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Abstract 33 

Background 34 

Post-exposure prophylaxis (PEP) is highly effective at preventing human rabies deaths, 35 

however access to PEP is limited in many rabies endemic countries. The 2018 decision 36 

by Gavi to add human rabies vaccine to its investment portfolio should expand PEP 37 

availability and reduce rabies deaths. We explore how geographic access to PEP 38 

impacts the rabies burden in Madagascar and the potential benefits of improved 39 

provisioning. 40 

Methodology & Principal Findings 41 

We use travel times to the closest clinic providing PEP (N=31) as a proxy for access. 42 

We find that travel times strongly predict reported bite incidence across the country. 43 

Using resulting estimates in an adapted decision tree framework we extrapolate rabies 44 

deaths and reporting and find that geographic access to PEP shapes burden sub-45 

nationally. We estimate 960 human rabies deaths annually (95% Prediction Intervals 46 

(PI):790 - 1120), with PEP averting an additional 800 deaths (95% PI: 800 (95% PI: 640 47 

- 970) each year. Under these assumptions, we find that expanding PEP to one clinic 48 

per district could reduce deaths by 19%, but even with all major health centers 49 

provisioning PEP (1733 additional clinics), we still expect substantial rabies mortality. 50 

Our quantitative estimates are most sensitive to assumptions of underlying rabies 51 

exposure incidence, but qualitative patterns of the impacts of travel times and expanded 52 

PEP access are robust. 53 
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Conclusions & Significance 54 

PEP is effective at preventing rabies deaths, and in the absence of strong surveillance, 55 

targeting underserved populations may be the most equitable way to provision PEP. 56 

Our framework could be used to guide PEP expansion and improve targeting of 57 

interventions in similar endemic settings where PEP access is geographically restricted. 58 

While better PEP access should save many lives, improved outreach and surveillance is 59 

needed and if rolled out with Gavi investment could catalyze progress towards 60 

achieving zero rabies deaths. 61 

Author Summary 62 

Canine rabies causes an estimated 60,000 deaths each year across the world, primarily 63 

in low- and middle-income countries where people have limited access to both human 64 

vaccines (post-exposure prophylaxis or PEP) and dog rabies vaccines. Given that we 65 

have the tools to prevent rabies deaths, a global target has been set to eliminate deaths 66 

due to canine rabies by 2030, and recently, Gavi, a multilateral organization that aims to 67 

improve access to vaccines in the poorest countries, added human rabies vaccine to it’s 68 

portfolio. In this study, we estimated reported bite incidence in relation to travel times to 69 

clinics provisioning PEP, and extrapolate human rabies deaths in Madagascar. We find 70 

that PEP currently averts around 800 deaths each year, but that the burden remains 71 

high (1000 deaths/ year), particularly in remote, hard-to-reach areas. We show that 72 

expanding PEP availability to more clinics could significantly reduce rabies deaths in 73 

Madagascar, but our results suggest that expansion alone will not eliminate deaths. 74 

Combining PEP expansion with outreach, surveillance, and mass dog vaccination 75 
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programs will be necessary to move Madagascar, and other Low- and Middle-Income 76 

countries, forward on the path to rabies elimination. 77 

  78 
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Introduction 79 

Inequities in access to care are a major driver of disease burden globally [1]. Often, the 80 

populations at greatest risk of a given disease are the most underserved [2]. Delivering 81 

interventions to these groups is challenging due to financial and infrastructural 82 

limitations, and requires careful consideration of how best to allocate limited resources 83 

[3]. 84 

Canine rabies is estimated to cause approximately 60,000 human deaths annually [4]. 85 

Mass vaccination of domestic dogs has been demonstrated to be a highly effective way 86 

to control the disease in both animals and humans. While dog vaccination can interrput 87 

transmission in the reservoir, human deaths can also be prevented through prompt 88 

administration of post-exposure prophylactic vaccines (PEP) following a bite by a rabid 89 

animal [5]. However, access to human vaccine is limited in many countries where 90 

canine rabies is endemic [6–8], and within countries these deaths are often 91 

concentrated in rural, underserved communities [9]. 92 

In 2015, a global framework to eliminate deaths due to canine rabies by 2030 (‘Zero by 93 

30’) through a combination of PEP provisioning and dog vaccination was established by 94 

the World Health Organization (WHO) and partners [10]. Furthermore, in 2018, Gavi, 95 

the Vaccine Alliance, added human rabies vaccines to their proposed investment 96 

portfolio [11]. From 2021, Gavi-eligible countries should be able to apply for support to 97 

expand access to these vaccines, with potential to greatly reduce deaths due to rabies. 98 

A primary challenge in expanding access effectively is the lack of data on rabies 99 

exposures and deaths in humans and incidence in animals in most rabies-endemic 100 
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countries [12]. Deaths due to rabies are often severely underreported, with many people 101 

dying outside of the health system, often in remote and marginalized communities [13]. 102 

Instead of directly measuring rabies deaths, the majority of rabies burden studies use 103 

bite patient data on reported bites at clinics provisioning PEP and a decision tree 104 

framework to extrapolate deaths, assuming that overall reported bite incidence (i.e. both 105 

bites due to non-rabid and rabid animals) is proportional to rabies incidence (i.e. the 106 

more bites reported in a location, the higher the incidence of rabies exposures), and that 107 

reporting to clinics for PEP is uniform across space [8,14,15]. If applied subnationally, 108 

these assumptions would likely underestimate rabies deaths in places with poor access 109 

to PEP and may overestimate rabies deaths in places with better access to PEP. 110 

In Madagascar, the Institut Pasteur de Madagascar (IPM) provides PEP to 30 Ministry 111 

of Health clinics, in addition to it’s own vaccine clinic, where PEP is available at no 112 

direct cost to patients [15]. Other than at these 31 anti-rabies medical centers (ARMC), 113 

PEP is not available at any other public clinics or through the private sector. In addition, 114 

there is limited control of rabies in dog populations and the disease is endemic 115 

throughout the country [16,17]. Due to the spatially restricted nature of PEP provisioning 116 

and lack of direct costs for PEP, geographic access is likely to be a major driver of 117 

disease burden within the country. Previously, we estimated the burden of rabies in 118 

Madagascar nationally using data from a single district to extrapolate to the country, and 119 

did not account for spatial variation in access [15]. Here, we provide revised estimates 120 

of human rabies deaths by incorporating the impact of access to PEP at the sub-121 

national level on preventing human rabies deaths and explore the potential impact of 122 

expanding provisioning of human rabies vaccines on further reducing these deaths. This 123 
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framework may usefully apply to other countries where PEP availability is currently 124 

geographically restricted in considering how to most effectively and equitably provision 125 

these life-saving vaccines. 126 

Methods 127 

Estimating geographic access to ARMC 128 

To estimate mean and population weighted travel times to the nearest clinic at the scale 129 

of administrative units, we used two rasters: 1) the friction surface from the Malaria 130 

Atlas Project [18] at an ~1 km^2 scale (Fig S1.1A) and 2) the population estimates from 131 

the the 2015 UN adjusted population projections from World Pop ([19], originally at an 132 

~100m^2 resolution, Fig S1.1B), which we aggregated to the friction surface. 133 

From GPS locations of the 31 ARMCs we estimated the travel time to the nearest clinic 134 

at an approximately 1 x 1 km scale as described in [18]. We then extracted the mean 135 

and population-weighted mean travel times for the district and commune (the 136 

administrative unit below the district), and euclidean distance, i.e. the minimum distance 137 

from the administrative unit centroid to any ARMC. We used shapefiles from the UN 138 

Office for the Coordination of Humanitarian Affairs for the administrative boundaries (as 139 

of October 31, 2018). We compared travel times and distance estimates to driving times 140 

collected by IPM during field missions and patient reported travel times from a subset of 141 

Moramanga ARMC patients (see Fig S1.2 for raw data). 142 

Estimating bite incidence 143 

We used two datasets on bite patients reporting to ARMC: 144 
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• A national database of individual bite patient forms submitted to IPM from ARMC 145 

across the country between 2014 - 2017. These forms were submitted with 146 

frequencies ranging from monthly to annually, included the patient reporting date 147 

and were resolved to the district level (patient residence). 148 

• 33 months of data (between October 2016 and June 2019) on patients reporting to 149 

the Moramanga District ARMC resolved to commune level. 150 

For the national data, some clinics did not submit any data, or had substantial periods 151 

(months to a whole year), with no submitted data. To correct for this, we exclude 152 

periods of 15 consecutive days with zero submitted records (see Supplementary 153 

Appendix, section S2). For each clinic we divided the total number of bites reported in a 154 

given year by the estimated proportion of forms which were not submitted (under-155 

submission). Due to yearly variation in submissions, we took the average of annual bite 156 

incidence estimates aggregated to district level. We validated this approach by 157 

comparing estimated vial demand given the total reported bites corrected for under-158 

submission to vials provisioned to clinics for 2014-2017 (see Supplementary Appendix, 159 

section S2). At both the commune and district level, we assigned clinic catchments by 160 

determining which were closest in terms of travel times for the majority of the population 161 

within the administrative unit. For national data, we excluded any districts in a 162 

catchment of a clinic which submitted less than 10 forms and any years for which we 163 

estimated less than 25% of forms were submitted. 164 

Modeling reported bite incidence 165 

We modeled the number of reported bites as a function of travel time (𝑇) using a 166 

Poisson regression: 167 
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𝜇𝑖 = 𝑒
(𝛽𝑡𝑇𝑖 + 𝛽0 )𝑃𝑖 168 

𝑦𝑖 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖) 169 

where 𝑦𝑖 is the average number of bites reported to a clinic annually and 𝜇𝑖 the 170 

expected number of bite patients presenting at the ARMC as a function of travel time 171 

(𝑇𝑖) and human population size (𝑃𝑖) (an offset which scales the incidence to the 172 

expected number of bites) for a given source location (district or commune). We fit this 173 

model to both the national data (district level) and the Moramanga data (commune 174 

level). To more directly compare estimates between datasets, we also modeled the 175 

national data with a latent commune-level travel time covariate (𝑇𝑗): 176 

𝜇𝑖 =∑𝑒(𝛽𝑡𝑇𝑗  + 𝛽0𝑗)

𝑗

𝑗=1

𝑃𝑗 177 

As travel times are correlated with population size (Fig S3.1), we also compared how 178 

well bites were predicted by population size alone, and in combination with travel times. 179 

For the models with population size, we removed the offset and used either population 180 

size alone (𝜇𝑖 = 𝑒
(𝛽𝑝𝑃𝑖+𝛽0)) or population size and travel times (𝜇𝑖 = 𝑒(𝛽𝑡𝑇𝑖+𝛽𝑝𝑃𝑖+𝛽0))) as 181 

predictors. 182 

For the models fit to the national data, we also modeled variation between clinics with a 183 

catchment random effect: 𝐵0,𝑘 ∼ 𝑛𝑜𝑟𝑚(𝜇,  𝜎0)), where 𝜇 is the mean and 𝜎0 is standard 184 

deviation and 𝐵0,𝑘 is the catchment level intercept. 185 

We tested whether the catchment random effect captured overdispersion in the data 186 

(i.e. variance > mean – the expectation given a Poisson distribution) rather than any 187 
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catchment specific effects by extending these models with an overdispersion parameter, 188 

𝜎𝑒 [20]: 189 

𝜇𝑖 = 𝑒
(∑ 𝛽𝑗
𝑗
𝑗=1 𝑋𝑗  + 𝜎𝑒)𝑃𝑖 190 

where ∑ 𝛽𝑗
𝑗
𝑗=1 𝑋𝑗 is the sum of the all parameters for a given model. We fit all models in 191 

a Bayesian regression framework via MCMC using the R package ‘rjags’ [21]. We used 192 

model estimates to generate fitted and out-of-fit predictions, and examined the 193 

sensitivity of estimates to adjustments for under-submission of forms (Supplementary 194 

Appendix, section S3). 195 

Modeling human rabies deaths 196 

We estimate rabies deaths as a function of the number of bites predicted by our model 197 

and estimates of endemic rabies exposure incidence using an adapted decision tree 198 

framework (Fig 1). To model uncertainty in parameter estimates we used triangular 199 

distributions, as with previous studies [8,22], for two key parameters: 𝐸𝑖, the annual 200 

exposure incidence per administrative unit, and 𝑝𝑟𝑎𝑏𝑖𝑑 , the proportion of reported bites 201 

that are rabies exposures. 202 
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 203 

Fig 1. Decision tree for burden estimation. 204 

For a given administrative unit 𝑖, human deaths due to rabies (𝐷𝑖) are calculated from 205 

model predicted reported bites (𝐵𝑖). To get 𝑅𝑖, the number of reported bites that were 206 

rabies exposures, we multiply 𝐵𝑖 by 𝑝𝑟𝑎𝑏𝑖𝑑 , the proportion of reported bites that are 207 

rabies exposures. 𝑝𝑟𝑎𝑏𝑖𝑑  is constrained such that reported rabies exposures cannot 208 

exceed total rabies exposures (𝐸𝑖) and reporting of patients to clinics cannot exceed a 209 

maximum (𝑝𝑚𝑎𝑥). 𝑅𝑖 is subtracted from 𝐸𝑖 to get the number of unreported bites (𝑈𝑖) and 210 

then multiplied by the probability of death given a rabies exposure (𝑝𝑑𝑒𝑎𝑡ℎ) to get deaths 211 

due to rabies (𝐷𝑖). Similarly, deaths averted by PEP, 𝐴𝑖, are estimated by multiplying 𝑅𝑖 212 

by 𝑝𝑑𝑒𝑎𝑡ℎ, i.e. those who would have died given exposure, but instead received PEP. 213 

Both 𝐸𝑖 and 𝑝𝑟𝑎𝑏𝑖𝑑  are drawn from a triangular distribution. Parameter values and 214 

sources are in Table 1. 215 

For 𝐸𝑖, we center the distribution at the lower end of our estimated exposure incidence 216 

from the Moramanga District (42 exposures/100,000 persons), with a range applied 217 

assuming 1% rabies incidence in dogs (estimated across a range of human-to-dog 218 
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ratios between 5 - 25) and that on average a rabid dog exposes 0.39 persons [4] (see 219 

Fig S4.1). As there is little data on dog population size and human exposure incidence 220 

in Madagascar[16,23], the range we used encompasses both observed human-to-dog 221 

ratios across Africa [14,24] and recent subnational estimates from Madagascar [25], 222 

and generates similar exposure incidences as observed previously across Africa 223 

[26,27]. 224 

For 𝑝𝑟𝑎𝑏𝑖𝑑 , we use a range between 0.2 - 0.6 estimated from a study of bite patients in 225 

the Moramanga District [15]. So that rabid reported bites cannot exceed the total 226 

expected number of rabies exposures or a maximum reporting (even with minimal travel 227 

times, people may not report for PEP for other reasons), we constrain 𝑝𝑟𝑎𝑏𝑖𝑑 : 228 

𝑝𝑟𝑎𝑏𝑖𝑑 =

{
 

 𝑥, if 
𝐸𝑖𝜌𝑚𝑎𝑥
𝐵𝑖

> 𝑥

𝐸𝑖𝜌𝑚𝑎𝑥
𝐵𝑖

, otherwise

 229 

where 𝜌𝑚𝑎𝑥 is the maximum reporting, estimated from the Moramanga ARMC data for 230 

the commune of Moramanga Ville, the closest commune to the ARMC (average of 3.12 231 

minutes travel time to the clinic), and where we find that approximately 2% of rabies 232 

exposures go unreported [15]. 233 

We assume that all rabies exposed patients who report to an ARMC receive and 234 

complete PEP, and PEP is completely effective at preventing rabies. Fig 1 describes the 235 

decision tree, the key inputs, and outputs (𝐴𝑖, deaths averted by PEP, and 𝐷𝑖, deaths 236 

due to rabies). Table 1 list all inputs and their sources. 237 
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Table 1. Parameters used in the decision tree to estimate human rabies deaths at 238 

the administrative level. 239 

 240 

Parameter Value Description Source 

𝐵𝑖 Function of travel 

time to closest 

ARMC 

Modeled estimates of reported 

bite incidence 

Bayesian 

regression model 

(see Methods) 

𝐸𝑖 Triangular(a = 15, 

b = 76, c = 42) 

Annual exposures per 100,000 

persons 

[4,15], see Fig 

S4.1 

𝑝𝑟𝑎𝑏𝑖𝑑  Triangular(a = 0.2, 

b = 0.6, c = 0.4) 

Proportion of reported bites that 

are rabies exposures 

[15] 

𝜌𝑚𝑎𝑥 0.98 The maximum reporting possible 

for any location; data from 

Moramanga Ville, Moramanga 

District 

[15] 

𝑝𝑑𝑒𝑎𝑡ℎ 0.16 The probability of death given a 

rabies exposure 

[28] 

Estimating the impact of expanding PEP provisioning 241 

We developed a framework to rank clinics by how much their PEP provision improves 242 

access for underserved communities, estimating incremental reductions in burden and 243 

increases in vaccine demand. Specifically, we aggregated our model-predicted 244 

estimates of annual bites to the clinic level. As multiple clinics may serve a single district 245 
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or commune, we allocated bites to clinics according to the proportion of the population 246 

in each administrative unit which were closest. For each clinic, we simulate throughput 247 

by randomly assigning patient presentation dates, and then assume perfect compliance 248 

(i.e. patients report for all doses) to generate subsequent vaccination dates. We use 249 

these dates to estimate vial usage given routine vial sharing practices in Madagascar 250 

[15], but assuming adoption of the WHO-recommended abridged intradermal regimen 251 

(2 x 0.1 ml injections on days 0, 3, and 7 [29]). For both burden and vial estimates, we 252 

take the mean of 1000 simulations as each clinic is added. 253 

We simulate expansion first to each district (N = 114) and then to each commune in the 254 

country for all communes with a clinic. We select the CSB II (Centre de Sante Niveau II, 255 

major health centers with immunization capacity) in the highest density grid cell of the 256 

administrative unit as candidates for expansion. For the 85 communes without a CSB II, 257 

we chose the CSB I (secondary health posts) in the highest density grid cell. 94 258 

communes lacked any CSB I or II. Finally, we explore a scenario where all additional 259 

CSB II (totalling 1733) provision PEP. 260 

We tested three metrics for ranking additional clinics: 1) The proportion of people living 261 

>3 hours from an existing ARMC for which travel times were reduced; 2) This proportion 262 

(1), weighted by the magnitude of the change in travel times and 3) The mean reduction 263 

in travel times for people living >3 hours from an existing ARMC. We simulated 264 

expansion of ARMC to each district using these three metrics, and chose the metric 265 

which decreased burden the most compared to simulations (N = 10) where clinics were 266 

added randomly to districts for the full expansion of PEP. For the full simulation of 267 

expanded access, once clinics reduced travel times for less than 0.01% of the 268 
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population (< 2400 living greater than 𝑥 hrs away, starting with 𝑥 = 3 hrs), we reduced 269 

the travel time threshold by 25%. 270 

Sensitivity analysis 271 

To test the effect of our model assumptions on estimates of rabies burden and vial 272 

demand, we did a univariate sensitivity analysis of both parameters from the models of 273 

bite incidence and the decision tree (see Table S6.1 & S6.2 for parameter ranges used). 274 

We also examined how systematic variation in rabies incidence with human population 275 

size affected burden estimates. Specifically, if human-to-dog ratios are positively 276 

correlated with human populations (i.e. dog ownership/populations are higher in more 277 

populated, urban areas), we might expect higher rabies exposure incidence as 278 

population size increases. Alternatively, if human-to-dog ratios inversely correlate with 279 

population size (i.e. dog ownership is more common in less populated, rural areas), we 280 

might expect exposure incidence to scale negatively with population size. We use 281 

scaling factors to scale incidence either positively or negatively with observed 282 

population sizes at the district and commune levels, while constraining them to the 283 

range of exposure incidence used in the main analyses (15.6 - 76 exposures per 284 

100,000 persons, Fig S4.2) and simulated baseline burden, as well as expanded PEP 285 

access. 286 

Data and analyses 287 

All analyses were done in R version 4.0.2 (2020-06-22) [30] and using the packages 288 

listed in the supplementary references (Supplementary appendix, section S7). All 289 

processed data, code, and outputs are archived on Zenodo 290 
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(http://doi.org/10.5281/zenodo.4064312 and https://doi.org/10.5281/zenodo.4064304), 291 

and maintained at https://github.com/mrajeev08/MadaAccess. The raw bite patient data 292 

at the national level are maintained in two secure REDCap (project-redcap.org) 293 

databases, one for IPM and another for all peripheral ARMC. These databases were 294 

last queried on September 19, 2019 for these analyses. The IPM GIS unit provided the 295 

data on geolocated clinics across the country. Anonymized raw bite patient data and full 296 

data on geolocated clinics are available from IPM following insitutional data transfer 297 

protocols. Anonymized raw data collected from the Moramanga District were retrieved 298 

from the Wise Monkey Portal (wisemonkeyfoundation.org) on the same date and are 299 

shared in the archived repository. 300 

Ethics statement 301 

Data collection from the Moramanga District was approved by the Princeton University 302 

IRB (7801) and the Madagascar Ministry of Public Health Ethics Committee (105-303 

MSANP/CE). Oral informed consent was obtained from all interviewed participants. 304 

Data collected from bite patients at the national level are maintained jointly by the 305 

Ministry of Health and IPM as a routine part of PEP provisioning. 306 

Results 307 

Estimating access to ARMC 308 

Estimates of travel times to the closest ARMC varied greatly (Fig 2A), with 309 

approximately 36% of the population estimated to live over 3 hrs from a clinic (Fig 2B). 310 

We found that travel time estimates from the friction surface underestimated both 311 
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driving times across the country and patient-reported travel times to the Moramanga 312 

ARMC (Fig 2C), but were correlated with ground truthed driving and patient-reported 313 

times (Fig 3C, Fig S1.4). Patient-reported travel times were also significantly more 314 

variable than estimates from the friction surface (Fig S1.2). The friction surface 315 

assumes that the fastest available mode of transport is used across each grid cell 316 

(i.e. the presence of a road indicates that all travel through that grid cell is by vehicle). 317 

However, Moramanga ARMC patients reported using multiple modes of transport, with 318 

some individuals walking days to a clinic (Fig S1.3). Travel times weighted by 319 

population at the grid cell level were a better predictor than unweighted travel times or 320 

distance (Table S1.1). Therefore we use population-weighted travel time as a proxy for 321 

access at the commune/district level in subsequent analyses. 322 
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 323 

Fig 2. Travel times to ARMC across Madagascar. 324 

(A) Estimated at an ~ 1 km2 scale. (B) Distribution of the population across travel times. 325 

(C) Correlation between ground-truthed travel times (mean of patient reported travel 326 

times to the Moramanga ARMC at the commune level and reported driving times 327 

between GPS points) and friction surface travel time estimates. The vertical lines show 328 
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the 95% quantiles for reported travel times and the point size shows the number of 329 

observations for each commune. The best fit lines (red and grey) and 95% confidence 330 

interval (shading) from a linear model where observed travel times are predicted by 331 

estimated travel times for each data source are also shown. The dashed black line is 332 

the 1:1 line. 333 

Estimating bite incidence 334 

Most patients from each district reported to their closest ARMC by the weighted travel 335 

time metric (Fig 3). Accordingly, we assigned catchments based on which clinic was the 336 

closest for the majority of the population. While there are discrepancies between 337 

commune and district catchment assignments (Fig S2.1A), over 75% of the population 338 

in a given district or commune were closest to a single clinic (Fig S2.1C). We excluded 339 

any clinics which submitted less than 10 forms (excluded 11 catchments, Fig 3A grey 340 

polygons) and corrected for periods where clinics did not submit any forms (see 341 

Supplementary Appendix Section S2). After additionally excluding any year with less 342 

than 25% of forms submitted, our final dataset consisted of estimates of average bite 343 

incidence for 83 of 114 districts (Fig 3C), and 58 communes within the catchment of the 344 

Moramanga District (Fig 3D). 345 
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 346 

Fig 3. The network of patient presentations and estimates of annual bite 347 

incidence. 348 

(A) at the district level for the national data and (B) commune level for the Moramanga 349 

data: circles with a black outline represent the total number of patients reporting to each 350 

ARMC for which we have data. Color corresponds to the clinic catchment. Circles with a 351 
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white outline are the total number of bites reported for that administrative unit (plotted as 352 

the centroid). Lines show which ARMC those patients reported to, with the line width 353 

proportional to number of patients from that district reporting to the ARMC; flows of less 354 

than 5 patients were excluded. Out-of-catchment reporting is indicated where points and 355 

line colors are mismatched. For panel (A) districts in catchments excluded due to lack of 356 

forms submitted by the clinic are colored in grey. For (B) the inset of Madagascar shows 357 

the location of the enlarged area plotted, which shows the district of Moramanga 358 

(outlined in black), all communes included in it’s catchment (red polygons), and other 359 

communes where bites were reported to colored by their catchment (C) The estimated 360 

average annual bite incidence from the national and Moramanga data plotted at the 361 

district scale (both datasets) and at the (D) commune scale (Moramanga dataset). 362 

Colors correspond to the clinic catchment, shape indicates the dataset, and the size of 363 

the point indicates the number of observations (i.e. the number of years for which data 364 

was available for the national data; note for Moramanga 33 months of data were used). 365 

The point lines indicate the range of estimated bite incidence for each district. 366 

Bite incidence estimates generally increased with decreasing weighted travel times at 367 

both scales, although there was considerable variation between catchments for the 368 

magnitude of this relationship (Fig 3C and D). For the national data, there were two 369 

outliers, Toamasina II (the sub-urban district surrounding the city of Toamasina) and 370 

Soanierana Ivongo, with higher bite incidence when compared to other districts with 371 

similar travel times. While the estimates from the Moramanga data showed higher 372 

reported incidence at low travel times at the commune level compared to the district 373 
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estimates, when aggregated to the district, bite incidence estimates fell within the 374 

ranges observed from the national dataset. 375 

Modeling reported bite incidence 376 

Travel times were a strong and consistent predictor of reported bite incidence in both 377 

datasets and across scales (Fig 4). Population size alone was the poorest fit to the data 378 

as estimated by DIC (Table S3.1), and models with population size as an additional 379 

covariate did not generate realistic predictions to the observed data or when used to 380 

predict out of fit (Figs S3.2 and S3.3). 381 

For the national data, including a catchment random effect improved predictions (Fig 382 

S3.2 & Fig S3.3). However, after accounting for overdispersion, catchment effects were 383 

not clearly identifiable (Table S3.1) and the models resulted in similar predictions (Fig 384 

S3.6 & S3.7), indicating that catchment effects could not be differentiated from random 385 

variation in the data. Similarly, while the commune model fit to the Moramanga data 386 

generated stronger travel time effects (Fig 4B), after accounting for data overdispersion, 387 

the posterior estimates of the parameters overlapped for the commune and district 388 

models fit to the national data (Fig S3.4), and the model estimates were in general less 389 

robust to overdispersion than for the national data, particularly at low travel times (Fig 390 

S3.5). 391 

As the predictions from the model fit to the Moramanga data without accounting for 392 

overdispersion fall within the prediction intervals for the models fit to the national data 393 

(Fig 4A), for subsequent predictions, we used the parameter estimates from models fit 394 

to the national data, which encompass the range of travel time effects observed in our 395 
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datasets. Moreover, our out-of-fit predictions to the data across scales suggest that the 396 

commune model is able to capture travel time impacts at the commune level (Fig S3.3), 397 

therefore we use both the district and commune model to disaggregate burden to the 398 

finest scale possible. Finally, we examined the sensitivity of models to how we corrected 399 

for underreporting of data, and found that parameter estimates of travel time impacts 400 

were similar across models and performed similarly in prediction (Fig S3.8 and Fig 401 

S3.9). 402 

 403 
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Fig 4. Travel times as a predictor of reported bite incidence per 100,000 persons. 404 

(A) The estimated relationship between travel time in hours (x-axis) and mean annual 405 

reported bite incidence (y-axis). The lines are the mean estimates and the envelopes 406 

are the 95% prediction intervals generated by drawing 1000 independent samples from 407 

the parameter posterior distributions for three candidate models: model with travel times 408 

at the 1) commune- and 2) district-level fitted to the national data with an overdispersion 409 

parameter (𝜎𝑒) and 3) travel times at the commune level fitted to the Moramanga data 410 

with a fixed intercept and unadjusted for overdispersion. The points show the data: 411 

National data (circles) at the district level used to fit the District and Commune models, 412 

and Moramanga data (triangles) at the commune level used to fit the Moramanga 413 

model. (B) The posterior distribution of parameters from the respective models for the 414 

model intercept, travel time effect, and for overdispersion (national data only). 415 

Estimating human rabies deaths 416 

Overall, we estimate close to 1000 rabies deaths (95% PI: 800 - 1100) annually in 417 

Madagascar. Our estimates vary only slightly depending on the scale of the model 418 

(Table 2), but disaggregating deaths to the commune level shows considerable variation 419 

in predicted burden within districts (Fig 5A). Under the current system of 31 ARMCs in 420 

Madagascar, we estimate that use of PEP prevents approximately 800 (95% PI: 600 - 421 

1000) deaths due to rabies each year. In general, the incidence of rabies deaths 422 

increases with travel times to clinics, and there is significant sub-national variation when 423 

deaths are modeled at the district and commune scale, with the least accessible 424 

communities having most deaths (Fig 5B & C). 425 
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Table 2. Model predictions of average annual reported bite incidence, total 426 

deaths, and deaths averted at the national level for the two models (commune 427 

level and district level models with travel time predictor and an overdispersion 428 

parameter); 95% prediction interval in parentheses. 429 

Model Reported bite incidence per 100k Burden of deaths Deaths averted 

Commune 85 (56 - 129) 963 (795 - 1118) 801 (644 - 968) 

District 85 (52 - 136) 958 (752 - 1156) 807 (609 - 1005) 
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Fig 5. Spatial variation in predicted incidence of human rabies deaths per 100,000 431 

persons. 432 

(A) for each district (y-axis) in Madagascar. Diamonds show the predicted incidence for 433 

the district model and squares show predicted incidence for the commune model fit to 434 

the National data for all communes in a district. Points are colored and districts ordered 435 

by travel times. The vertical lines show the average national incidence of human rabies 436 

deaths for the commune (grey) and district (black) models. Incidence mapped to the (B) 437 

commune- and (C) district-level from the respective models; grey X’s show locations of 438 

current ARMC. 439 

Estimating the impact of PEP provisioning 440 

For a subset of additional clinics (n = 83, up to one per district), we compared three 441 

methods of ranking for expanding PEP provisioning. We found that targeted expansion 442 

of PEP to clinics based on the proportion of the population they reduced travel times for 443 

resulted in fewest deaths (Fig S5.1). Therefore, we used this approach for simulating 444 

expansion of PEP to a larger set of clinics (N = 1733 ). Here we report results from the 445 

commune model, as estimates were consistent across models (Fig 6 and 446 

Supplementary appendix, section S5). 447 

We estimated that strategic PEP expansion to these additional 83 clinics (1 per district) 448 

reduced rabies deaths by 19% (95% PI: 14 - 23%) (Fig 6A). With one clinic per 449 

commune (where available, N = 1696), we see a further reduction of 38% (95% PI: 30 - 450 

46%). However, reductions in burden saturate as more clinics are added (Fig S5.2). 451 

Even when all CSB II provisioning PEP, our model still predicts 600 (95% PI: 400 - 800) 452 
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deaths per annum, and average reporting of rabies exposures remains approximately 453 

66% (95% PI: 32 - 77%) (Fig S5.5); as more clinics are added, reported bite incidence 454 

saturates (Fig S5.4), and patients shift which clinic they report to (S5.7 & S5.8). 455 

Vial demand also outpaces reductions in burden (Fig 6B), with more vials needed per 456 

death averted (Fig 6C). Our model predicts an increase from 33500 vials (95% PI: 457 

22900 - 49400) per annum under current provisioning but with the abridged intradermal 458 

regimen (i.e. visits on days 0, 3, 7), to ~56900 vials (95% PI: 40200 - 77800) with 250 459 

clinics providing PEP, and ~86400 vials (95% PI: 61600 - 118000) if all CSB IIs 460 

provision PEP. In these scenarios, clinic catchment populations and throughput 461 

decrease, with clinics seeing fewer patients per day (S5.6). 462 
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 463 

Fig 6. Impact of expanded PEP access on deaths, deaths averted and vial 464 

demand. 465 

(A) Decrease in deaths due to rabies, (B) increase in total # of vials as additional ARMC 466 

are added at the national level , and (C) increase in vials needed per death averted 467 
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based on the two models of reported bites. Lines are the mean of 1000 simulations with 468 

envelopes representing 95% prediction intervals. The points show when all additional 469 

csb (N = 1733) clinics have been added). 470 

Sensitivity Analyses 471 

To quantify which parameters contribute to the uncertainty in our estimates, we 472 

performed univariate sensitivity analyses, varying parameters in both the bite incidence 473 

model (Table S6.1) and the decision tree (Table S6.2). These analyses show that 474 

assumptions of the underlying rabies exposure incidence (𝐸𝑖) contribute most 475 

uncertainty to burden estimates (Fig S6.1) and impacts of PEP access (Fig S6.2). 476 

Uncertainty in bite model parameters contribute less to uncertainty in estimates of 477 

burden. For the estimates of vial demand, uncertainty around the model intercept 478 

(i.e. the baseline reported bite incidence) has most impact, rather than the travel time 479 

effect or the overdispersion parameter (Fig S6.3). Finally, scaling of incidence with 480 

population size (Fig S4.2) modulates the impact of travel times on deaths, with positive 481 

scaling of rabies incidence with population size (i.e. more rabies in more populated 482 

places) dampening and negative scaling exacerbating the relationship between access 483 

and deaths (Fig S6.4A). However, the impact of adding clinics remains broadly the 484 

same (Fig S6.4B). Overall, while uncertainty in the underlying rabies exposure 485 

incidence results in considerable variation in our burden estimates, the projected impact 486 

of travel times and of access to PEP are qualitatively similar across parameter 487 

assumptions. 488 
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Discussion 489 

Main findings 490 

We find that the burden of rabies in Madagascar is likely concentrated in areas with 491 

poor PEP access. We estimate that current PEP provisioning (at 31 clinics) averts 492 

45%% of deaths that would otherwise occur, and that expanding PEP access should 493 

reduce mortality, with provisioning in one clinic per district (N = 83), or per commune (N 494 

= 1733), expected to reduce mortality by 33% and 16%, respectively. However, 495 

improved PEP provisioning is unlikely to eliminate rabies deaths; with over 600 deaths 496 

expected even with PEP at all CSB II (N = 1733). This is partly because travel times 497 

remain high (> 2 hrs as estimated by the friction surface for over 10% of the population, 498 

Fig S5.4) even after expanding PEP to all major health centers. With reduced travel 499 

times, over 20% of exposures will still not seek PEP (Fig S5.5), resulting in ~1.65 rabies 500 

deaths per 100,000 people. PEP is expected to remain cost-effective as provisioning 501 

expands, to a maximum of 450 USD per death averted (assuming 5 USD per vial), 502 

similar to other estimates [4]. While our quantitative predictions depend on assumptions 503 

of underlying rabies exposure incidence, the qualitative patterns regarding travel time 504 

impacts remain robust and are useful in identifying strategies for provisioning PEP. 505 

Limitations 506 

Data limitations introduced bias and uncertainty to our estimates. For example, travel 507 

times from the MAP friction surface underestimated patient-reported travel times, with 508 

discrepancies between assigned transport speeds (from the Open Street Map user 509 

community, or country cluster data [18]) and realities of local travel. In Madagascar, the 510 
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presence of paved roads does not necessarily reflect their quality or the modes of 511 

transport used. Moramanga ARMC patients reported various transport methods and 512 

highly variable travel times even within a single commune. While patient-reported travel 513 

times may lack precision from recall and estimation error, they likely better reflect lived 514 

experience; validated travel times [31] could improve estimates of spatial health 515 

inequities. Similarly, modeled estimates of population distribution [19] also introduce 516 

uncertainty. Our analysis of data from the Moramanga District indicate that variation at 517 

the sub-district level is high and impacts health seeking behavior. However, we lacked 518 

fine-scale data from other catchments for comparison. Additionally, we had to correct for 519 

underreporting and incomplete data; strengthening surveillance and routine data 520 

collection should improve understanding of health seeking behavior and access, and 521 

support monitoring and evaluation of PEP provisioning. 522 

We assumed geographic access to PEP was the primary driver of health-seeking 523 

behavior, but socioeconomic status, education and awareness about rabies [27,32–34] 524 

all play a role. In Madagascar, where PEP is free-of-charge, the main cost to patients is 525 

transport and time lost. More remote communities tend to be of lower socioeconomic 526 

and educational status [2], so travel time may be a proxy for these correlated variables. 527 

We also assume that all ARMC reliably provision PEP, but a 2019 KAP survey reported 528 

clinics experiencing stock-outs [25]. Most ARMC charge fees (from 0.50 - 3.00 USD for 529 

consultations, wound treatment, etc [25]) which may also act as barriers. Significant 530 

overdispersion in the data that cannot be explained by travel times suggests that clinic-531 

level variation (e.g. vaccine availability and charges) and regional differences (e.g. dog 532 
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populations, outbreaks, awareness) further influence health-seeking behavior and 533 

vaccine demand. 534 

Our burden estimates were most sensitive to assumptions about rabies exposure 535 

incidence, drawn from studies in the Moramanga District [15] and elsewhere [4]. As 536 

incidence of rabies exposures varies over time and space [35,36], we incorporated 537 

uncertainty into our estimates, but we did not find qualitative differences in the effects of 538 

travel times on rabies deaths. Our simplifying assumptions, regarding patient 539 

compliance, which is generally high in Madagascar [15], and on complete efficacy of 540 

PEP, are unlikely to greatly influence our burden estimates [28]. Likewise we do not 541 

account for differential risk for severely exposed patients not receiving Immunoglobulins 542 

(RIG), which is only available at IPM in Antananarivo, but recent studies show that even 543 

in the absence of RIG, PEP is extremely effective [4]. Although our estimates could be 544 

improved with better data on rabies incidence, health-seeking behavior, and PEP 545 

provisioning, predicting PEP impacts will remain challenging given the complex 546 

interactions between socioeconomic factors, access to and quality of care and human 547 

behavior, as illustrated by the complex case studies in Box 1. 548 

Box 1: case studies of of health seeking behavior for PEP in Madagascar 549 

1. Anosibe An’ala District (population ~ 100,265), south of Moramanga, has moderate 550 

incidence of bite patients (~ 54/100,000 persons) even though travel times often 551 

exceed 24 hours. While a road connects the main Anosibe An’ala commune to the 552 

Moramanga ARMC, it is only passable by large trucks during much of the rainy 553 

season, with speeds usually < 10km per hour. Over 9% of patients from Anosibe 554 

An’ala had been in close proximity or touched a person that died from rabies (four 555 

suspect human rabies deaths of patients who did not receive any PEP), whilst of 556 
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patients with Category II and III exposures that were interviewed, 11/19 (58%) were 557 

bitten by probable rabid dogs. Given the high travel times (although underestimated 558 

by the friction surface) and incidence of reported rabies exposures and deaths, we 559 

predict a large but unobserved rabies burden in this remote community (~6.02 560 

deaths per year) and we ranked an ARMC provisioning PEP in Anosibe An’ala 28th 561 

for travel time reductions. Other remote communities likely experience similar high 562 

and unrecognized burden, but improved surveillance is necessary to identify such 563 

areas. Notably, bite patients in this district demonstrate willingness to travel for free 564 

PEP (in some cases walking 3 days to a clinic) with awareness of rabies risk. 565 

Community outreach and active surveillance in other remote areas could also 566 

greatly improve people’s awareness of risk and health seeking behavior. 567 

2. Recently, a middle aged taxi driver died of rabies in suburban Antananarivo. The 568 

day after being bitten by an unknown dog, he reported to a clinic that referred him 569 

to the ARMC at IPM, approximately one hour’s drive from his home. His family 570 

urged him to get PEP, but he did not believe his risk was high and decided not to 571 

seek further care. He developed symptoms two weeks later and was confirmed as 572 

a rabies death by the National Rabies Reference Laboratory. Despite prompt 573 

reporting and referral, and socioeconomic indicators suggesting a high care-574 

seeking probability, this person did not receive PEP. His story highlights the need 575 

for sensitization about rabies and how PEP at peripheral clinics (even in areas with 576 

reasonable access) could prevent additional deaths, but also how PEP alone is 577 

unlikely to prevent all rabies deaths. 578 

Broader context 579 

Recent studies have estimated access to health-seeking behavior and PEP completion 580 

and adherence, but not directly linked these estimates to burden [7,37]. Our approach 581 

for incorporating access to vaccines (echoing [38–42]) into burden estimation methods 582 

could guide provisioning of PEP to maximize impacts. This approach will have most 583 

value in settings with limited PEP access and poor health seeking, but will be less 584 
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valuable where rabies exposures make up a small fraction of patients reporting for PEP 585 

e.g. [43,44]. Our revised estimate of rabies deaths in Madagascar using this approach 586 

was higher than previous [15], which assumed uniform reporting of 85%, but remained 587 

within the range of other empirical and modeling studies from low-income countries 588 

[26,27,45–47]. 589 

Our estimates of vial demand depend on use of the new abridged intradermal regimen 590 

[29], which has been adopted by the Ministry of Health in Madagascar. However, most 591 

ARMC staff were not aware of WHO classifications of exposure categories, and 592 

vaccination of Category I exposures (those not requiring PEP) remains common 593 

practice, comprising 20% of vial demand in Moromanga [15]. We predict that as clinics 594 

are expanded, throughput (daily patients reporting to a clinic) will decrease. This may 595 

make provisioning PEP more challenging and vial demand less predictable, leading to 596 

stock outs or wastage. Decentralized provisioning mechanisms, for example adopting 597 

routine childhood vaccine supply chains, or novel vaccine delivery methods such as 598 

drones [48], may mitigate these challenges. When nerve tissue vaccines were used in 599 

Madagascar, clinics requested vaccine upon demand and PEP access was more 600 

widespread, but provisioning the more expensive cell culture vaccines to all clinics 601 

became too costly [16]. Widespread vaccine provisioning is therefore feasible given 602 

Madagascar’s health infrastructure, if cost barriers are removed. 603 

Gavi investment could greatly reduce the access and cost barriers to PEP [6,7,28,49]. 604 

Currently, each clinic in Madagascar serves an average catchment of 780,000 persons. 605 

Latin American countries, where significant progress has been made towards 606 

elimination, aim for one PEP clinic per 100,000 persons. In Madagascar this would 607 
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require around 212 additional ARMC. We predict that Gavi investment would be highly 608 

cost-effective, greatly reducing deaths by expanding PEP supply to underserved areas. 609 

However, our results suggest that PEP expansion alone cannot prevent the majority of 610 

rabies deaths, and even given maximal access, achieving ‘the last mile’, preventing 611 

deaths in the most remote populations, will require disproportionate resources [50]. To 612 

achieve ‘Zero by 30’, mass dog vaccination will be key to interrupting transmission, and 613 

eliminating deaths. Integrated Bite Case Management (IBCM) uses bite patient risk 614 

assessments to determine rabies exposure status, guide PEP administration, and 615 

trigger investigations of rabid animals, potentially identifying other exposed persons 616 

[15,51,52]. IBCM is one way to manage PEP effectively [43] and as it relies on exposed 617 

persons reporting to clinics, expanding PEP access could strengthen this surveillance 618 

framework. These same issues of access, however apply to both dog vaccination and 619 

surveillance, and understanding spatial heterogeneities will be critical to determining 620 

how control and prevention interventions can be best implemented [53,54]. 621 

Conclusion 622 

Our study suggests that rabies deaths in Madagascar disproportionately occur in 623 

communities with the poorest access to PEP and that expanding PEP access should 624 

reduce deaths. Without data on rabies incidence and exposure risk, targeting PEP 625 

expansion to underserved areas is a strategic way to reduce rabies burden and provide 626 

equitable access, for example, by expanding provisioning to clinics serving populations 627 

that target an evidence-based travel time threshold or catchment size. Implementing 628 

outreach programs to raise awareness should further increase the efficacy of PEP 629 
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expansion by improving care seeking. Better surveillance is also needed to understand 630 

the geographical distribution of rabies exposures and identify populations most at risk. 631 

Gavi investment could support countries to more equitably provision PEP and overcome 632 

barriers to access ([9], see Box 1 for case studies), but as PEP alone cannot prevent all 633 

rabies deaths, investment should be used to catalyse mass dog vaccination to interrupt 634 

transmission, and eventually eliminate rabies deaths. 635 
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