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Abstract

The novel coronavirus (SARS-CoV-2), which was first discovered in Hubei, China in
December 2019, has caused an ongoing pandemic. Due to pauci-symptomatic cases,
the virus may spread invisibly in a community. In the absence of vaccination, non-
pharmaceutical interventions (NPIs) like interpersonal distancing were implemented in
several countries and have been key to effectively reduce viral spreading. In Germany
after an exponential growth of case numbers in March 2020, NPIs were able to effectively
control the pandemic and sufficiently reduced the daily reported new infections allowing
for partial release of NPIs. We developed a novel statistical method to evaluate contacts
between individuals, which is essential for virus transmission. We derived the contact
index, an index for the intensity and heterogeneity of contact behavior from spatial prox-
imity between individuals as proxy for physical interaction based on complex network
science. We estimated the contact index from large-scale GPS mobile phone data of
1.15 to 1.4 million users in Germany per day (March to July 2020). A high correlation
between the contact index and the effective reproduction number six days later could
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be observed (Pearson correlation r = 0.96, P-value < 0.001 for all reported Pearson
correlations). This correlation was observed in three different phases of the virus spread
in Germany 1) the early phase of the first wave with the highest reproduction rate, 2)
phase of strict NPIs (lockdown) with the lowest reproduction, 3) release of NPIs accom-
panied with an increase of reproduction. The results show that the contact index is able
to model and potentially forecast the time evolution of the pandemic in Germany.

1 Introduction

In December 2019 a novel coronavirus, namely the Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2), first discovered in Wuhan (Hubei province, China), has
rapidly caused an ongoing pandemic with more than 20 million confirmed cases and
more than 700,000 deaths as of August 2020. SARS-CoV-2 is highly contagious with an
estimated basic reproduction number R0 between 1.5-4 [25, 28, 12, 13]. Invisible com-
munity spread may occur until a local outbreak becomes evident by a larger number of
severe clinical cases. Healthcare systems and their infrastructure have been repeatedly
challenged with a rapid onset of critically ill patients requiring hospitalization and in-
tensive care treatment [18, 7]. Since there was no vaccine available, non-pharmaceutical
interventions (NPIs) were considered an important instrument in containing viral spread.
The first case of SARS-CoV-2 was confirmed in Germany on January 27, 2020 [1]. At
first, Germany did not install strict NPIs, which led to an exponential growth of case
numbers. On March 8, 2020 public events with more than 1000 visitors were prohibited,
following a nationwide lockdown with a general prohibition of public contacts on March
23, 2020. A peak of 6933 daily new cases was reached on March 27, 2020. A continuous
decline in new cases per day could be noticed in April, following a plateau with an average
number of daily new cases below 1000 from May till July, 2020. Sufficiently low levels
of new daily infections allowed for release of NPIs and reintroduction of containment
strategies, like contact tracing. Since SARS-CoV-2 could not be entirely removed from
the population, interpersonal distancing and rapid detection of local outbreaks remain
of pivotal role.

Currently, the gold standard of SARS-CoV-2 detection is a specific real-time reverse
polymerase reaction from respiratory specimen, e.g. nasopharyngeal swab [2]. Due
to asymptomatic and pauci-symptomatic carriage of SARS-CoV-2 [22, 20, 3], a larger
portion of infected individuals remain undetected. Furthermore, it is estimated that 44%
of secondary cases are infected through pre-symptomatic transmission events [9]. With
an estimated incubation time of 5.2 days [12], a reported detection time for laboratory
testing from symptoms to diagnosis of 6.0 days [19] and considering that a larger portion
of infected individuals even remain undetected, laboratory testing does not appear to be
ideal for rapid outbreak detection given the short infection doubling time of SARS-Cov-2
in the range of 1.4 to 2.5 days [16].

Methods are needed which allow for the detection of local outbreaks at the earliest
moment possible. Contact between individuals is essential for virus transmission and
represents the first observable event. We hypothesize that individual location history
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data assessed by the Global Positing System (GPS) of mobile phones can provide deep
insights in the contact behavior of the population and therefore allows for accurate
prediction of the time evolution of new SARS-CoV-2 cases.

In our main analyses, we investigated the association of contact numbers with infec-
tion rates in Germany provided by the Robert Koch Institute (RKI). For this, we used a
contact-related measure known from complex network science, which takes into account
the presence of super-contacters that have many contacts during a single day. We call
this quantity the contact index C and hypothesized a temporal correlation between it
and infection rates.

2 Methods

2.1 Study population

The investigation relies on GPS location history data that is collected via a Software
Development Kit (SDK) developed for the primary purposes of assessing the quality of
cell phone networks. Cell phone data is collected by the SDK implemented in more
than one million cell phones in Germany. Per day data was received from 1.15 to 1.4
million cell phones during March to July 2020. The legal conditions for the processing
of the data were described in a report by A. Böken on May 11, 2020. Data records
are anonymous. In a first step the number of contacts for each device is determined so
that no positional information is retained. Then the data is aggregated by the number
of devices that have a certain number of contacts. Only these aggregated numbers are
used for further analysis.

2.2 Number of contacts

The approach of contact detection relies on GPS data from embedded software in cell
phones originally used to sample the quality of mobile phone networks. It provides
precise GPS location and non-aggregated mobility data from a panel of more than one
million anonymous individual users which are representative of the German population.
GPS data can be used to simultaneously determine location, mobility and contacts
between the users with high accuracy. We assume that each cell phone is used always by
the same individual. For each cell phone we obtain records with pings from the SDK that
contain up to several hundreds messages per day and device. Each message contains,
among others, the GPS coordinates of the cell phone. We then project the positions for
each ping to a predefined tile of about 8m × 8m. Using an identification number of the
tile we then scan for coincident presence of two different individuals on the same tile
with a maximal difference in the time stamp of 2 minutes which we count as one contact
for each of the individuals. The number of contacts attributed to each individual is then
the number of contacts during one day. The collected data covers the entire period of
the pandemic, including weeks before its beginning.
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2.3 Sampling of contacts

The nature of our data collection allows estimating the number of real-world contacts for
the entire population of Germany. However, a large part of these real contacts is missing
from our cell phone sampling for two main reasons: (A) We only cover a fraction of
devices. (B) We only cover times when the cell phone is sending a ping. In more
detail regarding (A), we cover about 800,000 GPS-enabled devices per day, so that the
majority of contacts for an individual goes undetected. As there are about 83 million
persons in Germany, we can expect to cover about 1% of persons. Regarding (B), a
typical cellphone sends about 200 pings per day. In order to cover the entire day, one
ping every two minutes i.e. 720 pings per day are needed. Thus, only about 28% of
the time of the day is covered for the average device. Assuming for simplification that
the time of pings are independent for different devices, a lower bound estimate of the
probability that a contact between two devices was observed is 0.28 × 0.28 ≈ 0.1. So,
according to this rough calculation, we can expect to track at least 0.012 × 0.1 = 0.001%
of all contacts between any two persons living in Germany.

2.4 Effective R calculation

The effective reproduction number R values in our analysis have been obtained from the
RKI Nowcasting website 1. For a given day d, R is calculated as the ratio of the sums of
infections for days d to d + 6 and d− 7 to d− 1 [23]. This number is then attributed to
day d. For regional evaluations, confirmed cases are counted by the district where the
individual has their home address.

2.5 Contact index

For a detailed analysis of the data we turn to methods from complex network science. We
first define a network or graph of users for every day by assigning one device/individual
to a node of the network while each contact defines an edge between nodes. The presence
of hosts with many contacts and the ensuing broadness of the degree distributions has
strong implications for the occurrence of pandemics and has already been shown to be of
importance for SARS-CoV-2 in particular [6]. As well, there is a large body of literature
in epidemiology that relates a pandemic to an increase of a measure different from
the simple number of contacts and which also takes into account the number of large
degree nodes. This measure is related to the heterogeneity of the degree distribution
(for a review see e.g. Pastor-Satorras et al. [17]) and is the relevant quantity at least
for networks which do not exhibit strong degree correlations. This parameter is called
contact index C in the following. A mathematical definition of the quantity C can be
found in the appendix.

1https://www.rki.de/DE/Content/InfAZ/N/Neuartiges Coronavirus/Projekte RKI/

Nowcasting Zahlen.xlsx? blob=publicationFile
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Figure 1: Mean number of contacts from cell phone records (red, left scale), contact
index (green, left scale) and effective R (seven day R [23], blue dots, right scale). Each
curve has been smoothed by using a seven day sliding window. Mean contacts and
contact index are scaled relative to their values on March 2, 2020.

2.6 Statistical analysis

In the analysis, we estimate the contact index from a sample of nodes from the full
network of cell phones in Germany. We present descriptive statistics and temporal trends
of the number of contacts as well as of the contact index. Finally, we investigate their
association with infection rates assessed by R by estimating their Pearson correlation
coefficient. The Pearson correlations and their p-values were determined using Python’s
Scipy package, version 1.3.1.

3 Results

3.1 Association of number of contacts with infections

The average number of cell phones registered during a day was about 800,000. Per day
we find between 20,000 and 160,000 devices that had at least one match. The total
number of matched pairs varied between 150,000 (before lock-down) and 12,000 (during
lock-down) per day.

Figure 1 illustrates that the mean number of contacts of individuals per day (in
red) clearly relates to the evolution of R (in black). This holds particularly in the
initial phase of the outbreak. The Pearson correlation coefficient between the two curves
depends on the time shift and is maximized (over shifts between 0 and 14 days) at 0.79
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Figure 2: Histogram of number of contacts per person on three different days: March
5, March 12 before official lock-down, March 19 (histogram cut off at 30 contacts) after
ban of large gatherings and local regulations closing restaurant and other public venues.

for a shift of seven days, where the evolution of R follows that of the number of contacts
in time. The number of contacts is maximized at March 2, 2020 and drops to a fraction
of 45% of its maximal value by March 27. However, we note that the R value seems to
decrease to levels around 1 before the mean degree hits minimal levels. As well, there
is a substantial increase of the number of contacts after the relaxation of the German
lock-down in April which is not accompanied by an equally strong increase in R. While
the number of contacts reaches 62% of its maximal value by May 1, R stays at values
around 1.0. We thus conclude that the number of contacts does not sufficiently model
the subsequent evolution of R. For this, more complex methods are needed to investigate
further properties of the contact network.

3.2 Association of contact index with infections

Evaluating the network we find that the degree of nodes, i.e., the number of contacts of
each person, is broadly distributed with a long tail before the lock-down (Fig. 2) while
at later dates during the pandemic, the distribution has a much shorter tail and is highly
concentrated around few contacts. Thus initially there are many individuals with large
numbers of contacts who would be potential ’super-spreaders’, but the lock-down clearly
led to a reduction of the number of such individuals at later weeks. In other words,
we can ask whether the heterogeneity of the contact network plays a large role in the
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Figure 3: (Left) Evolution post first wave shows a substantial and related increase of
R and contact index. (Right) R and the contact index clearly exhibit an almost linear
relation if plotted with a shift of seven days. Colors denote different weeks as indicated.

infection behavior.
In Fig. 1 the green curve shows the evolution of the contact index in comparison

to R. Compared to the number of contacts the contact index stays relatively constant
after relaxation of lock-down and thus reflects better the evolution of R as is expected
from the theoretical research on epidemics on complex heterogeneous networks.

Estimation of correlation indices suggest a much better predictive power of the con-
tact index for predicting R compared to the simple number of contacts. The maximal
(over time shifts between 0 and 14 days) correlation between the contact index and R
equals 0.96 (compared to 0.79 for the number of contacts) and is maximal for a time
shift of six days. As a six day time shift maximized the correlations with R, we kept
using a time shift of six days for further correlation analyses.

3.3 Detailed investigation of evolution after the first wave

Importantly, the contact index also shows a strong association with the outbreak’s evo-
lution in the phase after the first wave. This can be seen as correlation in the time
series (Fig. 3). The left panel shows a zoom of the time evolution after the first wave,
exhibiting a concurrent increase of R and C. The correlation of both quantities can also
be assessed from the right panel of the figure which plots the R values versus the contact
index at a week earlier. The figure also allows to speculate that a contact index of about
50 or more would drive the infection behavior into a sustained super-critical regime with
R > 1. The data supports this hypothesis and we show that changes in contacts can
be a useful signature for outbreaks. The contact index was the best predictor of the
subsequent evolution of the epidemic.

Both the correlation between the contact index C and R (for a delay of six days)
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and as between the mean number of contacts and R estimated to be 0.54 and 0.57,
respectively. These similar estimates in the post lock-down phase can be understood
from the fact that in this phase the number of super-contacters is much smaller which
make the expectation value of 〈k2〉 closer to 〈k〉2 so that the contact index becomes
similar to 〈k〉 in the limit of a narrow distribution. This implies that the contact index
becomes more important when further measures of the social lockdown are lifted.

4 Discussion

A strong correlation between the effective R and the GPS assessed contact behavior of
the German population could be shown. We found the highest correlation between the
contact index C, which accounts for a heterogeneous contact behavior of the general
population and the importance of superspreading events, and the effective R with a
time delay of six or seven days, which is in accordance with the reported SARS-CoV-
2 incubation time of 5.2 days (95%CI: 4.1-7.0 days) [12]. C was associated with the
effective R in all 3 phases so far observed of evolution of SARS-CoV-2 in Germany: 1)
phase of high contact behavior and exponential growth of cases numbers, 2) phase of
lowest contact behavior during the lock-down and stark reduction of the viral spreading,
3) phase of resume of contacts and slight increases in the effective R. As previously
suggested from theoretical work, the average number of contacts had a lower correlation
with the effective R than the contact index and would have suggested a higher number
of infections especially after release of the lock-down measures. Hence, we propose to
use the contact index to assess the effectiveness of social distancing policies and for
decision support of social distancing policy-making. Overall, GPS data and various
metrics derived from it can provide a means to assess the effect of lock-down measures
on contacts and mobility and their association with reductions in infection rates.

There exist other studies which have demonstrated the benefit of rapid deployment
of mobile phone applications to receive valuable epidemiological information to combat
the pandemic. A model based on mobile phone data on individual mobility accurately
predicted the frequency and geographical distribution of SARS-CoV-2 infections in China
after the outbreak in Wuhan [10]. Mobility data based on cell tower location is used
in many approaches to record mobility of aggregated groups of the general public. For
example, Deutsche Telekom has provided daily aggregates of cell tower location data to
the RKI [11]. However, mobility data cannot be used to determine social contacts which
are a key cause of infection. Several solutions have been developed that determine
contacts between users based on Bluetooth low energy (BLE) to inform individuals
about contacts to infected individuals. In Germany, a contact tracing BLE app has
been released by SAP and Deutsche Telekom on June 15, 2020 [4]. BLE does not
provide information about location and mobility and still needs to gather a significant
number of users to enable identification and interruption of infection chains [8]. While
the technology is promising and the app has already been downloaded 16 million times
[14], the results in several countries have so far not met expectations.

Furthermore, there is a growing body of evidence that self-assessed symptoms allows

8

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.02.20188136doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.02.20188136


for identification for SARS-CoV-2 hotspots several days before the outbreak [5, 15, 21,
24, 26]. Contact between individuals and development of first symptoms are the very
first events which can be observed during the course of the disease. The main advantage
the method of GPS based contact tracing presented in this work is that only a relatively
small number of users is required to obtain meaningful representative insights when
compared to other solutions. The project’s further aim is to develop an early warning
system based on the contact behavior and symptom burden of the population, which
will be offered as a complementary app. Since the method allows for generation of maps,
users do not need to be active users, like with contact tracing apps, to receive valuable
information regarding the regional infection risk.

5 Conclusion

A contact index derived from mobile phone location history data was developed which
showed a high correlation to the effective R as observed six days later. This novel method
provides new insights in the time evolution of the SARS-CoV-2 pandemic in Germany
and could be used as a component of an early warning system for country-wide and local
outbreak prediction.

6 Appendix

In this Appendix, we describe our specially designed algorithm that identifies “contacts”
from the traces based on the following rationale: If GPS pings arrive from two distinct
cell phones that are close in space and time, then we denote this event as a “contact”
and use it as a proxy for a human physical contact.

6.1 Sampling of nodes

We now describe more formally how measures of the sampled network, such as mean
contacts and second moment of contacts, relate to the respective measures of the original
full contact network for all cell phones. We focus on sampling of devices described in
restriction (A) in section 2.3, and ignore restriction (B) for simplification, since it is
similar to the sampling of nodes in restriction (A) and would just require a re-scaling of
the parameter p in equation (14).

In the following, let G denote the full network or graph of all cell phones and let M
denote the maximal degree of a node in G. As a reminder, the degree of a node (i.e.
person) equals the number of contacts of this person. Following Zhang et al. [27] we let
N denote the vector containing the degree counts of the nodes. N has length M + 1 and
the k-th entry of N contains the number of nodes that have degree k, i.e. the number of
devices that have k contacts. Thus N contains the counts of the number of cell phones
having k links (contacts) to other cell phones.

In the sampling of phones according to (A), we assume that each phone is sampled
from G with the same probability p, resulting in the sampled graph G∗. This situation is
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also described as induced network sampling in network theory [27]. The induced network
G∗ includes all sampled nodes as well as all links from G that connect the sampled nodes
in G∗.

The vector of the expected values of the degree counts of the sampled network, N∗,
is E(N∗) = PN , Here, P is a matrix of entries P (k, k′) that describe the probability
that a node of degree k′ in G is selected and has degree k in G∗. For induced sampling,
P is:

Pind(k, k′) =

{(
k′

k

)
pk+1(1− p)k

′−k for 0 ≤ k ≤ k′ ≤M,

0 for 0 ≤ k′ < k ≤M.
(1)

Thus the k-th entry E(N∗(k)) =
∑

k′,k≤k′ N(k′)
(
k′

k

)
pk+1(1− p)k

′−k.
In the following we assume that the particular sampling given by our mobile phone

records gives rise to a N∗ind, which can be approximated by E(N∗) for large networks,
from which we can calculate the degree moments for the original network.

6.2 Derivation of the contact index C

Let 〈k〉 denote the mean degree of nodes in G: 〈k〉 =
∑M

k=0 kN(k)/(
∑M

k=0N(k)). We
first show that the mean 〈k〉ind of the sampled graph is linearly related to the mean of
the original graph:

〈k〉ind ≈
∑M∗

k=0 kE(N∗(k))∑M∗

k=0E(N∗(k))
(2)

=

∑
k,k′,k≤k′ kN(k′)

(
k′

k

)
pk+1(1− p)k

′−k∑
k,k′,k≤k′ N(k′)

(
k′

k

)
pk+1(1− p)k′−k

(3)

=
p
∑

k′ N(k′)
∑

k,k≤k′ k
(
k′

k

)
pk(1− p)k

′−k

p
∑

k′ N(k′)
∑

k,k≤k′
(
k′

k

)
pk(1− p)k′−k

(4)

=
p2
∑

k′ k
′N(k′)

p
∑

k′ N(k′)
(5)

= p〈k〉 (6)

The equality of (4) and (5) follows since
∑

k,k≤k′ k
(
k′

k

)
pk(1− p)k

′−k is the mean value of

the binomial distribution B(k′, p) which equals k′p, and
∑

k,k≤k′
(
k′

k

)
pk(1− p)k

′−k is the
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sum of all probabilities in B(k′, p) which is 1. Similarly, we find for the second moment:

〈k2〉ind ≈
∑

k k
2E(N∗(k))∑

k E(N∗(k))
(7)

=

∑
k,k′,k≤k′ k

2N(k′)
(
k′

k

)
pk+1(1− p)k

′−k∑
k,k′,k≤k′ N(k′)

(
k′

k

)
pk+1(1− p)k′−k

(8)

=
p
∑

k′ N(k′)
∑

k,k≤k′ k
2
(
k′

k

)
pk(1− p)k

′−k

p
∑

k′ N(k′)
∑

k,k≤k′
(
k′

k

)
pk(1− p)k′−k

(9)

=
p
∑

k′(k
′(k′ − 1)p2 + k′p)N(k′)

p
∑

k′ N(k′)
(10)

= p2〈k2〉 − (p2 − p)〈k〉 (11)

Here, (7) is the definition of the second moment, (10) follows from (9) since the second

moment for the binomial distribution B(k′, p) is p2k′2+k′(p−p2) and
∑

k,k≤k′
(
k′

k

)
pk(1−

p)k
′−k = 1, and (11) follows from (10) because of the definitions of the first and second

moments of N(k′). Finally, we describe how the ratio 〈k2〉/〈k〉 of the original graph can
be obtained from the sampled graph via 〈k〉ind and 〈k2〉ind:

〈k2〉
〈k〉

≈
1
p2

(
〈k2〉ind − (p− p2)〈k〉

)
〈k〉

(12)

=
〈k2〉ind
p〈k〉ind

−
(

1

p
− 1

)
(13)

=
1

p

(
〈k2〉ind
〈k〉ind

− 1

)
+ 1. (14)

This ratio 〈k2〉/〈k〉 is of interest, since it describes the growth rate of an infection phase
in an uncorrelated network [17]. Since 〈k2〉ind is larger or equal to 〈k〉ind, (14) is non-
negative and since p is small in our sampling, we can ignore the addition of the constant
1. Thus we define the contact index C as

C :=
1

Nobs

(
〈k2〉ind
〈k〉ind

− 1

)
,

where p = Nobs/Ntot, where Nobs is the number of devices observed during a day and
Ntot is the total number of devices/consumers in the considered area. Since Ntot can be
considered constant, we drop this factor from the definition of C.
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