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Abstract

We present deep significance clustering (DICE), a framework for jointly performing
representation learning and clustering for “outcome-driven” stratification. Moti-
vated by practical needs in medicine to risk-stratify patients into subgroups, DICE
brings self-supervision to unsupervised tasks to generate cluster membership that
may be used to categorize unseen patients by risk levels. DICE is driven by a
combined objective function and constraint which require a statistically significant
association between the outcome and cluster membership of learned representations.
DICE also performs a neural architecture search to optimize cluster membership
and hyper-parameters for model likelihood and classification accuracy. The per-
formance of DICE was evaluated using two datasets with different outcome ratios
extracted from real-world electronic health records of patients who were treated
for coronavirus disease 2019 and heart failure. Outcomes are defined as in-hospital
mortality (15.9%) and discharge home (36.8%), respectively. Results show that
DICE has superior performance as measured by the difference in outcome distribu-
tion across clusters, Silhouette score, Calinski-Harabasz index, and Davies-Bouldin
index for clustering, and Area under the ROC Curve for outcome classification
compared to baseline approaches.

1 Introduction

Representation learning [1, 2] and clustering [3] are unsupervised algorithms whose results are driven
by input features and priors. They are often exploratory in nature, but in certain use cases users have
a priori expectations for the outputs from representation learning and clustering. In the latter case,
having targeted self-supervision in the learning process so as to meet the expectation of the users
brings practical value for representation learning and clustering algorithms. This paper proposes deep
significance clustering (DICE), an algorithm for self-supervised, interpretable representation learning
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and clustering that targets features that best stratify a population concerning specific outcomes of
interest.

We are motivated by a practical need in medicine to identify and understand characteristics of
subgroups of patients [4, 5, 6]. Patient health information is extremely complex, capturing high-
dimensional, temporal, and heterogeneous data on diseases, biomarkers, medications, procedures,
among other health indicators. For instance, heart failure (HF) is a syndrome that impacts nearly 6
million Americans and is associated with a 50% 5-year mortality [7]. More than 80% of individuals
suffer from three or more comorbidities [8]. There are proven HF therapies that prolong survival. For
patients in a moderately sick cohort, known as Stage C, therapies are oral medications, known as
neurohormonal blockade. This cohort of patients have a 5-year survival of 75%. For the sickest cohort
of heart failure patients, known as Stage D or end stage HF, therapies are focused on heart replacement
like heart transplant or left ventricular assist devices. This population has a 20% 5-year survival [7].
On the contrary, therapeutic guidelines for novel coronavirus disease 2019 (COVID-19) are not as
clearly delineated as HF treatment. In both scenarios, the complexity due to frequent comorbidity or
the lack of clear guidelines warrant the discovery of patient subtypes to assist with clinical decision
making. While clustering is an obvious choice for patient subtyping, the heterogeneous health data
present a challenge to such unsupervised algorithm for its incapability to elicit cluster membership
that is targeted for an outcome of interest, such as whether a HF patient can be safely discharged
home and the mortality risk of COVID-19 patients. This challenge arises because a regular clustering
algorithm may find clusters of patients who differ with respect to factors that are not related to
meaningful clinical endpoints.

Addressing such clinical needs, DICE, a framework to learn a deep representation and cluster
memberships from heterogeneous data was developed in an effort to bridge representation learning,
clustering, and targeted outcome separation. Its architecture is illustrated in Fig. 1. Representation
learning allows us to discover a concise representation from the heterogeneous and sparse health
data, which we use to discover latent clusters within a patient population with clustering algorithms.
As a way to provide more interpretability to the representation learning and clustering, DICE uses a
combined objective function and a constraint that requires statistically different outcome distribution
across clusters. The statistical significance is determined using models that are well-understood by
clinicians such as regression while adjusting for patient demographics. The combined objective
function and constraint serve to force DICE to learn representations that lead to clusters that are
discriminative to the outcome of interest. Furthermore, a neural architecture search (NAS) is designed
with an alternative grid search for the number of clusters and hyper-parameters in the representation
learning. The finalized representation and cluster memberships, which represent significantly different
outcome levels, are then used as the class labels for a multi-class classification. This is intended to
allow new patients to be categorized according to risk-level specific subgroups learned from historic
data.

Previous studies [9] that incorporated statistical significance analyzed it separately after the repre-
sentation learning process. Our paper considers the statistical significance while performing deep
clustering as a constraint. To summarize, our approach makes the following key contributions:

• We propose a combined objective function to achieve the joint optimization for outcome-
driven representation and clustering membership from heterogeneous health data.

• We propose an explicit constraint that forces statistical significance of the association
between the cluster membership with the outcome to drive learning.

We evaluated DICE on two real-world datasets collected from electronic health records (EHR) data
at an academic medical center. Extensive experiments and analyses demonstrate that the DICE
obtains better performance than several baseline approaches in outcome discrimination, Area under
ROC Curve (AUC) for prediction, and clustering performance metrics including Silhouette score,
Calinski-Harabasz index and Davies-Bouldin index.

2 Related Work

Clustering is a fundamental topic in the exploratory data mining which can be applied to many fields,
including bioinformatics [10], marketing [11], computer vision [12] and natural language process-
ing [13]. Due to the inefficiency of similarity measures with high-dimensional big data, traditional
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Figure 1: The framework of the proposed deep significance clustering (DICE). Clustering is applied
to the representation zp. A statistical significance constraint is explicitly added to ensure the
association of the clustering membership c and outcome y to facilitate the learning of discriminative
representations zp.

clustering approaches, e.g., k-means [14], finite mixture model [15, 16] and Gaussian Mixture Models
(GMM) [17], generally suffer from high computational complexity on large-scale datasets [18]. Also,
the mixture models have distribution assumptions on observations [19]. Jagabathula [20] proposed a
conditional gradient approach for nonparametric estimation of mixing distributions. Data transform
approaches which map the raw data into a new feature space have been studied, including principal
component analysis (PCA) [21], kernel methods [22], model-based clustering [23, 19] and spectral
methods [24, 25]. However, clustering of high-dimensional heterogeneous data is still challenging
for these approaches because of inefficient data representation. Deep representation learning can be
used to transform the data into clustering-friendly representation [26, 27, 28]. Parametric t-SNE [29]
uses deep neural network to parametrize the embedding of t-SNE [30] with the same time complexity
of O(n2), where n is the number of data points. DEC [27] further relaxes parametric t-SNE with a
centroid-based probability distribution which reduces complexity to O(nk) from tree-based t-SNE of
O(nlog(n)), where k is the number of centroids. Some approaches learn self-supervised representa-
tion [31, 32, 33]. Recent deep clustering approaches are learning-based and conduct inference in one
shot, consisting of two stages, i.e., deep representation learning followed by various clustering models.
Caron et al. [33] jointly learned the parameters of a deep network and the cluster assignments of the
resulting representation. DGG [12] further uses gaussian mixture variational autoencoders and graph
embedding to improve the clustering and data representation abilities. DICE considers statistical
significance and proposes a novel constraint to obtain statistical significant clustering results.

3 Method

Given a dataset X = {X1, ...,XP } with P subjects, we denote each subject as a sequence of events
Xp = [x1

p,x
2
p, ...,x

np
p ] of length np. A multivariate feature vector xtp = [xtp,1, x

t
p,2, ..., x

t
p,F ] ∈ RF

is the t-th instance of subject p in sequence Xp, where F is the number of features at each timestamp.
We have an outcome yp for each subject p. Our goal is to stratify X of P subjects into K clusters
while enforcing statistical significance in the association of the cluster membership and the outcome
while adjusting for relevant covariates.

3.1 Learning representation

The first step is to transform discrete sequences into latent continuous representations, followed
by clustering and classification. The latent representation learning for each subject is performed
by an LSTM autoencoder (AE) [34, 35, 36]. The AE consists of two parts, the encoder and the
decoder, denoted as E and F , respectively. Given the p-th input sequence Xp = (x1

p,x
2
p, ...,x

np
p ),

the encoder can be formulated as zp = E(Xp; θE) , where zp ∈ Rd is the representation, and E is
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a LSTM network with parameter θE [37]. We choose the last hidden state zp of LSTM to be the
representation of the input Xp. The decoder can be formulated as X̃p = F(zp; θF ) , and F is the
other LSTM network with parameter θF . The representation learning is achieved by minimizing the
reconstruction error

min
θE ,θF

LAE =
1

P

P∑
p=1

‖F(E(Xp; θE); θF )−Xp‖2L2
, (1)

where we use L2 norm in the loss.

3.2 Self-supervised learning by clustering

The obtained representations Z = {zp}Pp=1 can be employed for clustering with K clusters,

min
M,{cp}Pp=1

Lclustering =
P∑
p=1

‖zp −Mcp‖22

s.t. 1T cp = 1, ckp ∈ {0, 1}, ∀ p ∈ {1, 2, ..., P}, k ∈ {1, 2, ...,K},

(2)

where K is a hyper-parameter to tune, cp = [c1p, ..., c
K
p ], ckp is cluster membership of cluster k,

M ∈ Rd×K and the k-th columns of M is the centroid of the k-th cluster.

To enable fast inference, we build a learning-based deep clustering based on self-supervision from
cp in equation (2). Please note that we can utilize other priors of equation (2) in the DICE. We
employ the clustering results {cp}Pp=1 from a priori in equation (2) as pseudo-labels, and update
the parameters of the encoder E and F . The cluster membership assignment can be formulated as a
classification network.

ĉp = g(zp; θ1), min
θ1

L1 = −
P∑
p=1

K∑
k=1

ckplog(ĉ
k
p), (3)

where ĉp = [ĉ1p, ..., ĉ
K
p ] is the predicted cluster membership from the classification network g(·; θ1),

θ1 is the parameter in the classification network, L1 is the negative log-likelihood loss for multi-class
classification.

The deep clustering bridges the representation learning with the following statistical significance
constraint related to the outcome.

For inference, we assign the cluster membership through equation (2) with fixed M from training.

3.3 Statistical significance constraint

We propose a novel statistical significance constraint to the clustering membership w.r.t. the outcome
distribution while adjusting for relevant covariates in the DICE. After obtaining cluster memberships
{cp}Pp=1 for K clusters, we impose a statistical significance constraint on the cluster membership
to drive the representation learning. We fuse the statistical significance constraint into our neural
network.

First, in our neural network, we use the cluster memberships and non-clinical events like demographic
features to predict outcome, formulated as:

ŷp = g(cp,vp; θ2), min
θ2

L2 = −
P∑
p=1

(
yplog(ŷp) + (1− yp)log(1− ŷp)

)
, (4)

where vp represents non-clinical events, g(·; θ2) is the logistic regression, L2 is the negative log-
likelihood loss for binary classification problem.

Second, to quantify the significant difference of cluster k1 and cluster k2 (k1 6= k2), we use likelihood-
ratio test [38] to calculate the p-value of variable ck2 when considering cluster ck1 as the baseline,
where ck refers to the cluster membership belonging to cluster k. We denote the likelihood-ratio as
Gk1,k2 , then obtain the p-value from Chi-square distribution, denoted as Sk1,k2 . Finally, we have a
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matrix S ∈ RK×K with 0 as diagonal elements, and Sk1,k2(k1 6= k2) is the p-value represent the
significance difference of cluster k2 corresponding to baseline cluster k1. If all the elements in S are
below a predefined threshold of significance α (equivalently, Gk1,k2 > αG ), we conclude that all the
clusters are significantly different with each other related to outcome y.

For implementation, we use mask technique to mask each variable of input cp, then calculate the
likelihood ratio Gk1,k2 and add significance constraint on Gk1,k2 , that is Gk1,k2 > αG,∀k1 6= k2.

3.4 Objective function

We use NAS approaches to obtain our final model. The first is weight optimization of a given network
architecture, which in our method is the network architecture with fixed clusters number K and
hidden state dimension d. The second is the neural architecture search process.

3.4.1 Optimization of a given network architecture

We denote our network architecture as N (K, d, θ), where θ = {θE , θF ,M, θ1, θ2} are the weights
of network. The optimization problems is

min
θ
L(N (K, d, θ))

= min
θ

P∑
i=1

‖F(E(Xp)−Xp‖22 + λ1‖E(Xp)−Mcp‖2 + λ2L1(g(E(Xp); θ1), cp)

+ λ3L2(g(cp,vp; θ2), yp),

s.t. 1T cp = 1 cp,j ∈ {0, 1}, ∀p ∈ {1, 2, ..., P}, j ∈ {1, 2, ...,K},
Si,j < α ∀i ∈ 1, 2, · · · ,K, j ∈ 1, 2, · · · ,K

(5)

To implement, we iteratively optimize the clustering and the other components with the statistical
significance constraint. That is,

min
θE ,M,cp

P∑
i=1

‖E(Xp)−Mcp‖2

s.t. 1T cp = 1 cp,j ∈ {0, 1}, ∀p ∈ {1, 2, ..., P}, j ∈ {1, 2, ...,K},

(6)

and

min
θE ,θF

P∑
i=1

‖F(E(Xp))−Xp‖22 + λ2L1(g(E(Xp); θ1), cp)

+ λ3L2(g(cp,vp; θ2), yp) + λ4(αG −Gk1,k2),
s.t. k1 6= k2.

(7)

The algorithm is elaborated in Algorithm 1.

Algorithm 1: Deep significance clustering
Input: X, {v},K, d
Output: {zp}Pp=1, {cp}Pp=1

Initialization model parameters (Specially, initialization the AE parameters through equation (1);
for i=1:niter do

Extract representations {z}, use k-means to do clustering through (2). Obtain cluster
membership;

Consider cluster assignments as “pseudo-labels”;
for j=1:nepoch do

Optimize (7);
end

end
return {zp}Pp=1, {cp}Pp=1
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3.4.2 Architecture search

We choose the architecture which is trained on the training set and has the best evaluation performance
on validation set, that is

(K?, d?) = argmax
K,d

AUCval(N (K, d, θ)), (8)

where AUCval(·) is the AUC score on the validation set.

4 Experiments

We conducted experiments on two datasets and compared against 3 baseline methods. We also carried
out ablation experiments to study the impact of statistical significance constraint of DICE.

4.1 Experimental setting

Data We used datasets on two patient populations: HF and COVID-19, extracted from electronic
health records (EHRs) at an urban academic medical center. The datasets were split into training,
validation, and test sets in a 4 : 1 : 1 ratio.

• HF: We included HF patients (n = 1585) aged 18 to 89 from years 2014 to 2018 who were
treated on the Medicine service. HF was defined by ICD-9/10-CM. Only patients whose
initial and final diagnoses both contained HF were included to ensure that HF was treated
during the hospital stay. The outcome is defined as discharged to home (36.8%). Sequential
medical orders were included in the data.

• COVID-19: We included patients aged 18 to 101 who were presented to the emergency
department and admitted for COVID-19 (n = 968) in 2020. COVID-19 was defined by a
positive polymerase chain reaction test. The outcome is in-hospital mortality (15.9%). Age,
race, and sequential laboratory values were included in the data.

Baselines We compared our method with baseline method including (1) principal component
analysis (PCA) [21], (2) AE, and (3) AE + classification. In (2) AE, clustering was applied directly
to representations learned from AE [36]. In (3) AE + classification, first we jointly trained AE
and classification with representation learned from AE as the input for classification, then applied
clustering to the final learned representation. No statistical constraint or NAS was used in training
the baselines, but we report below the results with the same dimension of representation and cluster
number with DICE. For AE, we chose the minimum reconstruction error on validation set. For AE +
classification, we chose the results with the maximum AUC on the validation set.

Training We conducted experiments in PyTorch framework on NVIDIA GeForce RTX 2070. We
initialized the model parameters of AE by 1 epoch training. We set α = 0.05, αG = 3.841, niter =
60, nepoch = 1. The λ1, λ2, λ3 were set as 0.1, 10, 1.0 respectively based on the performance on the
validation set. It took approximately 7 minutes for each result with fixed neural architecture.

4.2 Results

We used NAS to choose the best model, then qualitatively assessed our method with baselines using
clustering and classification metrics. Ablation studies were also conducted to compare performance
absent the statistical significance constraint.

Neural network architecture search Our search spaces were {(K, d)|K ∈ {2, 3, 4, 5}, d ∈
{20, 25, ..., 100}} for the HF dataset and {(K, d)|K ∈ {2, 3, 4, 5}, d ∈ {10, 11, ..., 30}} for the
COVID-19 dataset, which are set according to the number of features and size of datasets. Figure 2
demonstrates the NAS process, with AUC values from the validation set of different neural network
architecture on the Y-axis and d on the X-axis. From Figure 2, we can see that the statistical signifi-
cance constraint can drive the model towards higher AUC, as also demonstrated in the ablation study
described below. Maximizing the model AUC,K = 4, d = 35 for the HF dataset, andK = 3, d = 21
for the COVID-19 dataset, were chosen as the optimal parameters.
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Figure 2: The model selection on HF dataset. “yes” represents that the architecture network met the
significance constraint, and “no” otherwise.

Visualization of representation For the HF dataset, we demonstrate the clustering results through
the visualization of representation in Figure 3. Compared with Figure 3(b), Figure 3(c) and Figure
3(d), the 4 clusters in Figure 3(a) discovered by DICE displayed tighter separation, with the highest
outcome ratio 79.93% in cluster 1 to the lowest outcome ratio 8.61% in cluster 4. The baseline
AE+classification also discovered 4 clusters with the outcome ratio in each cluster ranging from
72.22% to 5.85%, but the clusters are not well separated. PCA and AE did not discover clusters with
outcomes as clearly separated as DICE, likely because the baseline from those two baselines are
not outcome-driven. Our DICE learns representation through outcome-driven and self-supervised
learning from pseudo-labels, therefore we can obtain clear outcome risk stratification and well
separated clusters at the same time. Results for the COVID-19 dataset are shown in Figure 4. DICE
again obtained clearer separation between clusters and outcome stratification as measured by the
difference in outcome ratio within each cluster.

(a) DICE. (b) PCA. (c) AE. (d) AE + classification.

Figure 3: Visualization of patient subtyping results by various methods on HF dataset.

(a) DICE. (b) PCA. (c) AE. (d) AE + classification.

Figure 4: Visualization of patient subtyping results by various methods on COVID-19 dataset.
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Table 1: Clustering performance evaluation on test set. Upper: HF dataset. Lower: Covid-19 dataset.

Silhouette score↑ Calinski-Harabasz index ↑ Davies-Bouldin index ↓
PCA 0.0973 16.0928 2.6093
AE 0.2811 68.0664 1.7438

AE + classification 0.3458 200.0490 1.3043
DICE 0.4838 212.1706 0.8637
PCA 0.2478 66.6715 1.5121
AE 0.4019 150.8834 1.0514

AE + classification 0.4763 250.4731 0.8914
DICE 0.4965 182.8546 0.7498

Table 2: Outcome prediction comparison. Upper: HF dataset, Lower: COVID-19 dataset.

AUC↑ ACC↑ FPR↓ TPR↑ FNR↓ TNR↑ PPV↑ NPV ↑
PCA 0.773 0.712 0.222 0.598 0.402 0.778 0.611 0.769
AE 0.712 0.697 0.150 0.433 0.567 0.850 0.627 0.721

AE + classification 0.818 0.765 0.251 0.794 0.206 0.746 0.647 0.862
DICE 0.834 0.780 0.257 0.845 0.155 0.743 0.656 0.892
PCA 0.757 0.772 0.221 0.731 0.269 0.779 0.387 0.938
AE 0.855 0.840 0.147 0.769 0.231 0.853 0.5 0.951

AE + classification 0.889 0.877 0.051 0.5 0.5 0.949 0.65 0.908
DICE 0.907 0.889 0.096 0.808 0.192 0.904 0.618 0.961

Clustering performance on unseen data The learned cluster membership from historic data can
serve as a pseudo-label for unseen data, such that new patients may be classified into one of the
risk levels. The clustering performance on the test set is shown in Table 1. Since the ground truth
labels of stratification are unknown, we used Silhouette score [39], Calinski-Harabasz index [40], and
Davies-Bouldin index [41] to evaluate the clustering performance. DICE achieved the best separation
across the three metrics in HF dataset, and outperforms two out of three metrics in the COVID-19
dataset. DICE underperformed to AE + classification in Calinski-Harabasz index in the COVID-19
dataset. Compared to HF, the COVID-19 population has a much diverse health conditions, which
may have presented a challenge to minimize within-cluster variance.

Outcome classification via learned representation We used the learned representation from
DICE for outcome classification using logistic regression, as shown in Table 2. DICE outperformed
the baselines in AUC, accuracy, true positive rate, false negative rate, and negative predictive value.
The reason DICE had high FPR and low TNR and PPV compared to baselines may be explained by
the high negative case ratio in both datasets.

Fairness on race To ensure fairness of the algorithm, we tested DICE within each demographic
patient subgroups in the HF dataset. The AUC for Unknown, Asian, Other, Black, and White
are 0.9053, 0.8824, 0.8563, 0.8321, 0.8470, respectively, when cluster membership is used as the
predictor. The AUC for Unknown, Asian, Other, Black, and White are 0.8632, 0.8289, 0.7816,
0.8535, 0.8525, respectively, when learned representation is used as the predictor.

Ablation study We conducted an ablation experiment on the HF dataset to gauge the effect of the
statistical significance constraint. When we disabled the statistical significance constraint, 2 clusters
were chosen based on AUC in NAS. The distribution of outcome is 80.1% and 9.01% within the two
clusters, compared to the 4-level separation in Figure 3(a). The maximum AUC score is 0.8427 in the
ablation study compared to the maximum AUC score 0.8539 with the statistical significance constraint.
In addition, the number of neural network which met the significance constraint significantly drops
from 82.4% to 64.7% for K = 5. These three phenomenons indicate that statistical significance
constraint contributes to clearer outcome stratification especially for bigger K.
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5 Discussion

An important distinction between DICE and purely unsupervised, or supervised, tasks is that DICE
learns outcome-driven clusters in an un-labeled population, where the outcome-driven clusters can
later be used to assign risk-levels for future unseen cohort. When there is a lack of precise treatment
protocol that applies to individual patients, such as when management plans for COVID-19 were still
being developed, the capability of classifying a new patient according to the learned risk-level in the
seen population can provide data-driven insights in guiding subsequent management.

In this paper, We demonstrated DICE using AE for representation learning, followed by clustering of
the representation using K-means, and an alternative grid search for NAS, to discover subgroups of
patients in two disease populations: HF and COVID-19. We discovered that compared to baseline,
DICE largely better separated the population as measured by evaluation indices for clustering. The
learned representation from DICE lead to higher AUC in classifying individual outcomes, and was
further used to assign unseen data into risk-levels. This technique may be used for early identification
of practice and patient patterns that suggest risks, patients who may benefit from specialized care, and
patients who are on trajectory for quick recovery and early discharge pathways as a form of clinical
decision support.

Broader Impact

DICE was proposed to join concepts of deep learning and statistics in healthcare to promote better
acceptance of deep learning results. One of the biggest challenges to the successful application
of machine learning, and especially deep learning, algorithms in healthcare is its acceptance by
clinicians as an interpretable models. Traditionally, biostatistical models and concepts such as
statistical significance have been better understood and accepted by clinicians and continue to be
so. Thus, one implication of this work is to bridge the gap between deep learning and statistics in
the context of healthcare by driving the unsupervised tasks towards statistically significant results.
Aside from heart failure and COVID-19, an additional example is sepsis, which afflicts nearly
1.7 million Americans each year with a mortality rate of 270,000 patients per year. The current
sepsis treatment guidelines have provided a standardized approach, including aggressive intravenous
hydration and early administration of antibiotics. Though significant research has been performed
with resulting improvements in overall patient morbidity and mortality, much dispute still exists
regarding the indiscriminate application of this protocol to all sepsis-suspected patients. In 2018, the
Infectious Diseases Society of America released a statement of non-endorsement as they felt these
guidelines generated more harm, particularly for those with less severe disease. Furthermore, recent
evidence suggests that multiple subtypes of sepsis may exist, suggesting that this “one-size-fits-all”
solution may need to reconsidered. For clinical needs such as sepsis and beyond, DICE may provide
opportunities for discovery in the nuances in diagnostics and therapy while ensuring a targeted
outcome.
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