 years (median 69 years).33 Incidence is higher in men (8.7 20 

men vs. 5.6 women per 100,000) and patients self-reporting as African American (AA men 16.3, 21 

and AA women 11.9 per 100,000). Linear regression with age at diagnosis as a quantitative 22 

outcome was significant (p = 2x10-14), with 15 individually-significant spectra. Logistic regression 23 

models for gender, race (self-reported black or white; other racial categories too small to 24 

consider) and Hispanic status were all significant (p = 4x10-9, p = 9x10-10 and p = 1x10-3, 25 

respectively) (Figure 4). We note that associations found for demographic risk factors may be 26 

complex, as such factors involve social constructs, e.g. race and ethnicity. Transcriptomes can 27 
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harbor the effects of genetic, epigenetic, lifestyle, and environmental factors. These results 1 

indicate spectra can capture signals originating from demographic risk. 2 

 3 

CD138+ spectra for tracking changes over time. The SPECTRA framework provides the 4 

transformations for the spectra variables such that they can be calculated in follow-up samples 5 

and tracked over time. We illustrate this potential in the eleven MM patients for whom at least 6 

three longitudinal CD138+ samples were available in the CoMMpass study. Figure 8 shows a 7 

line graph of the PSL score for OS for these eleven patients over 80 months. In this example, 8 

the potential for tracking a patient’s hazard over time is illustrated using the OS PSL score.  9 

 10 

Discussion 11 

 The promise of personalized prevention, management, and treatment is rooted in an 12 

ability to describe an individual’s unique experience and model important sources of 13 

heterogeneity.34 In complex diseases, and cancer specifically, gene expression in diseased 14 

tissue may be an established source of heterogeneity. 35 Tools that can take a deeper dive and 15 

characterize multiple sources of expression heterogeneity will be important to advance the 16 

promise of personalized medicine. In particular, for human studies and domains such as 17 

epidemiology wishing to model multiple sources of risk in a population, transcriptome variables 18 

that can be easily incorporated with other variables are needed. The goal of this study was to 19 

provide a technique to derive an agnostic framework of variables for transcriptome data, to 20 

empower multivariable studies, and provide novel molecular phenotypes. SPECTRA identifies 21 

quantitative, orthogonal variables (non-correlated) that capture sources of transcriptome 22 

variation for use in subsequent modeling or as quantitative phenotypes. Many applications can 23 

benefit from the qualities of spectra variables, and this new framework has the potential to 24 

provide utility to numerous study designs and many outcome types.  25 

Data quality and processing are paramount in the quest to derive informative variables. 26 

PCA itself is a simple procedure that provides linear transformations of the data to best 27 
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represent variance. If the data have technical artifacts, batch effects, unstable or non-1 

comparable expression measures, the noise will overwhelm authentic variance. Accordingly, our 2 

technique intentionally includes strict quality control, zero-handling and normalization 3 

procedures, and batch correction (Figure 2). Without these steps, PCA can fail to provide 4 

variables with the desired qualities. An agnostic approach permits stringent data culling because 5 

the incentive to retain features based on known functional relevance is removed. The impetus is 6 

to only retain features that can contribute to meaningful variance and provide informative 7 

variables for modeling (quantitative, orthogonal, variance-representing). Of course, the limitation 8 

of an agnostic approach is reduced biological interpretation or insight into the mechanism of the 9 

variables before modeling. However, there are already many approaches that take this alternate 10 

goal of intermediate interpretation,18 whose limitations are instead the flexibility of the variables 11 

they produce. Hence, SPECTRA offers a complementary approach to the current toolset 12 

available for all fields.  13 

Beyond the agnosticism taken by our proposed technique, other potential advantages of 14 

SPECTRA include its unique solution within a dataset, such that the rank of the dimension 15 

reduction can be post-hoc and does not influence the definition of retained dimensions. As a 16 

statistically rigorous technique, it also provides a measured dive into the transcriptome. Each 17 

dimension (eigenvector 𝒒5) iteratively moves quantifiably deeper into the variance of the data 18 

(measurable by 𝜆5). Methods that iteratively find independent components (PCA and 19 

independent component analysis) have previously been shown to provide superior coverage of 20 

transcriptome data.23 Retention of components deep in the data, representing small variances 21 

(i.e., deep dives) provide potential and power to identify small groups of individuals with large 22 

effects in outcome studies, such as a molecular phenotype that hones-in on a rare Mendelian 23 

form of cancer, or the few patients that respond to a drug. These findings could be the ‘low 24 

hanging fruit’ scenarios where the precision translation is more straight-forward. SPECTRA also 25 

embraces negative weights. The allowance of negative values in its matrix factorization (MF) is 26 

often given as a criticism of PCA,16,36 argued as a conceptual source of its lack of biological 27 
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interpretability; a premise that components may mix biological processes due to a focus on 1 

variance. Non-negative matrix factorization (NMF), arguably the leading approach in the 2 

computational biology field, restricts all values in the amplitude (equivalent to 𝑸8	in PCA) and 3 

pattern (equivalent to 𝑻8	in PCA) matrices to be non-negative. Reasoned as beneficial and a 4 

natural restriction because expression values themselves cannot be negative. Also, because 5 

NMF transformed values represent the proportions of each factor and thus provide a simple 6 

interpretation. However, non-negative values may not be a natural restriction to systems of 7 

genes, and over-simplicity may not adequately represent true complexity. With a non-negativity 8 

restriction, NMF limits itself to the identification of groups of over-expressed genes,16,36 modeling 9 

only neutrality and surplus. Deficits may also be important. So, while PCA spectra may 10 

represent mixtures of different biological mechanisms, these may be important combinations, 11 

including genes acting in opposite directions, and may better reflect reality. By embracing 12 

negative values, PCA can also capture gene systems in deficit, which may be more difficult to 13 

interpret, but may equally be just as important to recognize. These differences underscore 14 

SPECTRA’s value as a complementary tool to existing approaches. 15 

Our myeloma case study illustrated derivation of a transcriptome framework and spectra 16 

variables for CD138+ cells, and the application of these in various models (linear, logistic and 17 

Cox regression, and ANOVA) with many different outcomes. We showed that the set of 39 18 

unsupervised, agnostic spectra could significantly capture signals corresponding to published 19 

expression-based risk scores from traditional supervised approaches, known clinical DNA-20 

based risk factors, disease stage, disease progression, survival, and demographic risk groups. 21 

We also illustrated the potential to track tissue changes using PSL scores over time. As 22 

expected for a framework of agnostically derived variables, not all spectra are relevant to every 23 

outcome. Across the 14 models presented, the number of individually significant spectra in a 24 

model ranged from 3 to 30, and only one spectra-variable (S30) showed no association with any 25 

model. Importantly, these examples show the flexibility of the framework as well as how it can 26 

support comparisons across different models and outcomes. For example, our results illustrated 27 
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how two previously established gene-expression prognostic scores could be captured using a 1 

single framework and illustrate that they are similar (Figure 4). Hence, the framework has the 2 

potential to provide a bridge to compare various existing categorizations (subtypes) of patients, 3 

even when no genes overlap in their signatures, or they predict different outcomes.37 In this 4 

way, spectra provide an alternate to categorical intrinsic subtyping, a well-established practice 5 

for many cancers.38 The ability to predict OS and TTF suggests spectra hold utility in clinical 6 

studies predicting disease course. Clinically-relevant stratification may be better represented 7 

using thresholds within a transcriptome framework.24  8 

The potential for increased power using spectra variables is illustrated by the discovery 9 

of novel associations between spectra and patient demographic risk groups with known 10 

differences in incidence (age, gender, race). Prior studies, using the UAMC 70-gene panel and 11 

a Ki67 proliferation index, were not able to identify gene expression differences in CD138+ cells 12 

from self-reported AA and white patients.39 Our multivariable results demonstrate that significant 13 

differences do exist, but also illustrate that the diseased cells in these demographic groups are 14 

not distinct entities; fewer than half the spectra variables differ significantly by these patient 15 

demographic groups. Focusing on the spectra that do show differences by demographics 16 

provides new avenues to explore why incidence varies in these groups; a key to disease 17 

prevention, intervention, and control. In particular, because transcriptomes capture both the 18 

effects of internal (inherited genetics) and external factors (lifestyle, exposures, consequences 19 

of access to care), these results could also support epidemiology and biosociology 20 

investigations into such differences. We provide the variable framework (gene transformations) 21 

and the spectra variables for the CoMMpass patients in Supplementary material to enable 22 

further study of spectra in other CoMMpass studies, as well as in other myeloma studies.  23 

There are numerous potential applications beyond those undertaken here that could 24 

benefit from a statistically rigorous transcriptome framework of expression variables. As shown 25 

previously for the PAM50 panel in breast tumors, differences can be observed between familial 26 

and sporadic tissues, suggesting familial components,1 and defining powerful new phenotypes 27 
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for genetic, exposure, and gene-environment studies. Future avenues for spectra as 1 

quantitative phenotypes could include expression-quantitative trait locus analyses, Mendelian 2 

randomization, seeding machine-learning applications,40 tissue measures for pre-clinical 3 

models, and corollary studies in clinical trials.  4 

As for any approach, there are limitations. A key question of one of representation. For 5 

epidemiology studies, for example, spectra should ideally be representative of the entire 6 

disease population. This requires that the derivation dataset is a random sample from that 7 

population, or based on a known selective sampling scheme. While there are many publicly 8 

available transcriptome datasets,41,42 most fall short of this ideal. Thus, the spectra variables 9 

derived from these will have inherent limitations in representation. An investigator should 10 

consider if a derivation dataset is adequate to represent their study goals. We note that the goal 11 

of the MMRF CoMMpass study was intentionally designed to represent myeloma patients from 12 

diagnosis through treatment, and is the largest existing cohort of treatment-naïve CD138+ 13 

transcriptomes, with sampling continuing over time. However, the demographic representation 14 

of patients was not achieved, and this remains a limitation of that study. Another limitation is 15 

that, as a simple variance-based procedure, PCA models all sources of variance in the dataset. 16 

If artifacts remain in the data, the resulting spectra will also represent these. To minimize this 17 

issue, we employed a strict data quality and batch correction process in our workflow, 18 

concentrating only on a subset of genes for which PCA is likely to be meaningful: well-mapped, 19 

stable, with sufficient depth, and with batch correction. We also removed genes known to be 20 

unstable across different RNAseq pipelines.43 A third limitation is the ability to use the 21 

framework of spectra in external studies. As a data-driven technique, the complete PCA 22 

decomposition is overfitted to the derivation dataset. To limit this, we use dimension reduction 23 

and focus on the first k spectra (largest k components of variation), selected using a scree test44 24 

to be those before decreasing marginal returns. Last, SPECTRA is intentionally agnostic, 25 

designed for modeling, and dimensions are not pre-interpreted for functional relevance. Hence, 26 
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post-hoc analyses will be required to uncover the mechanism/s that underlie the associations 1 

identified. 2 

In conclusion, we present a new technique, SPECTRA, to derive an agnostic 3 

transcriptome framework of quantitative, orthogonal variables for a dataset. These multi-gene 4 

expression variables are designed specifically to capture transcriptome variation, providing new 5 

transcriptome phenotypes and variables for flexible modeling, along with other covariates, to 6 

better differentiate individuals for any outcome. Applied to CD138+ transcriptomes for myeloma 7 

patients, we defined CD138+ spectra and implemented these in many different outcome 8 

models. We illustrated an ability to predict prognosis, survival, clinical risk, and provide new 9 

insight into potential differences between patients from demographic groups. Fundamentally, 10 

the technique shifts from categorization to multiple quantitative measures. SPECTRA variables 11 

provide a new paradigm and toolset for exploring transcriptomes that hold promise for 12 

discoveries to advance precision screening, prevention, intervention, and survival studies. 13 

 14 

Methods 15 

Conceptual construction  16 

Here we establish the matrix factorization (MF) natural for individual-based outcome 17 

modeling. Data matrices, 𝑿 and 𝑻, are oriented with individuals as subjects (𝑛 rows) and genes 18 

as variables (𝑔 columns). Given a  𝑛 × 𝑔 design matrix, 𝑿 (mean-centered expression values for 19 

𝑛 individuals on 𝑔 genes), PCA is the MF 20 

 21 

     𝑿 = 𝑻𝑸8     Equation 1 22 

 23 

where 𝑻 contains the transformed values (the dimension variables), and 𝑸 is the PCA ‘rotation’ 24 

matrix. Each row in 𝑸8 = >𝒒?, 𝒒@,… , 𝒒BC
8 is an orthogonal eigenvector (or component) which 25 

holds the coefficients for the linear model to transform the observed gene values into the 26 
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spectra variables. The set of linear transformations are the transcriptome framework. The 1 

rotation matrix can be derived from the eigen decomposition of the covariance matrix, 𝚺  2 

 3 

     𝚺 = 𝑸𝚲𝑸8     Equation 2 4 

 5 

where 𝚺 is proportional to 𝑿8𝑿, and 𝚲	is the diagonal matrix of eigenvalues. Each eigenvalue, 6 

𝜆5, is a scalar indicating the proportion of the global variance represented by the transformed 7 

value defined by the 𝑠GH	eigenvector, 𝒒5, in 𝑸. Eigenvalues are ranked, such that the first PC, 8 

defined by 𝒒? captures the most variance, 𝒒@	the next highest, and so on. We note that there 9 

can only be min(𝑛, 𝑔) non-zero eigenvalues, because by definition, beyond this no variance 10 

remains. In most, if not all, existing RNAseq studies, there are more genes than individuals and 11 

hence 𝑛 is the limiting rank.  12 

Dimensionality can be reduced to 𝑘 dimensions by utilizing 𝑸N;	only the first 𝑘 columns 13 

(PCs) of 𝑸. After selection of 𝑘 PCs, transformed values are represented as: 14 

 15 

     𝑻N = 𝑿𝑸N     Equation 3 16 

 17 

We note that PCA is deterministic and therefore the selection of 𝑘 is a post-procedure decision 18 

that does not influence the MF. The proportion of variance explained by the retained dimensions 19 

(∑ 𝜆5N
5Q? ∑ 𝜆5∀5⁄ ) can be used as a measure of coverage. 20 

 21 

SPECTRA workflow 22 

Careful attention to quality control, normalization, and batch correction are used to 23 

ensure the spectra capture meaningful variation. Gene expression counts from bulk RNAseq 24 

are the input data. The four steps in the workflow are (1) quality control; (2) internal 25 

normalization; (3) correction for batch effects; (4) PCA and dimension reduction (Figure 2).  26 

 27 
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Quality control. QC is essential to ensure the transcriptome dimensions capture meaningful 1 

variation across the individuals. Features in the transcriptome likely to be unduly influenced by 2 

poor alignment or lacking precision due to sequencing depth were removed as potentials for 3 

introducing spurious and unstable variation. Accordingly, we removed all non-autosomal and 4 

non-protein-coding genes as well as features with low counts. A feature was considered to have 5 

inadequate data for precision if more than 5% of samples had fewer than 100 read counts. After 6 

the removal of features, individuals were removed from consideration if more than 10% of the 7 

remaining features had fewer than 100 read counts.  8 

 9 

Normalization. This is required for comparisons across genes and individuals and includes 10 

adjustment for gene length, sequencing depth (library size), and RNA composition. Zero-11 

handling is also necessary to appropriately incorporate counts of zero for a feature or 12 

transcript). We chose to use a robust internal (single sample) normalization to obviate the need 13 

for a ‘reference’ sample and to provide the possibility for portability across datasets. While our 14 

technique is gene-focused, our processing is designed to handle transcript-based alignment and 15 

quantification because these have been suggested to be more accurate.45 Normalized gene 16 

expression estimates, eB, were calculated according to the following procedure: 17 

 18 

    eB = log@ X
∑ YZ[\ ]⁄

^Z
]
Z_\

`abcdef∑ YZ[\ ]⁄
^Z

]
Z_\ g

h   Equation 4 19 

 20 

where cG is the read count for transcript t, lG is the transcript length in kilobases (extracted from 21 

the GTF used to align and quantify the RNAseq data), and 𝑚 is the number of transcripts for the 22 

gene. Zero-handling is achieved by adding 1/𝑚 to the transcript counts: cG + 1 𝑚⁄ . Division by lG 23 

corrects for transcript length. Summing the length-corrected transcript counts results in a gene-24 

level count per kilobase (CPK) measure. Equation 4 may also be used for gene-level read 25 

counts (equivalent to 𝑚 =1). Adjustments for sequencing depth and RNA composition (often 26 
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referred to as the 𝑠𝑖𝑧𝑒	𝑓𝑎𝑐𝑡𝑜𝑟) is achieved via division of each gene-based CPK measure by the 1 

median of CPK-values for retained features. We note that the more usual upper-quartile 2 

adjustment also provides robust internal normalization;46 however, since our implementation is 3 

post-QC after numerous features have been removed for low counts, the median is more 4 

suitable. Normalized data are log2 transformed to account for skew. We also truncate outliers 5 

beyond the five standard deviation thresholds from the mean of the normalized gene counts to 6 

the relevant threshold value.  7 

 8 

Batch correction. Sequencing is often generated in batches, and it is necessary to correct for 9 

the potential of technical artifacts and any spurious variation introduced. We adjust for sequence 10 

batch using ComBat47 as implemented in the sva R package,48 with patient characteristics that 11 

are unbalanced by batch included as covariates. 12 

 13 

PCA. We implement PCA with the covariance matrix. For functions that use singular value 14 

decomposition to perform PCA, it is necessary to center the expression values first to ensure 15 

the MF is performed for the covariance. Expression values (𝑒B) are centered on the mean 16 

across individuals for gene 𝑔. These centered data represent the design matrix, 𝑿 (𝑛 × 𝑔) 17 

(Equation 1) for the PCA. The R core function 𝑝𝑟𝑐𝑜𝑚𝑝(𝑥 = 	𝑿, 𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑇𝑅𝑈𝐸, 𝑠𝑐𝑎𝑙𝑒 =18 

𝐹𝐴𝐿𝑆𝐸, 𝑟𝑒𝑡𝑥 = 𝑇𝑅𝑈𝐸) was used to perform PCA. We use a scree test44 (the inflection point of 19 

the rank-ordered plot of 𝜆5, or elbow method) to select the 𝑘 spectra to retain. The proportion of 20 

variance explained by this 𝑘-dimensional space (∑ 𝜆5N
5Q? ∑ 𝜆5)∀5⁄  indicates the depth of the dive 21 

into the transcriptome data.  22 

 23 

CD138+ spectra in myeloma 24 

Data were generated as part of the MMRF CoMMpass Study (release IA14)26 and 25 

downloaded from the MMRF web portal (https://research.themmrf.org/). Clinical data and 26 

CD138+ RNAseq were available for 781 patients at baseline (newly diagnosed bone marrow 27 
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samples) and 123 follow-up bone marrow samples. Transcript-based expression estimates 1 

processed by Salmon (version 0.7.2) were used. The 768 baseline samples were used in the 2 

PCA to derive the CD138+ transcriptome framework and SPECTRA variables. Covariates 3 

included in batch correction were age, gender, overall survival, progression-free survival, and 4 

time to first-line treatment failure. The first 39 components were selected based on the scree 5 

test.44  All 39 spectra were forced variables in all regression models. 6 

 To illustrate the flexibility of the transcriptome framework, linear, logistic, and Cox 7 

regression were performed for several different clinical outcomes and demographic risk groups. 8 

In each analysis, all 39 CD138+ spectra were entered into the model as independent, predictor 9 

variables. No model fitting was performed. An individual spectrum was considered significant in 10 

a model if its model coefficient was significantly different from 1.0 (p < 0.05). A likelihood ratio 11 

test comparing the full 39-spectra model to the null model was used to determine the 12 

significance of the overall model fit. To illustrate the aggregate effect of all spectra in the model 13 

we used a poly-spectra liability (PSL) score. This score is the weighted sum of the spectra 14 

values based on the spectra coefficients in the model. In our illustrations here, the PSL scores 15 

contain all 39 spectra. In other applications, such as penalized modeling, a PSL score may 16 

include only those spectra retained in the model. 17 

To illustrate the potential to track longitudinal changes, spectra and PSL scores were 18 

calculated for follow-up longitudinal samples. To enable this, batch corrected gene-level 19 

measures for the follow-up samples were centered on the mean of the baseline data (𝒆�), and 20 

then multiplied with the rotation matrix (𝑸N) which holds the linear transformations for the 21 

spectra framework.  22 

 23 

Data availability. Processed RNAseq data from the CoMMpass Study can be downloaded from 24 

https://research.themmrf.org/. Dimension variables for the IA14 CoMMpass data are provided in 25 

the Supplement. We also provide the details of the QC process and the transcriptome 26 
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framework (linear equations for the gene transformations) necessary to calculate the 39-spectra 1 

variables in other studies in the Supplement. 2 

 3 

Code availability. R markdown notebooks used to derive the CD138+ transcriptome spectra 4 

and generate the myeloma results are included in the Supplement. 5 
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Figure 1. A color analogy to illustrate the advantages of spectra variables for modeling. a) 
Individual observations of color. b) Dimension Reduction (additive color theory), all colors can be 
represented using 3 quantitative RGB variables. c) Standard-use, modeling on the 3 RGB variables used 
to identify structure across samples using hierarchical clustering. This derives groups based on the 
complete 3-variable RGB profile to derive one polychotomous meta-variable (different groups are non-
ordinal levels). d) Multivariable modeling implementation of spectra variables, multiple separate spectrum  
integrated directly into a multivariable analysis. Each uncorrelated variable can be assessed separately 
for its predictive value for an outcome. This implementation retains the full resolution of the initial data 
because the variables are quantitative and retain integrity to the initial data. Note, lower-resolution 
versions of 𝑥% and 𝑥$ can be achieved using hierarchical groups but the loss of quantification will likely 
also lose power.  𝑥" cannot be captured by any group ordering and associations for this spectrum would 
be lost using hierarchical groups. 
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Figure 2. Overview of SPECTRA workflow.   
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Figure 3. Spectra charts in four CoMMpass patients. For each patient, all 39 spectra are illustrated 
with the value represented by the bar width and intensity. The color indicates if the patient’s spectra value 
is positive or negative. Each patient has a unique profile across the 39 spectra. At a high-level patients 
2497 & 1854 may appear most similar (mostly green) and 2394 & 1392 (mostly blue). However, at a finer 
resolution, similarities vary. For example, for spectrum S1 and S2, patients 2497 and 1854 are quite 
different. In fact, for spectrum S1, 2497 is more similar to 1392, for spectrum S15, 1854 is more similar to 
2394. 
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Figure 4. Overview of CD138+ spectra outcome modeling. a) Multivariable modeling results. The 
outcome of interest (left y-axis) and the significance of the full 39-spectra model (right y-axis). Spectra 
variables are illustrated on the x-axis. The significance and direction of each spectrum are indicated: blue 
negative beta coefficient, orange positive beta coefficient. No dot is shown if a spectrum was not 
significantly associated at p<0.05 level. b) Percent of the global variance captured by each spectra 
variable. The total variance captured by all 39 spectra is shown at the right.  
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Figure 5. CD138+ spectra and two established expression scores. Correlation of the 39-spectra PSL 
score and established gene expression profiles from a) University of Alabama School of Medicine 70 
gene risk score (UAMS-70) and b) Shahid Bahonar University of Kerman 17-gene prognostic score 
(SBUK-17). Waterfall plots for c) UAMS-70 and d) SBUK-17 low- and high-risk scores. Patients were 
ordered by their PSL score and colored by high/low risk as predicted by the UAMS-70 score. (UAMS-70 
high-risk cutoff determined by clustering).  
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Figure 6. CD138+ spectra and clinical or demographic risk. Waterfall plots for PSL scores for models 
of a) tumor amplification chr1q, b) tumor translocation chr11;16. Box and Whisker plots for PSL scores for 
models of c) international tumor stage at diagnosis, d) gender, and e) self-reported black or white race. 
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Figure 7. CD138+ spectra and disease course. Cox proportional hazards models were generated for 
overall survival (OS) and time to first-line treatment failure (TTF). From the models, PSL scores were 
generated and split into three equal tertiles. Kaplan-Meier curves of the PSL scores by tertile are shown 
for a) overall survival and b) time to first-line treatment failure. 
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Figure 8. Aggregate effect of CD138+ spectra for overall survival over time. Poly-spectra liability 
scores for overall survival are shown for eleven patients with RNAseq data at multiple time points. Dots 
indicate sequencing events and show the PSL score at that timepoint. The final narrow rectangle 
indicates the month after diagnosis the patient died (filled) or was last known alive (open).  
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