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ABSTRACT 

Background: As in many countries, quantifying COVID-19 spread in Indonesia remains 

challenging due to testing limitations. In Java, non-pharmaceutical interventions (NPIs) were 

implemented throughout 2020. However, as a vaccination campaign launches, cases and deaths 

are rising across the island.  

Methods: We used modelling to explore the extent to which data on burials in Jakarta using 

strict COVID-19 protocols (C19P) provide additional insight into the transmissibility of the 

disease, epidemic trajectory, and the impact of NPIs. We assess how implementation of NPIs 

in early 2021 will shape the epidemic during the period of likely vaccine roll-out.  

Results: C19P burial data in Jakarta suggest a death toll approximately 3.3 times higher than 

reported. Transmission estimates using these data suggest earlier, larger, and more sustained 

impact of NPIs. Measures to reduce sub-national spread, particularly during Ramadan, 

substantially mitigated spread to more vulnerable rural areas. Given current trajectory, daily 

cases and deaths are likely to increase in most regions as the vaccine is rolled-out. Transmission 

may peak in early 2021 in Jakarta if current levels of control are maintained. However, 

relaxation of control measures is likely to lead to a subsequent resurgence in the absence of an 

effective vaccination campaign.  

Conclusion: Syndromic measures of mortality provide a more complete picture of COVID-19 

severity upon which to base decision-making. The high potential impact of the vaccine in Java 

is attributable to reductions in transmission to date and dependent on these being maintained. 

Increases in control in the relatively short-term will likely yield large, synergistic increases in 

vaccine impact. 
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Key questions 

What is already known? 

• In many settings, limited SARS-CoV-2 testing makes it difficult to estimate the true 

trajectory and associated burden of the virus. 

• Non-pharmaceutical interventions (NPIs) are key tools to mitigate SARS-CoV-2 

transmission. 

• Vaccines show promise but effectiveness depends upon prioritization strategies, roll-out 

and uptake. 

What are the new findings? 

• This study gives evidence of the value of syndrome-based mortality as a metric, which is 

less dependent upon testing capacity with which to estimate transmission trends and 

evaluate intervention impact.  

• NPIs implemented in Java earlier in the pandemic have substantially slowed the course of 

the epidemic with movement restrictions during Ramadan preventing spread to more 

vulnerable rural populations. 

• Population-level immunity remains below proposed herd-immunity thresholds for the 

virus, though it is likely substantially higher in Jakarta.  

What do the new findings imply? 

• Given current levels of control, upwards trends in deaths are likely to continue in many 

provinces while the vaccine is scheduled to be rolled out. A key exception is Jakarta where 

population-level immunity may increase to a level where the epidemic begins to decline 

before the vaccine campaign has reached high coverage. 

• Further relaxation of measures would lead to more rapidly progressing epidemics, depleting 

the eventual incremental effectiveness of the vaccine. Maintaining adherence to control 

measures in Jakarta may be particularly challenging if the epidemic enters a decline phase 

but will remain necessary to prevent a subsequent large wave. Elsewhere, higher levels of 

control with NPIs are likely to yield high synergistic vaccine impact.  
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INTRODUCTION 

As of 3rd February 2021, Indonesia has reported the highest number of confirmed COVID-19 

cases (1,111,671) and deaths (30,770) among Southeast Asian countries.[1] Cases were first 

reported in West Java province, on the island of Java, on 2nd March 2020, amid concern that 

the disease had circulated widely before.[2,3] The city of Jakarta (the capital of Indonesia) 

subsequently became the epicenter of the country’s epidemic, following which the disease 

spread throughout the island. 

Non-pharmaceutical interventions (NPIs) have included national social distancing measures 

encouraging people to work, study and worship at home (15th March)[4]; mandated social 

distancing measures implemented on 10th April as part of a lockdown, named Pembatasan 

Sosial Berskala Besar or PSBB in Indonesian;[4] and a ban on domestic travel during the 

month of Ramadan (24th April to 7th June).[5]  In June, Indonesia entered the Adaptasi 

Kebiasaan Baru (AKB or ‘new normal’) period where some restrictions were lifted (online 

supplementary figure S1A; 1B).[4]  

During this AKB period, the reported incidence of COVID-19 cases and deaths increased 

across Indonesia with community transmission evident across the six provinces of Java (online 

supplementary figure 1C; 1D). PSBB was subsequently reimposed in mid-September for four 

weeks in Jakarta in response to pressures on healthcare facilities across the city.[6] Cases and 

deaths continued to rise in 2021, prompting further restrictions in districts across the island 

from 11th January.[7] On 13th January 2021, Indonesia initiated a nationwide vaccination 

campaign.[7,8]  

Understanding the trajectory of the epidemic in Java has been challenging.  As in many 

countries,[9,10] testing constraints in Indonesia have limited the extent to which officially 

confirmed cases reflect underlying trends. Similar concerns exist for mortality data, based upon 

the high numbers of individuals exhibiting COVID-19 like symptoms who die before receiving 

a diagnosis.[11,12] In Jakarta, such individuals are buried under strict COVID-19 protocols 

(C19P). Here we use mathematical modelling approaches incorporating these data, and other 

measures of suspected mortality, to better understand the dynamics and burden of the epidemic 

experienced across Java to date, evaluate the impact of control measures, and understand how 

these past actions will shape future burden and vaccine impact. 
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METHODS 

Assessing SARS-CoV-2 transmissibility over time in Jakarta 

Daily numbers of confirmed COVID-19 cases, deaths, and C19P funerals[13] were used to 

reconstruct daily incidence of symptom onset, using delay distributions between symptom 

onset and case reporting or death derived from individual patient data obtained from the Jakarta 

Department of Health (online supplementary figure S2). For each data source (cases, deaths, 

and C19P funerals), 100 reconstructed time-series of daily incidence of symptom onset were 

generated, with estimates also adjusted for right-censoring in individuals where outcomes had 

yet to occur (online supplementary methods section S2).  

These reconstructed time series were translated into estimates of the daily effective 

reproduction number (𝑅𝑡,𝑐𝑎𝑠𝑒 for cases, 𝑅𝑡,𝑑𝑒𝑎𝑡ℎ for deaths, and 𝑅𝑡,𝑓𝑢𝑛𝑒𝑟𝑎𝑙 for funerals) in 

Jakarta using EpiEstim.[14,15] This package estimates 𝑅𝑡 using a branching process-based 

estimator that incorporates information on the serial interval distribution and dates of onsets of 

symptoms. Correlations between estimated 𝑅𝑡 and the average daily changes in non-residential 

mobility[16] were assessed based on 1,000 posterior samples from each estimated 𝑅𝑡 time 

series and compared using Pearson’s correlation coefficient formula.  

Modelling subnational COVID-19 spread across Java 

We developed a district-level metapopulation model to explore the expected spread of COVID-

19 across the island of Java (online supplementary methods section S5). For each district, 

stochastic differential equations representing a Susceptible-Exposed-Infected-Recovered 

(SEIR) model were implemented. Movement matrices were derived from anonymized mobile 

phone data, with separate matrices calculated for the high-migration period of Ramadan. 

Disease severity parameters were adjusted to account for the demography of each district. 

Transmissibility of the virus over time was calculated under the assumption that the 

relationship between mobility and 𝑅𝑡 observed in Jakarta was informative across the rest of the 

island, exploring multiple assumptions about the transmissibility of COVID-19 in rural districts 

relative to urban districts (online supplementary table S3). 

We simulated five different scenarios to assess the impact of restrictions earlier in the pandemic 

in Indonesia (namely PSBB and Ramadan movement restrictions) on COVID-19 deaths and 

hospitalisation rates across Java (online supplementary table S4). The baseline scenario 

simulated an epidemic across Java based on the observed mobility patterns and an assumption 

that longer-distance between-district movement was reduced to a greater extent than within-

district (a further reduction of an odds ratio (OR) of two relative to pre-pandemic levels) and 

severely curtailed (a 95% reduction) during Ramadan. Counter-factual scenarios for the 

absence of restrictions during Ramadan, assuming no movement restrictions between-district 

in place, were also simulated. Uncertainty in the incremental effect of the absence of between-

district movement restrictions during Ramadan on the population-level transmission was then 

captured in three scenarios: a) Ramadan 1, that they had no impact (i.e., within-district 

movement would remain the same as the baseline scenario in the absence of Ramadan-specific 

intervention); b) Ramadan 2, they were responsible for 75% of the reduction in 𝑅𝑡 relative to 
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𝑅0; c) Ramadan 3, without restrictions, transmission would have returned to 𝑅0 levels during 

Ramadan. Lastly, the unmitigated scenario simulated an epidemic across Java without 

movement restrictions and without reductions in transmissibility due to behaviour change 

and/or control measures. 

Assessing the current province-level spread of the pandemic in Java and generating 

future scenarios 

To estimate the recent trajectory of the epidemic and current cumulative levels of spread within 

each province, we adapted an existing modelling framework allowing the relationship between 

mobility and transmission to vary over time.[9]  This allows us to capture the observed 

decoupling between aggregated movement patterns and burden in the ‘new normal’ period and 

simulate scenarios of future spread within each province. We fit this modelling framework both 

to officially reported COVID-19 deaths, as well as estimated suspected deaths, which include 

deaths of probable cases (i.e., patients with clinical criteria or chest imaging suggestive of 

COVID-19), which have been published by WHO Indonesia.[4] As the published suspected 

deaths data are only available on a weekly basis between 1st June to 29th November 2020, we 

augmented the data to reflect the entire time-period of the epidemic based upon the proportion 

of all suspected deaths (i.e., probable and confirmed) that were confirmed by each province in 

the period covered by the WHO situation reports (online supplementary methods section S6).  

Our future scenarios are projected based on a future ‘reproduction number under control’, 𝑅𝑐, 

defined similarly to 𝑅0 as the average number of secondary infections within an entirely 

susceptible population but incorporating the impact of NPIs (and, equivalently, 𝑅𝑡 but not 

incorporating the effects of population-level immunity such that  𝑅0 > 𝑅𝑐 > 𝑅𝑡). We evaluated 

three scenarios: a ‘current trajectory’ scenario (where the current trajectory of the epidemic 

continues with approximated 𝑅𝑐 = 1.25), a ‘suppression’ scenario (where the transmission in 

the population is assumed to be immediately suppressed with 𝑅𝑐 = 0.75) and an ‘unmitigated’ 

scenario (where the epidemic was assumed to be uncontrolled with 𝑅𝑐 = 2.00). 

Our first set of projections were generated from 2nd September 2020 onwards.[17] At that time,  

policymakers were attempting to understand the potential benefits of the implementation of 

further NPIs, such as the reimposition of PSBB in Jakarta, which was then scheduled to be 

implemented on 14th September,[6] in the context of no vaccine yet being any available. These 

scenarios evaluated the potential trajectory of the epidemic throughout 2021, including the 

impact of a ‘return-to-normal’ (𝑅𝑐 = 2.00) once burden had returned to low-levels (median of 

simulated trajectories reached less than 7 cumulative deaths over 7 days period). 

Our current set of projections are generated from 7th December and in the context of an 

imminent vaccine campaign. Given the large remaining uncertainties in roll-out and 

effectiveness, we do not incorporate any role of the vaccine. Instead, we aim to understand how 

different scenarios involving NPIs over the next few weeks and months will shape the potential 

longer-term effectiveness of future strategies in which vaccines will likely feature as a major 

component. To do this, we evaluate how both the number of lives lost, and number of lives that 

remain to be saved is likely to change incrementally by month according to the same future 
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scenarios (i.e., current mitigation, suppression and unmitigated), relative to an unmitigated 

epidemic from the date of our projection (7th December 2020). 
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RESULTS 

Understanding initial establishment, transmission, and dynamics of SARS-CoV-2 in 

Jakarta 

Figure 1A shows the daily reported cases, deaths, test positivity ratios, and funerals with C19P 

in Jakarta, transformed into inferred dates of symptom onset using the relevant delay 

distributions (figure 1B). We estimate that 31 (22-41 95% CrI) and 124 (107-139 95% CrI) 

confirmed deaths and C19P funerals (assuming all funerals represent deaths due to COVID-

19) had symptom onset occurring before 2nd March when COVID-19 was first identified in 

Indonesia. We estimate 10,950 (7,530-14,040 95% CrI) infections based on confirmed deaths 

or 42,100 (36,280-47,570 95% CrI) based on C19P funerals (reflecting an assumption that all 

undiagnosed individuals with a C19P funeral would have tested positive) had occurred in 

Jakarta by 2nd March.  

Reported cases in Jakarta appear to indicate two epidemic peaks to date (around mid-April and 

mid-September, when PSBB was imposed), with the number of cases reported during the 

second peak far higher than the first (figure 1B). However, the test-positivity rate declined in 

the first half of 2020, indicating increased testing rates and case-ascertainment, which 

complicates the interpretation of trends based on case data alone. Indeed, data on C19P funerals 

suggest that the peak in infections likely occurred in mid-March and that infection levels during 

the second peak were at levels comparable to their initial peak. 

Our branching-process-based estimates of 𝑅𝑡 support the substantial impact of NPIs when 

applied to all three metrics. We estimate 𝑅𝑡 to be between 1.5 and 2.5 initially, subsequently 

declining to below 1 during the first PSBB period, followed by a more recent increase to 

slightly above 1 as Jakarta entered the transitional PSBB in early June. The reimposition of the 

second PSBB in September also brought the 𝑅𝑡 to below 1 (figure 1C). Before the lifting of the 

first PSBB, 𝑅𝑡 estimates show a strong and significant correlation (0.91, 0.72, and 0.92 for 

cases, deaths, and C19P funerals, respectively, all with p<0.001) with observed mobility 

patterns as measured by Google Mobility Reports (figure 1D). Estimates based upon funeral 

trends support a more rapid, larger, and more sustained impact of interventions than those based 

upon case-reporting. The correlation with within-city mobility is lowest for the deaths data, 

where substantial variation in day-to-day death reporting leads to more unstable 𝑅𝑡 estimates 

over time. Calculating the correlation between mobility and 𝑅𝑡 before and after the AKB period 

suggests a decoupling between transmission and mobility, whereby estimates of 𝑅𝑡 during 

periods of equivalent levels of mobility during AKB are lower than estimates obtained before 

AKB (online supplementary figure S4).  

Understanding COVID-19 risk and subnational spread of SARS-CoV-2 across Java 

Substantial variations exist across the island in terms of demography, healthcare capacity, and 

between-district mobility. The proportion of individuals over the age of 50 is typically higher 

(26%) in rural districts than urban ones (19%) (figure 2A). There are also substantial disparities 

in healthcare availability, ranging from the comparatively well-resourced Jakarta setting (2.22 

hospital beds per thousand population) to the poorer, more rural setting of Tasikmalaya in West 
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Java (0.18 hospital beds per thousand population) (figure 2B). Patterns of between-district 

mobility outside of the window of the pandemic, estimated using mobile phone data over the 

period of 1st May 2011 - 30th April 2012, highlight the extent to which these settings are 

connected. Between-district connectivity is particularly high during the Ramadan period, with 

large-scale movements from densely populated Jakarta to other more rural regions with lower 

availability of healthcare (figure 2C; 2D). Applying our modelled relationship between 

mobility and 𝑅𝑡 obtained from the Jakarta C19P funeral data (figure 2E) to trends in mobility 

data from the remaining provinces in Java suggests large reductions in transmission in all 

provinces coinciding with the PSBB period. However, they also suggest that measures were 

sufficient to bring 𝑅𝑡 below 1 for a sustained period only in Jakarta and Yogyakarta. Increases 

in mobility occurred either during early May (Banten, West Java, Central Java, and East Java) 

or alongside the establishment of the AKB in June (Jakarta and Yogyakarta), leading to 

corresponding increases in our estimates of 𝑅𝑡 (figure 2F). 

These estimates were integrated into our meta-population model (figure 3A). Estimates of 

deaths in the baseline scenario were consistent with observed qualitative patterns prior to the 

shift to the AKB phase of the epidemic in early June. The epicenter shifted over time from 

Jakarta to satellite towns and other provincial capitals, and with Yogyakarta remaining least 

affected. Our baseline scenario’s median deaths fall within the range of cumulative confirmed 

and suspected deaths up to 31st May 2020 and the number of confirmed and suspected deaths 

between 13th-31st May 2020 in most provinces (table 1). Total suspected deaths fell within the 

model’s uncertainty bounds for most provinces except Jakarta and Central Java (table 1). 

The scenarios estimates are consistent with reductions in contact rates serving to reduce spread, 

reduce healthcare demand and avert mortality prior to AKB phase: an estimated 57,000 

(24,800-105,400, 95% UI) deaths averted when compared to an effectively unmitigated 

epidemic with 𝑅𝑡 = 2 throughout this period (which we estimate would have resulted in 59,900 

(26,800-112,800, 95% UI deaths). These numbers do not consider the effects of healthcare 

services becoming overwhelmed (as shown by the negative values of the median number of 

hospital beds available per COVID-19 case needing hospitalisation under the unmitigated 

epidemic scenario; figure 3C) on both direct and indirect mortality, an impact which would 

likely have been sizable given the wider spread to more rural settings with more scarce 

healthcare provision in our unmitigated scenario (figure 3D; 3E). 

Our baseline scenario increasingly over-predicts deaths in most provinces during the AKB. 

This is in line with our results suggesting a decoupling of within-province mobility from virus 

transmissibility over that period. 

Estimating current COVID-19 burden, modelled future scenarios, and estimated 

vaccines impact in Java 

Our projections generated 2nd September 2020[17] (figure S13) suggested that whilst 𝑅𝑡 was 

well below that observed at the beginning of the epidemic, this was driven primarily by the 

impact of control measures rather than the accumulation of population-level immunity. As a 

result, in the absence of additional control measures, death rates were likely to rise for the 

remainder of the year in all provinces, pushing all provinces beyond available hospital capacity. 
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We found that reimplementation of PSBB could largely prevent capacity from being exceeded 

but would not prevent a subsequent wave if such control was not maintained.  

Subsequently, between our two sets of simulations (2nd September 2020 and 7th December 

2020), both confirmed deaths and our inferred estimates of total suspected deaths increased 

from 5,108 to 11,370 and 12,254 to 26,206, respectively, across Java. At the island level, the 

estimated attack rates on both time points increased from 1.21% to 2.57% and 2.95% to 6.03% 

based on confirmed deaths and assuming all suspected deaths as COVID-19 deaths, 

respectively (figure 4A). At the province level, estimates of attack rate and total burden from 

COVID-19 differ quite significantly, with Jakarta accumulating the highest attack rates in the 

region by 7th December 2020 (figure 4B; table S6). In all provinces and based on models fitted 

to either suspected or confirmed deaths, there were consistent increases of around 2-3 times on 

the province-level attack rate from 2nd September to 7th December 2020. However, as seen at 

the island level, discrepancies between the estimated attack rates based on the model fitted to 

suspected deaths and confirmed deaths data were still observed at the province-level, with the 

highest difference observed in Jakarta. 

Projections of future scenarios from December 2020 (figure 4C; and figure S14 for province-

level breakdown), incorporating these changes in estimated attack rate and extrapolating 

current trends of 𝑅𝑐, leads to the projected daily incidence of mortality across the island 

continuing to grow throughout the first half of the 2021 irrespective of whether reported or 

suspected mortality are more reflective of true direct COVID-19 mortality. In this scenario, 

with future 𝑅𝑐 = 1.25, the epidemic would be projected to peak earliest in Jakarta, driven by 

the higher degree of population-level immunity implied by the higher cumulative attack rate to 

date. This peak’s timing is sensitive to the mortality metric the model is calibrated to, with 

projected peaks occurring early in 2021 for a current scenario based upon suspected deaths and 

towards the end of the first quarter of 2021 based upon reported deaths. However, in all 

provinces, at no point in any of our current scenarios was there sufficient population-immunity 

to preclude a subsequent upsurge in deaths if transmission levels returned to those estimated at 

the beginning of the pandemic (𝑅𝑐 ≈ 2.00).  

Figure 5A shows trajectories of the three different future scenarios summarized in terms of the 

proportion of lives lost before the beginning of a month (figure 5B) and the total remaining 

lives to be saved (deaths that can still be averted) after the start of the month (figure 5C). We 

estimate that reimposing suppression scenarios in areas where epidemics are on an upwards 

trajectory would significantly reduce lives lost during a period whilst the vaccine is rolled out. 

In some settings, such as Jakarta, assuming all suspected deaths were COVID-19 deaths, a 

combination of control measures currently in place and increasing levels of population 

immunity may combine to reduce transmission and burden to low-levels temporarily. At this 

point, the future incremental impact of suppression measures would likely be limited. However, 

in such scenarios, the high loss of life we estimate would occur in a subsequent lifting of control 

measures, which highlights the need for ongoing control measures and the substantial 

remaining incremental value of an effective vaccination campaign (figure 5C).
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Table 1. Total number of estimated deaths based on model simulations of the actual epidemic scenario and its counterfactual of an unmitigated 

scenario (assuming no interventions) from the beginning of the epidemic up to 31st May 2020. Values inside the brackets denote 95 percentile 

range of simulations. Suspected deaths are a combination of confirmed and probable COVID-19 deaths. 

Province 

Confirmed 

deaths 13th-

31st May 

(WHO 

Indonesia 

situation 

report 

10[4]) 

Suspected 

deaths 13th-

31st May 

(WHO 

Indonesia 

situation 

report 10[4]) 

Baseline 

model 

scenario 

deaths 13th-

31st May 

Confirmed 

deaths up 

to 31st 

May[13,30] 

Suspected 

deaths up to 31st 

May (provincial 

data collated by 

KawalCOVID19 

[31]) 

Baseline 

model scenario 

deaths up to 

31st May  

Unmitigated 

counterfactual 

deaths up to 31st 

May 

Averted deaths 

up to 31st May 

(unmitigated – 

baseline) 

Jakarta 74 447 158 (47-333) 520 2,435 
810 (292-

1777) 

16,356 (7,896-

21,593) 

15,560 (7,567-

19,691) 

West Java 46 351 197 (55-525) 135 653 
525 (149-

1,368) 

19,733 (5,682-

39,876) 

19,151 (5,516-

38,400) 

Central 

Java 
4 269 88 (36-216) 66 666 203 (67-511) 

6,321 (2,147-

16,052) 

6,068 (2,056-

15,485) 

Yogyakarta 0 1 2 (0-8) 9 29 6 (1-33) 401 (138-1,097) 397 (132-1,088) 

East Java 241 458 437 (98-944) 395 1,127 
1,091 (226-

2,646) 

12,182 (3,625-

20,800) 

10,997 (3,277-

27,045) 

Banten 13 47 82 (20-224) 67 332 229 (66-711) 
7,302 (2,180-

14,732) 

7,0759 (2,111-

14,141) 

Java island 

total 
378 1,638 

983 (360-

1,930) 
1,192 5,242 

2,912 (1,109-

5,851) 

59,896 (26,787-

112,795) 

57,030 (24,843-

105,378) 
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DISCUSSION 

Our analysis uses C19P funeral data in Jakarta to highlight the considerable benefits of using 

syndromic measures of COVID-19 mortality for surveillance purposes– particularly for 

countries such as Indonesia, where testing capacity has been severely strained in the face of the 

pandemic. C19P funerals and other measures of suspected mortality provide an alternative lens 

through which to understand COVID-19 burden and dynamics but do not allow precise 

measurement. Without confirmed diagnoses, the proportion of these individuals who were 

infected will always be unknown and liable to vary spatiotemporally, as will the extent to which 

measures of suspected deaths represent all deaths of individuals displaying COVID-19 

symptoms. These data also support the substantial circulation of SARS-CoV-2 in Indonesia 

well before the first confirmed COVID-19 case[3] and the higher impact of the virus than 

suggested by confirmed deaths alone. Simultaneously, they also indicate an earlier decline in 

transmission during the early stages of the pandemic, coinciding with reductions in mobility, 

and more sustained declines in transmissibility in response to NPIs than observed in confirmed 

deaths, a metric which is likely sensitive to limitations in testing. We also found these effects 

consistent with NPIs substantially attenuating spread across Java, including to older, more rural 

populations with lower access to healthcare. 

Better quantifying impact in the past helps us to better understand likely scenarios in the future. 

In our first set of projections in September 2020,[17] we suggested that C19P data could 

indicate up to a four-fold increase in cumulative exposure to the virus relative to confirmed 

deaths. However, even when assuming a higher burden of the disease in the population, 

immunity accumulated at the population-level would not prevent the burden from increasing 

throughout the remainder of 2020. We also suggested that measures to suppress the virus could 

prevent such a scenario but would need to be sustained to prevent further upsurges. From early 

2021, these projections appear to have been valid as transmission declined in Jakarta whilst 

PSBB was implemented between 14th September – 11th October 2020 but subsequently 

resurged once restrictions were lifted. Overall, Java’s current epidemiological situation is 

substantially worse than in September, with record deaths reported week-on-week.[18]  

Despite the qualitative validity of our September projections, there are multiple limitations 

associated with these analyses that should be noted, particularly as our current estimates of 

attack rates in all provinces in Java have increased substantially. Firstly, it remains difficult to 

say what level of population-immunity is required to achieve herd immunity as individual 

immune responses to the virus are still not yet well understood (including strength and 

duration),[19,20] and heterogeneity in population mixing beyond age-structure likely play 

important roles.[21,22] Moreover, our estimates of counterfactual ‘return-to-normal’ scenarios 

rely upon an estimate of 𝑅𝑐 = 2.00 from the early stage of the epidemic in Jakarta, a period in 

which data were particularly limited and, given increasing global concern around the pandemic,  

where a degree of behavior change relevant may have already occurred. As this estimate is also 

below those estimated in the early stage of the epidemic from other settings,[23] this estimate 

may represent a conservative measure of the basic reproduction number. These limitations 

around the inherent transmissibility and critical immunity threshold to control the virus need 

to be further considered in the light of recent concerns of new variants of concern across the 
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globe which appear more transmissible.[24–26] There have also been observed resurgences in 

populations where attack rates had likely passed many estimates of the herd immunity 

threshold.[24,27]  

The initiation of the vaccination campaign in the middle of January[8] provides hopes for more 

sustainable control of the virus. However, challenges in access and distribution,[28] uncertainty 

in vaccine efficacy,[28] and possible introductions of variants able to escape immune 

response[29] could hamper the life-saving impact of the vaccination program. Despite the 

unprecedented speed of global vaccine development, our study indicates that in the absence of 

NPIs implemented over the previous year, this campaign would have been too late to prevent 

most deaths that currently remain avertable. It also highlights the ongoing value and need to 

maintain current control measures during the coming months as the vaccine is rolled out. Given 

low estimated attack rates and current increasing trends in transmission across much of the 

island, our results suggest that further measures aimed towards suppression of the disease over 

the next few months would substantially increase the proportion of the population who receive 

the vaccine prior to being exposed to infection, leading to a likely substantial incremental 

impact of the vaccination campaign.   However, we are not able to capture the socio-economic 

costs of such approaches, which would need to be factored into balanced decision-making.  

The case for maintaining or increasing control measures is likely more intuitive to grasp in 

circumstances where the incidence of cases and deaths continues to rise. However, our 

projections for Jakarta, particularly those incorporating suspected deaths, suggest it is plausible 

that population-level immunity may contribute to a decline in the observed rate of new 

infections, and subsequently, deaths even in the absence of a vaccine in the coming months. 

Such an effect may have consequences for the perceptions of both the vaccine’s relative impact 

(for example, if deaths start to decline as the vaccine is rolled out in Jakarta but not in other 

provinces) as well as the ongoing need for NPIs and/or high vaccine uptake. In such 

circumstances, our counterfactual of a ‘return-to-normal’, which produces major upsurges in 

cases and deaths in every province regardless of mortality metric, provides a valuable reminder 

that the epidemic, and the need to control it, is far from over in any region of Java. 
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Figure 1. COVID-19-related data, estimated effective reproduction number (𝑅𝑡), and its 

relationship with the average non-residential mobility changes in Jakarta (epidemiological data 

up to 7th December 2020; Google Mobility Reports data up to 7th December 2020). A) Daily 

reported cases, deaths, and C19P funerals in Jakarta. Black line denotes the daily test positivity 

ratio; B) Reconstructed daily reported cases, deaths, and C19P funerals to reflect the estimated 

onset date of each observation; C) Coloured lines and regions show, respectively, median and 

95% CrI of estimated 𝑅𝑡 (left axis) based on the reconstructed data (cases, deaths or C19P 

funerals). Grey areas denote periods where the estimated median 𝑅𝑡 is above 1. Black lines and 

dots denote average changes in non-residential mobility (right axis); D) The relationship and 

correlation coefficient between the estimated 𝑅𝑡 and the average non-residential mobility 

reduction (up to 4th June 2020 or before the AKB). 
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Figure 2. Key factors that are affecting the spread and severity of COVID-19 epidemic in Java, 

Indonesia. A) Proportion of the population aged over 50 years old at the district level; B) 

Number of regular hospital beds per one thousand population at the district level; C) Proportion 

of Jakarta residents who spent their day in other districts in Java during a non-Ramadan period; 

D) Increased proportion of people of Jakarta who spent their day in other districts in Java during 

Ramadan compared to the non-Ramadan period; E) The relationship between the estimated 𝑅𝑡 

values based on C19P funerals data and average reduction in non-residential mobility in 

Jakarta. Orange lines show the modelled smoothing spline relationship for 100 samples; and 

F) Extrapolations of 𝑅𝑡 values in provinces in Java based upon Google Mobility trends for each 

province and the 100 sampled smoothing splines in E. 
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Figure 3. Metapopulation model simulation results. A) Comparison of model simulations in 

the baseline scenario (red lines and their shaded 95% uncertainties ranges) and unmitigated 

scenario (yellow lines and their shaded 95% uncertainties ranges), and daily confirmed (solid 

black lines) and suspected (dashed black lines) deaths from COVID-19; B) Model simulations 

in five different scenarios: 1) Baseline scenario as shown in A, 2) Ramadan counter-factual 1 

where it is assumed that there is no movement restrictions during the Ramadan period and 𝑅𝑡 

values are similar to the baseline scenario, 3) Ramadan counter-factual 2 where it is assumed 

that there is no movement restrictions during the Ramadan period and 𝑅𝑡 values are 75% of 

each district’s 𝑅0 value, 4) Ramadan counter-factual 3 where it is assumed that there are no 

movement restrictions during the Ramadan period and 𝑅𝑡 values are each district’s 𝑅0 value 

and 5) Unmitigated scenario where no interventions since the beginning of the epidemic are 

assumed; C) Median hospital beds availability per severe COVID-19 case over time based on 

different simulation scenarios; D) Proportion of people infected based on the actual scenario 

up to 31st May 2020 (before AKB/the ‘new normal’) at the district level; and E) Proportions of 

people infected based on the unmitigated scenario up to 31st May 2020 (before AKB) at the 

district level. 
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Figure 4. A) Model fitting to confirmed and suspected (both confirmed and probable) COVID-

19 related deaths and inferred population susceptibility in Java; Green and blue dots show data 

on reported and suspected respectively (where suspected includes augmented estimate of 

probable deaths in provinces outside Jakarta), with associated median (lines) and 95% CrI 

(shaded areas) of model fits. B) Estimated province-level attack rates (cumulative proportion 

infected) based on confirmed (purple) and suspected (pink) COVID-19 related deaths. C) 

Projections of daily number of deaths due to COVID-19 based on four different transmission 

scenarios.  
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Figure 5. A) An illustration of future scenario projections and how to define the number of 

lives lost and the number of deaths that can still be averted after a certain time point. The graph 

shows simulations based on a model fitted to confirmed COVID-19 deaths in Jakarta, which 

subsequently ‘returning to normal’ on 1st March 2021; B)  Projected percentage of lives lost 

(compared to total deaths from an unmitigated epidemic scenario) prior to the start of each 

month from February to June 2021, based on each simulation scenario and model fitted to 

confirmed or suspected deaths in each province in Java; C) Projected number of lives remaining 

to be saved (or deaths that can still be averted) per million population after the start of each 

month from February to June 2021, based on each simulation scenario and model fitted to 

confirmed or suspected deaths in each province in Java. 
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Supplementary Material 

S1. Data Sources and Curation 

Epidemiological data sources for Jakarta 

Epidemiological data for Jakarta were obtained from the official Jakarta COVID-19 data monitoring website 

(https://corona.jakarta.go.id/id/data-pemantauan).1 This data comprises daily reported cases, reported deaths, 

funerals with COVID-19 protocol (C19P), and the number of tests. We collate the data for analysis up to 7th 

December 2020. 

Anonymous individual data of 11,280 confirmed COVID-19 cases up to 29th June 2020 in Jakarta were obtained 

from the Jakarta Department of Health. Data consist of dates of onset of symptoms, dates of attendance in the 

hospital, and dates of deaths. The individual data were used to estimate the delay distributions between onset to 

diagnosis and onset to death. 

Epidemiological data sources for five other provinces in Java (Banten, West Java, Central Java, 

Yogyakarta, and East Java) 

Daily reported cases and reported deaths data for five other provinces in Java were obtained from an independently 

curated online spreadsheet by a crowdsource organisation KawalCOVID19 (kcov.id/daftarpositif)2 based on the 

daily publication by Indonesia COVID-19 National Task Force3 (data for analysis were collated up 7th December 

2020). The weekly number of deaths of suspected and probable cases was obtained from WHO Indonesia situation 

reports 13-36.4 

 

Figure S1. Burden of COVID-19 and timeline of interventions in Indonesia (data up to 7th December 2020). A) 

Daily number of reported COVID-19 cases; B) Daily number of reported COVID-19 deaths; C) Total reported 

COVID-19 cases at province level in Java island; and D) Total reported COVID-19 deaths at province level in 

Java island. 
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Call detail records data 

Anonymised call detail records (CDRs) data from one of the biggest telecommunication companies in Indonesia 

over the period of 1st May 2011 to 30th April 2012 were used to estimate between-district movement matrices for 

the Ramadan and non-Ramadan period. The CDRs data were collected daily with a total of 266 billion records 

and 137 million unique SIM cards. There was a total of 17,319 mobile phone towers operated during the period 

of CDRs data collection across the country. 

Province-level mobility changes 

Province-level mobility changes data were acquired from the freely-available Google COVID-19 Community 

Mobility Reports (https://www.google.com/covid19/mobility/).5 Google Mobility Reports data up to 7th of 

December 2020 were used for the analysis. 

Healthcare capacity data 

District-level hospital and ICU beds data were obtained from the Online Healthcare Facilities (Fasyankes Online) 

website by the Directorate General of Health Services (Ditjen Yankes) of the Ministry of Health of the Republic 

of Indonesia.6  

Dedicated COVID-19 isolation beds and ICU beds data 

Data for the capacity of dedicated COVID-19 isolation beds and ICU beds were obtained from a report from the 

Ministry of Health in August 2020.7 

S2. Reconstruction of frequency of onset 

Daily reported cases, reported deaths, and C19P funerals data in Jakarta were reconstructed to represent the onset 

day of each reported event using estimates of the distribution of delays between onset and diagnosis and onset 

and death. Each C19P funeral was assumed to occur the day following the date of death.  

The distributions of onset to diagnosis and onset to death of confirmed COVID-19 cases were estimated by fitting 

discretised Gamma distributions8 to the individual patient data obtained from the Jakarta Department of Health 

(Figure S2). The mean estimate of the onset to diagnosis delay was 7.62 days, with a standard deviation of 7.51 

days. The mean estimate of the onset to death delay was 15.87 days, with a standard deviation of 9.34 days. 100 

sets of reconstructed daily frequencies of onset of cases, deaths, and funerals were then calculated on the basis of 

100 draws for each reported event from these distributions (respectively onset to hospitalisation, onset to death, 

and onset to funeral). Adjustment for right censoring occurring due to individuals currently with symptoms but 

have yet to reach outcome was carried out by dividing the inferred onset frequency on a given day by the 

cumulative probability it would have been observed by the last date within the dataset.  

 

Figure S2. Discretised Gamma distribution fittings to onset-to-hospitalisation delay data (left) and onset-to-death 

delay data (right). 
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S3. Effective reproduction number (𝑹𝒕) calculations based on reconstructed epidemiological data in 

Jakarta and its relationship with daily mobility changes 

The daily effective reproduction number in Jakarta was estimated using the EpiEstim R package9,10 for each 

reconstructed cases (𝑅𝑡,𝑐𝑎𝑠𝑒𝑠), deaths (𝑅𝑡,𝑑𝑒𝑎𝑡ℎ𝑠), funerals (𝑅𝑡,𝑓𝑢𝑛𝑒𝑟𝑎𝑙𝑠) data. 𝑅𝑡 at the beginning of the epidemic 

was estimated for the period before 2nd March 2020 (the day where the country’s first two cases were announced). 

Subsequently, 𝑅𝑡 was estimated over a weekly sliding window, with a mean and standard deviation of serial 

interval distribution were assumed to be 6.3 and 4.2 days, respectively.11 

1,000 random samples were drawn from the posterior samples of the estimated 𝑅𝑡,𝑐𝑎𝑠𝑒𝑠 , 𝑅𝑡,𝑑𝑒𝑎𝑡ℎ𝑠, and 𝑅𝑡,𝑓𝑢𝑛𝑒𝑟𝑎𝑙𝑠  

at each timepoint. Pearson’s correlation coefficients for estimates based on cases, deaths, and funerals data were 

calculated against the daily average changes in non-residential mobility in Jakarta based on Google mobility 

estimates. The daily average changes in non-residential mobility are the average of changes of retail and 

recreation, grocery and pharmacy, parks, transit stations, and workplaces types of mobility to each respective 

baseline. 

The 7-day rolling average changes of non-residential mobility were fitted to 100 posterior samples of the estimated 

𝑅𝑡,𝑓𝑢𝑛𝑒𝑟𝑎𝑙𝑠 using smoothing spline models. The implementation of the smoothing spline model was done in R 

software using smooth.spline function with four knots. The models were then used to extrapolate the daily values 

of 𝑅𝑡 outside of Jakarta based on the province-level 7-day rolling average of changes in non-residential mobility 

(Google Community Mobility Reports5).  

S4. Estimating movement matrices from CDRs data 

District level (city and municipality, 115 in total) movement matrices (𝑀) prior to the pandemic for the normal 

(or non-Ramadan) (𝑀𝑁) and Ramadan (𝑀𝑅) periods were calculated from CDRs data. Each element of the matrix 

(𝑚𝑖,𝑗) represents the proportion of days spent by residents of district 𝑖 in district 𝑗 over the year.  

The daily position of each user is described as the district where the most frequent mobile phone usage happened 

over the period of a single day. All users were assumed to be active from the first day to the last day of their phone 

usage. On days where the user was not active (no phone activities recorded), the position of the user was assumed 

to be the same as the previous day. The primary residence of each user is defined as the district where the users 

spent most of their days over their ‘active’ period. Based on their daily locations and primary residences, we then 

calculated the proportion of days spent of people from district 𝑖 in district 𝑗. 𝑀𝑅 was estimated using data of 

August and September 2011 (period of the Ramadan month, Eid celebration, and national holidays period). 𝑀𝑁 

was estimated using the rest of the data that were not used to estimate 𝑀𝑅 (May 2011 - July 2011 and October 

2011 - April 2012 periods). 

All districts in the Java island were represented as a single row in each matrix with exceptions for districts in 

Jakarta province which were represented as an aggregated single (𝑖 = 1). Outside Java movements were 

represented as a single row (𝑖 = 2). Table S1 shows a complete list of districts (including Jakarta and outside 

Java) and each respective index in the movement matrix. 

S5. Metapopulation Model 

Metapopulation model of COVID-19 spread in Java 

We developed a metapopulation model to simulate the spread of COVID-19 in Java. Each patch in the 

metapopulation model represents districts (𝑖 = 1,2, . . . ,115) listed in Table S1. For each patch, stochastic 

differential equations representing a Susceptible-Exposed-Infected-Recovered (SEIR) model were implemented 

(overall structure in Figure S3). The equations are as follows: 

𝑑𝑆𝑖

𝑑𝑡
=  −𝑛𝑒𝑤 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖 

𝑑𝐸𝑖

𝑑𝑡
= 𝑛𝑒𝑤 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖 − 𝛼𝐸𝑖  

𝑑𝐼𝑚𝑖𝑙𝑑,𝑖

𝑑𝑡
= (1 − 𝑝ℎ𝑜𝑠𝑝,𝑖) 𝛼𝐸𝑖 − 𝛾1𝐼𝑚𝑖𝑙𝑑,𝑖 

𝑑𝐼𝑐𝑎𝑠𝑒,𝑖

𝑑𝑡
= 𝑝ℎ𝑜𝑠𝑝,𝑖  𝛼𝐸𝑖 − 𝛾2𝐼𝑐𝑎𝑠𝑒,𝑖 
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𝑑𝑅𝑖

𝑑𝑡
= 𝛾1𝐼𝑚𝑖𝑙𝑑,𝑖  +  𝛾2𝐼𝑐𝑎𝑠𝑒,𝑖 

where 𝑛𝑒𝑤 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖 is the number of new infections in each patch based on the stochastic adaptation of the 

metapopulation transmission model by Keeling et al.12, 𝛼 is the per-capita transition rate reflecting the mean 

duration of latent period, 𝑝ℎ𝑜𝑠𝑝 is the probability of having severe illness and needing hospitalisations, 

𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙|ℎ𝑜𝑠𝑝 is the probability of needing critical care if hospitalised, and 𝛾1 and 𝛾2 are the per-capita transition 

rate reflecting the mean duration of infectiousness of mild and severe infections, respectively. The full model 

parameter descriptions and specifications are available in Table S2. To calculate 𝑛𝑒𝑤 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖, we firstly 

need to calculate the district-level force of infections 𝜆𝑖 that accounts for inter-district movements of both 

susceptible individuals (that might acquire infections in other districts) and infected individuals (that might infect 

people in other districts) based on the inter-patch connectivities (the movement matrix, 𝑀, accounting daily 

changes in mobility - see section S4). The total number of infected individuals that are contributing to infections 

in district 𝑖, 𝐼𝑡𝑜𝑡,𝑖, is calculated by: 

𝐼𝑡𝑜𝑡,𝑖 = ∑ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐼𝑗 , 𝑚𝑗,𝑖)
115
𝑗=1 . 

The transmission rate for each district is calculated by: 

𝛽𝑖 =
𝑅0,𝑖

((1−𝑝ℎ𝑜𝑠𝑝,𝑖)𝛾1+𝑝ℎ𝑜𝑠𝑝,𝑖𝛾2)
, 

where 𝑅0,𝑖 is the value of 𝑅𝑡estimated for the period of maximum mobility recorded within Google Mobility 

data.  

Hence,: 

𝜆𝑖 = 𝛽𝑖 × 𝜅𝑡,𝑖 ×
𝐼𝑡𝑜𝑡,𝑖

𝑁𝑖
, 

where 𝑁𝑖 is the total population of each district/patch and 𝜅𝑡,𝑖 is the daily ratio between the estimated 𝑅𝑡,𝑖 values 

based on the spline model estimates and the respective 𝑅0,𝑖, representing the relative changes in the daily 

transmission rate. We assumed no transmission contributed to and from outside Java but we still allow movement 

to and from that patch (𝑖 = 2) which implies both 𝐼2 and 𝜆2 are always 0. 

𝑛𝑒𝑤 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖 are then calculated as: 

𝑛𝑒𝑤 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖 = ∑ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑆𝑖 × 𝑚𝑖,𝑗 , (1 − 𝑒𝑥𝑝(−𝜆𝑗)))

115

𝑗=1

 

For each severe infection needing hospitalisation (𝐼𝑐𝑎𝑠𝑒), the case was either deemed a critical case (i.e., indicated 

to require an ICU bed) with probability 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙|ℎ𝑜𝑠𝑝 and otherwise, non-critical (i.e., indicated to require an 

isolation bed) with associated probability of death (𝑝𝑑𝑒𝑎𝑡ℎ|𝑛𝑜𝑛 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  and 𝑝𝑑𝑒𝑎𝑡ℎ|𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , diagram in Figure S3B). 

𝑝ℎ𝑜𝑠𝑝, 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙|ℎ𝑜𝑠𝑝, 𝑝𝑑𝑒𝑎𝑡ℎ|𝑛𝑜𝑛 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  and 𝑝𝑑𝑒𝑎𝑡ℎ|𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  were obtained for each district as the average values 

estimated within simulations from the squire package13, taking age-specific demography using district-level 

census data and, in the absence of equivalent data from Java, mixing patterns based upon a contact survey from 

Shanghai province, China as an example of contact patterns within a UMIC Asian country and province containing 

a megacity. 

The model was simulated with 100 replicates by seeding initial cases in Jakarta, and Kota Surabaya (East Java’s 

capital) – both have international airports receiving travellers from China – on 7th January 2020 (arbitrarily 

selected) with 100 replicates. Initial cases in Jakarta were set to 12, obtained through calibration to provide 

simulated deaths trends bounded by the interval between reported deaths and C19P funerals. Initial cases in 

Surabaya were drawn according to a binomial draw assuming an underlying importation rate of 60% of that in 

Jakarta14, random numbers based on the binomial distribution were sampled for each replicate. 

We assumed different transmission scenarios of districts classified as rural and urban districts. We classified an 

urban/rural status to each district based upon the urban/rural classification of the majority of villages within the 

district. We assigned 𝑅𝑡,𝑖 values for all districts to be the province-level value of 𝑅𝑡,𝑖 in which each district is 

located. We then explore the possibilities of rural districts to have different 𝑅𝑡,𝑖 levels, ranging from 100% to 60% 

of province-level 𝑅𝑡,𝑖. In the results section of the main text, we show simulation results assuming 𝑅𝑡,𝑖 in rural 

districts to be 90% of 𝑅𝑡,𝑖 in urban districts. We also ran the model for several different counterfactual scenarios. 

The list of assumed transmission scenarios and the counterfactual scenarios were shown in Table S3 & S4. 
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During the period of Ramadan and Eid festivals, 24th April 2020 up to 7th June 2020, the Ramadan movement 

matrix (𝑀𝑅) was used as the baseline movement matrix. In the other period, the non-Ramadan movement matrix 

(𝑀𝑁) was used as the baseline movement matrix. As a baseline assumption, throughout the simulation, the 

proportions of people spending their time in other districts (𝑚𝑖,𝑗 where 𝑖 ≠ 𝑗) were adjusted by the province-level 

changes in mobility over time, with reductions in larger-scale movement outside the province assumed to be 

higher than those within the province according to an odds ratio (OR) of 2 within our default scenario.  

For each scenario, we also devised a metric to assess the extent to which the epidemic would be likely to strain 

available healthcare resources over time given patterns of spatial spread and disparities in healthcare supply by 

district. This metric was defined by determining the number of available beds for each individual newly requiring 

hospitalisation each day within the model by subtracting the number of hospital beds required in the simulation 

from the total hospital beds capacity available at the district-level obtained from the Online Healthcare Facilities 

website.6 

 

Figure S3. SEIR model structure. A) The SEIR structure for each patch in the metapopulation model. 

Susceptible individuals (𝑺), if infected, progress to the exposed compartment (𝑬), having their latent period of 

infections. Then, those individuals will either develop mild symptoms (𝑰𝒎𝒊𝒍𝒅) or severe symptoms requiring 

hospitalisations (𝐼𝑐𝑎𝑠𝑒). Those who developed severe symptoms may have two possible outcomes: recovery (𝑅) 

or death (𝐷); B) The pathway of infections requiring hospitalisations (𝐼𝑐𝑎𝑠𝑒). Each infection with severe symptoms 

may only need a standard hospital bed or may develop worse conditions that require critical care (ICU bed). Each 

of those cases treated in both critical and non-critical care may recover or die based on specific probabilities. 

Dashed lines denote probabilistic pathways, not rates of transition. 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 15, 2021. ; https://doi.org/10.1101/2020.10.02.20198663doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.02.20198663
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

27 

 

Table S1. List of districts, districts’ indexes, and probability of disease severity and outcomes for the 

metapopulation model. 

Index no. District Province  𝒑𝒉𝒐𝒔𝒑,𝒊 
𝒑𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍|

𝒉𝒐𝒔𝒑,𝒊

 𝒑 𝒅𝒆𝒂𝒕𝒉|
𝒏𝒐𝒏 𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍,𝒊

 

1 Jakarta Jakarta 0.029 0.185 0.054 

2 Outside Java Outside Java 0.027 0.195 0.058 

3 Bogor West Java 0.026 0.190 0.056 

4 Sukabumi West Java 0.031 0.216 0.065 

5 Cianjur West Java 0.031 0.212 0.064 

6 Bandung West Java 0.028 0.201 0.060 

7 Garut West Java 0.030 0.219 0.067 

8 Tasikmalaya West Java 0.034 0.228 0.070 

9 Ciamis West Java 0.039 0.234 0.072 

10 Kuningan West Java 0.036 0.233 0.072 

11 Cirebon West Java 0.030 0.209 0.063 

12 Majalengka West Java 0.036 0.229 0.070 

13 Sumedang West Java 0.036 0.234 0.073 

14 Indramayu West Java 0.033 0.210 0.063 

15 Subang West Java 0.035 0.224 0.069 

16 Purwakarta West Java 0.029 0.206 0.061 

17 Karawang West Java 0.030 0.200 0.059 

18 Bekasi West Java 0.025 0.177 0.051 

19 Bandung Barat West Java 0.030 0.214 0.065 

20 Pangandaran West Java 0.038 0.231 0.071 

21 Kota Bogor West Java 0.029 0.195 0.058 

22 Kota Sukabumi West Java 0.031 0.212 0.064 

23 Kota Bandung West Java 0.030 0.199 0.059 
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24 Kota Cirebon West Java 0.031 0.201 0.060 

25 Kota Bekasi West Java 0.026 0.165 0.047 

26 Kota Depok West Java 0.027 0.176 0.051 

27 Kota Cimahi West Java 0.028 0.191 0.056 

28 Kota Tasikmalaya West Java 0.031 0.207 0.062 

29 Kota Banjar West Java 0.036 0.227 0.070 

30 Cilacap Central Java 0.035 0.232 0.072 

31 Banyumas Central Java 0.036 0.236 0.073 

32 Purbalingga Central Java 0.035 0.233 0.072 

33 Banjarnegara Central Java 0.035 0.229 0.071 

34 Kebumen Central Java 0.037 0.247 0.078 

35 Purworejo Central Java 0.040 0.254 0.081 

36 Wonosobo Central Java 0.035 0.230 0.071 

37 Magelang Central Java 0.036 0.236 0.073 

38 Boyolali Central Java 0.038 0.248 0.078 

39 Klaten Central Java 0.039 0.249 0.079 

40 Sukoharjo Central Java 0.035 0.233 0.072 

41 Wonogiri Central Java 0.044 0.260 0.084 

42 Karanganyar Central Java 0.036 0.235 0.073 

43 Sragen Central Java 0.038 0.244 0.077 

44 Grobogan Central Java 0.035 0.230 0.071 

45 Blora Central Java 0.037 0.240 0.075 

46 Rembang Central Java 0.034 0.225 0.069 

47 Pati Central Java 0.036 0.233 0.072 

48 Kudus Central Java 0.031 0.206 0.062 

49 Jepara Central Java 0.032 0.219 0.067 
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50 Demak Central Java 0.030 0.210 0.063 

51 Semarang Central Java 0.035 0.234 0.073 

52 Temanggung Central Java 0.036 0.231 0.071 

53 Kendal Central Java 0.033 0.221 0.067 

54 Batang Central Java 0.033 0.217 0.066 

55 Pekalongan Central Java 0.031 0.217 0.066 

56 Pemalang Central Java 0.033 0.224 0.068 

57 Tegal Central Java 0.032 0.221 0.068 

58 Brebes Central Java 0.032 0.222 0.068 

59 Kota Magelang Central Java 0.036 0.229 0.071 

60 Kota Surakarta Central Java 0.033 0.220 0.067 

61 Kota Salatiga Central Java 0.033 0.227 0.070 

62 Kota Semarang Central Java 0.030 0.205 0.061 

63 Kota Pekalongan Central Java 0.030 0.202 0.060 

64 Kota Tegal Central Java 0.031 0.210 0.063 

65 Kulon Progo Yogyakarta 0.040 0.248 0.078 

66 Bantul Yogyakarta 0.035 0.232 0.072 

67 Gunung Kidul Yogyakarta 0.042 0.253 0.080 

68 Sleman Yogyakarta 0.033 0.223 0.068 

69 Kota Yogyakarta Yogyakarta 0.032 0.215 0.065 

70 Pacitan East Java 0.042 0.252 0.080 

71 Ponorogo East Java 0.041 0.247 0.078 

72 Trenggalek East Java 0.039 0.240 0.075 

73 Tulungagung East Java 0.038 0.237 0.074 

74 Blitar East Java 0.039 0.243 0.076 

75 Kediri East Java 0.036 0.231 0.071 
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76 Malang East Java 0.036 0.228 0.070 

77 Lumajang East Java 0.036 0.222 0.068 

78 Jember East Java 0.035 0.224 0.068 

79 Banyuwangi East Java 0.037 0.230 0.071 

80 Bondowoso East Java 0.038 0.227 0.070 

81 Situbondo East Java 0.036 0.218 0.067 

82 Probolinggo East Java 0.034 0.217 0.066 

83 Pasuruan East Java 0.031 0.201 0.060 

84 Sidoarjo East Java 0.029 0.190 0.056 

85 Mojokerto East Java 0.033 0.211 0.063 

86 Jombang East Java 0.034 0.223 0.069 

87 Nganjuk East Java 0.037 0.231 0.072 

88 Madiun East Java 0.041 0.241 0.075 

89 Magetan East Java 0.043 0.251 0.080 

90 Ngawi East Java 0.040 0.236 0.074 

91 Bojonegoro East Java 0.037 0.229 0.071 

92 Tuban East Java 0.035 0.223 0.068 

93 Lamongan East Java 0.037 0.226 0.069 

94 Gresik East Java 0.031 0.201 0.059 

95 Bangkalan East Java 0.032 0.227 0.069 

96 Sampang East Java 0.029 0.211 0.064 

97 Pamekasan East Java 0.031 0.211 0.064 

98 Sumenep East Java 0.036 0.218 0.066 

99 Kota Kediri East Java 0.033 0.212 0.064 

100 Kota Blitar East Java 0.035 0.225 0.069 

101 Kota Malang East Java 0.031 0.211 0.064 
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102 Kota Probolinggo East Java 0.032 0.207 0.062 

103 Kota Pasuruan East Java 0.030 0.203 0.060 

104 Kota Mojokerto East Java 0.033 0.209 0.063 

105 Kota Madiun East Java 0.037 0.227 0.070 

106 Kota Surabaya East Java 0.030 0.194 0.057 

107 Kota Batu East Java 0.034 0.221 0.068 

108 Pandeglang Banten 0.029 0.205 0.061 

109 Lebak Banten 0.028 0.194 0.057 

110 Tangerang Banten 0.025 0.172 0.049 

111 Serang Banten 0.027 0.185 0.054 

112 Kota Tangerang Banten 0.026 0.161 0.046 

113 Kota Cilegon Banten 0.026 0.167 0.048 

114 Kota Serang Banten 0.025 0.167 0.048 

115 Kota Tangerang Selatan Banten 0.027 0.169 0.048 

 

 

Table S2. Model parameters descriptions and values for the metapopulation model. 

Parameter Symbol Value Description 

Transmission rate 𝛽𝑖 - Calculated from 𝑅0,𝑖. 

Basic reproduction number 𝑅0,𝑖 - Estimated from the maximum values of the 

smoothing spline models between mobility 

changes and 𝑅𝑡,𝑓𝑢𝑛𝑒𝑟𝑎𝑙𝑠. 

Relative changes in daily transmission rate 𝜅𝑖 - The ratio between 𝑅0,𝑖 and daily estimated 𝑅𝑡,𝑖 

based on spline smoothing models. 

Mean latent period 1/𝛼 4.6 days Estimated as 5.1 days15 with 0.5 days accounted as 

a pre-symptomatic period of infectiousness.  

Mean duration of infectiousness of mild 

infections 

1/𝛾1 2.1 days 0.5 days infectiousness period prior to symptoms 
included which in combination with mean duration 

of severe illness gives a mean serial interval of 

6.75 days.11 

Mean duration of infectiousness of severe 

infections 

1/𝛾2 4.5 days Mean onset to admission to hospital of 4 days, as 

used in squire model16, based on unpublished 
analysis of data from the ICNARC study17 and 
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includes 0.4 days of infectiousness prior to 

symptoms.  

Probability of having severe illness, 

needing hospitalisations 
𝑝ℎ𝑜𝑠𝑝,𝑖 Table S1 For each district, the probability was calculated by 

running a full unmitigated epidemic in squire 

package13 The proportion of people needing 

hospitalisations were calculated based on the 

simulations. 

Probability of needing critical care, if 

hospitalised 
𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙|ℎ𝑜𝑠𝑝,𝑖 Table S1 For each district, the probability was calculated by 

running a full unmitigated epidemic in squire 

package13 The proportion of people needing 

hospitalisations were calculated based on the 

simulations. 

Probability of death of severe illness that 

does not need critical care 
𝑝 𝑑𝑒𝑎𝑡ℎ|

𝑛𝑜𝑛 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,𝑖

 Table S1 For each district, the probability was calculated by 
running a full unmitigated epidemic in squire 

package.13 The proportion of people needing 

hospitalisations were calculated based on the 

simulations. 

Probability of death of severe illness that 

needs critical care 
𝑝 𝑑𝑒𝑎𝑡ℎ|

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,𝑖

 0.5 Probability of death from severe illness needing 
critical care based on the data of the ICNARC 

study in the UK17. 

 

Table S3. List of assumed transmission scenarios for metapopulation model simulations. 

Transmission scenarios 

Scenario name Details Results shown in 

Rural 100% 𝑅0 and 𝑅𝑡 of urban and rural districts in each province were assumed to be the 

same. 

Figure S6 

Rural 90% 𝑅0 and 𝑅𝑡 of rural districts were assumed to be 90% of the province level 𝑅0 and 

𝑅𝑡. Used as the main transmission scenario shown in the main text. 

Figure 4; Figure S6 

Rural 75% 𝑅0 and 𝑅𝑡 of rural districts were assumed to be 75% of the province level 𝑅0 and 

𝑅𝑡. 

Figure S6 

Rural 60% 𝑅0 and 𝑅𝑡 of rural districts were assumed to be 60% of the province level 𝑅0 and 

𝑅𝑡. 

Figure S6 

 

Table S4. List of counterfactual scenarios for metapopulation model simulations. 

Metapopulation simulation scenarios (as shown in Table 1 in the main text) 

Scenario name Details Transmission 

scenario used 

Results shown in 

Baseline  Movement from a district is assumed to reduce 
according to reductions in movement within a 

district scaled by an odds ratio of 2 to reflect 

assumed lower likelihood of long-distance travel.  

Rural 90% Figure 4; Figure S7 (as a 

sensitivity analysis 

comparing to Ramadan 

mobility scaling with 

OR=100); Table 2 
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Ramadan 1 No movement reductions between districts 

during the Ramadan and Eid festivals period and 

the 𝑅𝑡 values during the period were assumed to 

be similar to the main/actual scenario. 

Rural 90% Figure 4 

Ramadan 2 No movement reductions between districts 

during the Ramadan and Eid festivals period and 

the 𝑅𝑡 values during the period were assumed to 

be 75% of each district 𝑅0,𝑖. 

Rural 90% Figure 4 

Ramadan 3 No movement reductions between districts 
during the Ramadan and Eid festivals period and 

the 𝑅𝑡 values during the period were assumed to 

be the same as each district 𝑅0,𝑖. 

Rural 90% Figure 4 

Unmitigated No interventions assumed which implies no 

movement reductions over all period of 

simulations with the 𝑅𝑡 values to be the same as 

each district 𝑅0,𝑖 over the period of simulations. 

Rural 90% Figure 4; Table 2 

 

S6. Model fitting to confirmed and suspected COVID-19 deaths and future projection scenarios in all 

provinces in Java 

Estimating the number of deaths from suspected and probable cases in Java provinces 

Jakarta reported a time series dataset of the province daily C19P funerals in their official COVID-19 tracker 

website (https://corona.jakarta.go.id/id/data-pemantauan)1 which includes confirmed/reported and probable 

COVID-19 deaths (both combined were then defined as suspected deaths). Whilst for the other five provinces in 

Java, daily time series data of probable deaths are not available. WHO Indonesia situation reports provide a weekly 

summary of confirmed and probable deaths (which both combined become suspected deaths) in all provinces in 

Java since the end of May 2020 (Figure S8)4 We collated these data and calculated the proportion of confirmed 

deaths from suspected COVID-19 deaths for each province (𝜌𝑖 with 𝑖 as each province index). 

For all days from 1st March 2020, up to 7th December 2020, we simulated the number of probable deaths in five 

Java provinces other than Jakarta. Firstly, we aggregated the daily confirmed deaths in each province to a weekly 

period (𝐷𝑖,𝑡 with 𝑡 as the weekly time window). For each weekly time window 𝑡, using Negative Binomial 

distribution, we simulated the number of probable deaths (𝑂𝑖,𝑡) in each province 10 times: 

𝑂𝑖,𝑡 = 𝑁𝐵(𝐷𝑖,𝑡 , 𝜌𝑖). 

For each simulated 𝑂𝑖,𝑡, we simulated the spread of the weekly total estimated probable deaths into daily estimated 

probable deaths using Multinomial distribution, assuming equal probability for all days during the week 10 times: 

𝑜𝑖,𝑡 = 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚(𝑂𝑖,𝑡 , 𝜋) 

where 𝜋 is a vector of length 7, where each value is 1/7. 

The simulations resulted in 100 samples of estimated daily probable deaths in each province. Adding the simulated 

daily probable deaths to the daily confirmed deaths, we obtained 100 samples of the estimated number of daily 

suspected COVID-19 deaths in five provinces in Java other than Jakarta. 

The daily suspected COVID-19 deaths are then defined, for Jakarta, as the daily C19P funerals, and for five other 

Java provinces as the median of the estimated number of the daily suspected COVID-19 deaths. 

Model fitting 

Using the framework developed in the Imperial College COVID-19 LMIC reports18, we fit the model to both the 

daily COVID-19 confirmed deaths and the daily COVID-19 suspected deaths data for each province in Java, 

estimating both a province-specific 𝑅0 and epidemic start date. To provide model fits that are agnostic to the 

mobility profiles in each province, we model the time-varying reproduction number, 𝑅𝑡, using a series of pseudo-

random walk parameters, which alter the transmission every 2-weeks, with 𝑅𝑡   given by: 

𝑅𝑡  =  𝑅0 . 𝑓(−𝜌1 − 𝜌2  . . . −𝜌𝑛) 
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Where 𝑓(𝑥)  =  2 𝑒𝑥𝑝(𝑥)/(1 +  𝑒𝑥𝑝(𝑥)), i.e., twice the inverse logit function, which has been used in previous 

models to capture the impact of mobility data on transmission19. Each 𝜌 parameter is introduced two weeks after 

the previous parameter, serving to capture changes in transmission over time. More specifically, each 𝜌 parameter 

is set equal to 0 for each day prior to its start date. For example, 𝜌1 is the change in transmission, which is set to 

start at the beginning of the epidemic. The estimated value for 𝜌1 is then maintained for all future time points. 𝜌2 

is the second change in transmission, which starts 14 days after the epidemic start date, i.e., is equal to 0 prior to 

this. The last mobility independent change in transmission, 𝜌𝑛 is maintained for the last 4 weeks prior to the 

current day to reflect our inability to estimate the effect size of this parameter due to the approximate 21 day delay 

between infection and death.16 

The model fitting results were presented in Figure S9 & S10. Based on the fitted models in all provinces 

considering different types of deaths data, we estimated the attack rate at the province level and Java level. 

Future projection scenarios 

Using the fitted models, some future scenarios were explored based on the assumed values of the reproduction 

number under control, 𝑅𝑐, defined similarly to 𝑅0 as the average number of secondary infections within an entirely 

susceptible population but incorporating the impact of NPIs (and, equivalently, 𝑅𝑡 but not incorporating the effects 

of population-level immunity such that   𝑅0 > 𝑅𝑐 > 𝑅𝑡). Moreover, as with 𝑅0, 𝑅𝑐>1 can lead to 𝑅𝑡 < 1 and a 

declining epidemic if there exist sufficient levels of naturally acquired immunity within the population. We 

simulated forward projections based on scenarios described in Table S5. 

Table S5. List of future projection scenarios. 

Projection scenarios to calculate lives lost and remaining to save 

Scenario name Details Output 

Unmitigated (𝑅𝑐 = 2.00) – 

main text 

Based on the model fitted to confirmed and suspected deaths data, forward 

projections were simulated assuming the 𝑅𝑐 = 2.00 from 8th December 2020 

onwards. 

Projected number of 

lives lost and remaining 

to save (Figure 6) 

Current trajectory (𝑅𝑐 =
1.25 → 2.00) – main text 

Based on the model fitted to confirmed and suspected deaths data, forward 

projections were simulated assuming the 𝑅𝑐 = 1.25 (a representative value 

for current outbreak trajectory) from 8th December 2020 onwards. 
Transmission then ‘returns to normal’ at the levels earlier in the pandemic 

(𝑅𝑐 = 2.00), simulated in the beginning of February, March, April, May, and 

June. 

Projected number of 

lives lost and remaining 

to save (Figure 6) 

Suppression (𝑅𝑐 = 0.75 →
2.00) – main text 

Based on the model fitted to confirmed and suspected deaths data, forward 

projections were simulated assuming the 𝑅𝑐 = 0.75 (a representative value 

for a transmission suppression strategy) from 8th December 2020 onwards. 

Transmission then ‘returns to normal’ at the levels earlier in the pandemic 

(𝑅𝑐 = 2.00), simulated in the beginning of February, March, April, May, and 

June. 

Projected number of 

lives lost and remaining 

to save (Figure 6) 

Unmitigated (𝑅𝑐 = 3.00) – 

sensitivity analysis 

Based on the model fitted to confirmed and suspected deaths data, forward 

projections were simulated assuming the 𝑅𝑐 = 3.00 (assuming a higher basic 

reproduction number of the virues than the main simulation scenarios) from 

8th December 2020 onwards. 

Projected number of 

lives lost and remaining 

to save (Figure S11) 

Current trajectory (𝑅𝑐 =
1.25 → 3.00) – sensitivity 

analysis 

Based on the model fitted to confirmed and suspected deaths data, forward 

projections were simulated assuming the 𝑅𝑐 = 1.25 (a representative value 

for current outbreak trajectory) from 8th December 2020 onwards. 

Transmission then ‘returns to normal’ at the levels earlier in the pandemic 

(𝑅𝑐 = 3.00), simulated in the beginning of February, March, April, May, and 

June. 

Projected number of 

lives lost and remaining 

to save (Figure S11) 

Suppression (𝑅𝑐 = 0.75 →
3.00) – sensitivity 

analysis 

Based on the model fitted to confirmed and suspected deaths data, forward 

projections were simulated assuming the 𝑅𝑐 = 0.75 (a representative value 

for a transmission suppression strategy) from 8th December 2020 onwards. 

Transmission then ‘returns to normal’ at the levels earlier in the pandemic 

(𝑅𝑐 = 3.00), simulated in the beginning of February, March, April, May, and 

Projected number of 

lives lost and remaining 

to save (Figure S11) 
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June. 

 

Projection scenarios to assess pressure on healthcare capacity 

Scenario name Details Output 

𝑅𝑐 = 0.75 → 2.00 (Susp.) Based on the model fitted to suspected deaths data, forward projections were 

simulated assuming the 𝑅𝑐 dropped to 0.75. Transmission returns to levels 

observed at the beginning of the outbreak (i.e. 𝑅𝑐 = 2) due to behaviour 

change once burden declines to low levels (total deaths for 7 consecutive 

days < 7). 

Daily number of deaths 

(Figure S12) 

𝑅𝑐 = 0.75 → 1.25 (Susp.) Based on the model fitted to suspected deaths data, forward projections were 

simulated assuming the 𝑅𝑐 dropped to 0.75. Transmission returns to current 

levels observed during AKB (i.e. 𝑅𝑐 = 1.25) due to behaviour change and 

sustained intervention policies once burden declines to low levels (total 

deaths for 7 consecutive days < 7). 

Daily number of deaths 

(Figure S12) 

𝑅𝑐 = 0.75 → 1.25 (Conf.) Based on the model fitted to suspected deaths data, forward projections were 

simulated assuming the 𝑅𝑐 dropped to 0.75. Transmission returns to current 

levels observed during AKB (i.e. 𝑅𝑐 = 1.25) due to behaviour change and 

sustained intervention policies once burden declines to low levels (total 

deaths for 7 consecutive days < 7). 

Daily number of deaths 

(Figure S12) 

𝑅𝑐 = 1.25 → 2.00 (Susp.) Based on the model fitted to suspected deaths data, forward projections were 

simulated assuming the 𝑅𝑐 stayed at the current estimated level in all 

provinces (1.25 - within the range of the most recent point estimates in Figs. 

S9 & S10). Transmission returns to levels observed at the beginning of the 

outbreak (i.e. 𝑅𝑐 = 2) due to behaviour change once burden declines to low 

levels (total deaths for 7 consecutive days < 7).   

Daily number of deaths 

and healthcare demand 

(Figure S12) 

𝑅𝑐 = 1.25 → 2.00 (Conf.) Based on the model fitted to confirmed deaths data, forward projections were 

simulated assuming the  

𝑅𝑐 stayed at the current estimated level in all provinces (1.25). Transmission 

returns to levels observed at the beginning of the outbreak (i.e. 𝑅𝑐 = 2) due 

to behaviour change once burden declines to low levels (total deaths for 7 

consecutive days < 7).  

Daily number of deaths 

and healthcare demand 

(Figure S12) 

𝑅𝑐 = 2.00 (Susp.) Based on the model fitted to suspected deaths data, forward projections were 

simulated assuming the 𝑅𝑐 increased to the initial level of 2.00 in all 

provinces, representing ‘back-to-normal’ condition. 

Daily number of deaths 

(Figure S12) 
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Figure S4. Decorrelations between estimated 𝑅𝑡,𝑓𝑢𝑛𝑒𝑟𝑎𝑙𝑠  in Jakarta and mobility changes based on 𝑅𝑡,𝑓𝑢𝑛𝑒𝑟𝑎𝑙𝑠  

estimates before AKB (the ‘new normal’) (A) and after AKB (B). 

Figure S5. Comparison of model simulations and observed daily new reported cases from COVID-19. Coloured 

lines and their shaded areas denote model simulation outputs with their respective uncertainties (95% level) while 

black lines denote observed data. 
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Figure S6. Simulated daily new deaths comparing rural transmission scenarios at the province-level. 

Figure S7. Sensitivity analysis of assumed impact of between-district movement restrictions at the province-level. 
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Figure S8. Weekly aggregated reported/confirmed and probable deaths in Java collated from WHO COVID-19 

Indonesia situation reports 13-36.4  
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Figure S9. Model fits to reported deaths data and estimated 𝑹𝒄 values. 
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Figure S10. Model fits to suspected deaths data and estimated 𝑹𝒄 values.  
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Figure S11. Additional analysis for projections of the number of lives lost and remaining to save (compared to 

Figure 6 in the main text), based on the assumptions of a higher reproduction number when ‘returning to 

normal’ and the epidemic is unmitigated (𝑹𝒄 = 𝟑. 𝟎𝟎). A) Projected percentage of lives lost (compared to total 

deaths from an unmitigated epidemic scenario) prior to the start of each month from February to June 2021, 

based on each simulation scenario and model fitted to confirmed or suspected deaths in each province in Java; 

B) Projected number of lives remaining to be saved (or deaths that can still be averted) per million population 

after the start of each month from February to June 2021, based on each simulation scenario and model fitted to 

confirmed or suspected deaths in each province in Java. 
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Figure S12. A) Projections of daily number of deaths due to COVID-19 based on six different transmission 

scenarios. B) Healthcare demand projections in the form of isolation beds and ICU beds demands assuming the 

current level of transmission to continue in the future (with easing of control measures after the transmission 

reached a low-level following the first peak in the graph). Projections are coloured according to whether they are 

based upon confirmed or suspected deaths to date and by projected 𝑹𝒄 (with 𝑹𝒄 = 𝒙 → 𝒚 representing 𝑹𝒄 = 𝒙 for 

immediate future and 𝑹𝒄 = 𝒚, the level it returns to when burden falls below 7 deaths per week). Healthcare 

capacities are based on the current numbers of dedicated COVID-19 isolation beds and ICUs7, not reflecting the 

total number of beds and ICUs in each province. 
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Figure S13. A) Model fitting to confirmed and suspected (both confirmed and probable) COVID-19 related deaths 

and inferred population susceptibility in Java; Green and blue dots show data on reported and suspected 

respectively (where suspected includes augmented estimate of probably deaths in provinces outside Jakarta pre-

May 13th), with associated median (lines) and 95% CrI (shaded areas) of model fits. B) Estimated province-level 

attack rates (cumulative proportion infected) based on confirmed (purple) and suspected COVID-19 related 

deaths. C) Projections of daily number of deaths due to COVID-19 based on four different transmissibility 

scenarios. D) Healthcare demand projections in the form of isolation beds and ICU beds demands assuming the 

current level of transmission to continue in the future (with easing of control measures after the transmission 

reached a low-level following the first peak in the graph). Projections are coloured according to whether they are 

based upon confirmed or suspected deaths to date and by projected 𝑅𝑐 (with 𝑅𝑐 = 𝑥−> 𝑦 representing  𝑅𝑐 = 𝑥 

for immediate future and 𝑅𝑐 = 𝑦, the level it returns to when burden falls below 7 deaths per week). Healthcare 

capacities are based on the current numbers of dedicated COVID-19 isolation beds and ICUs,7 not reflecting the 

total number of beds and ICUs in each province. The figure was taken from Djaafara et. al.20 (Figure 5). 
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Figure S14. Projections of daily number of deaths due to COVID-19 based on four different transmission 

scenarios as shown in Figure 5C but showing all provinces in Java. 
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Figure S15. Illustrations of future scenario projections based on models fitted to confirmed COVID-19 deaths 

in each province in Java which subsequently ‘returning to normal’ on 1st March 2021. The Jakarta trajectories 

are similar to what are shown in Figure 6A. 
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Table S6. Estimated attack rate in each province in Java island based on models fitted to confirmed or suspected 

deaths data on 2nd September 2020 and 7th December 2020. 

Province Deaths data type Estimation date Attack rate in percentage (95% CrI) 

JAKARTA Confirmed deaths 02-Sep 4.61 (4.22-5.2) 

JAKARTA Confirmed deaths 07-Dec 9.75 (8.74-11.49) 

JAKARTA Suspected deaths 02-Sep 18.43 (17.04-19.66) 

JAKARTA Suspected deaths 07-Dec 32.48 (30.09-34.63) 

WEST JAVA Confirmed deaths 02-Sep 0.2 (0.17-0.24) 

WEST JAVA Confirmed deaths 07-Dec 0.66 (0.54-0.75) 

WEST JAVA Suspected deaths 02-Sep 0.41 (0.36-0.49) 

WEST JAVA Suspected deaths 07-Dec 1.42 (1.25-1.67) 

CENTRAL JAVA Confirmed deaths 02-Sep 0.97 (0.85-1.13) 

CENTRAL JAVA Confirmed deaths 07-Dec 2.3 (1.96-2.81) 

CENTRAL JAVA Suspected deaths 02-Sep 2.41 (2.05-2.88) 

CENTRAL JAVA Suspected deaths 07-Dec 5.96 (5.1-6.98) 

YOGYAKARTA Confirmed deaths 02-Sep 0.41 (0.33-0.49) 

YOGYAKARTA Confirmed deaths 07-Dec 1.39 (1.05-1.68) 

YOGYAKARTA Suspected deaths 02-Sep 1.12 (0.92-1.37) 

YOGYAKARTA Suspected deaths 07-Dec 4.09 (3.33-5.24) 

EAST JAVA Confirmed deaths 02-Sep 2.13 (1.89-2.33) 

EAST JAVA Confirmed deaths 07-Dec 3.85 (3.39-4.4) 

EAST JAVA Suspected deaths 02-Sep 3.35 (2.89-3.83) 

EAST JAVA Suspected deaths 07-Dec 6.17 (5.46-7.38) 

BANTEN Confirmed deaths 02-Sep 0.34 (0.29-0.41) 

BANTEN Confirmed deaths 07-Dec 1.08 (0.9-1.34) 

BANTEN Suspected deaths 02-Sep 0.59 (0.5-0.68) 

BANTEN Suspected deaths 07-Dec 2.09 (1.75-2.51) 
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