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ABSTRACT
An unprecedented outbreak of the novel coronavirus (COVID-19) in the form of
peculiar pneumonia has spread globally since its first case at Wuhan, China, in De-
cember 2019, increasing infected cases and mortality at a pandemic speed. Thus,
forecasting the COVID-19 pandemic became a key research interest for both the
epidemiologists and statisticians. These future predictions are useful for the effec-
tive allocation of health care resources, stockpiling, and help in strategic planning
for clinicians, government authorities, and public-health policymakers after under-
standing the extent of the effect. The main objective of this paper is to develop the
most suitable forecasting model that can generate real-time short-term (ten days)
and long-term (fifty days) out-of-sample forecasts of COVID-19 outbreaks for eight
profoundly affected countries, namely the United States of America, Brazil, India,
Russia, South Africa, Mexico, Spain, and Iran. A novel hybrid approach based on
the Theta model and Autoregressive neural network (ARNN) model, named Theta-
ARNN (TARNN) model, is proposed. The proposed method outperforms previously
available single and hybrid forecasting models for COVID-19 predictions in most
data sets. In addition, the ergodicity and asymptotic stationarity of the proposed
TARNN model are established which is of particular interest in nonlinear time series
literature. An R-Shiny application is created for implementation of TARNN model
and is publicly available1.
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1. Introduction

In December 2019, clusters of pneumonia cases caused by the novel severe acute
respiratory syndrome coronavirus 2 (SARS-Cov-2) were identified at the Wuhan,
Hubei province in China [21,25] after almost hundred years of the 1918 Spanish
flu [59]. Soon after the emergence of the novel beta coronavirus, World Health
Organization (WHO) characterized this contagious disease as a pandemic in March
due to its rapid spread within and outside the highly mobile population of China
supported by densely populated location of sea-food market and time of advent [51]
with an exponential increase in the incidence rate (IR) and case-fatality rate (CFR)
[41]. As of September 29, 2020, a total of 33,732,181 confirmed cases and 1,009,512
deaths have been reported worldwide [5].

Researchers are facing unprecedented challenges during this global pandemic to
forecast future real-time cases with traditional mathematical, statistical and machine
learning-based forecasting tools [17,31,33,61,65]. Studies in March with simple yet pow-
erful forecasting methods like exponential smoothing model predicted cases ten days
ahead, with large confidence intervals, that despite the positive bias, had reasonable
forecast error [46]. Previously used linear and exponential model forecasts for better
preparation regarding hospital beds, ICU admission estimation, resource allocation,
emergency funding,and proposing strong containment measures were conducted [19]
that projected about 869 ICU and 14542 ICU admissions in Italy for March 20, 2020.
ICU admissions and mechanical ventilation use for critically ill patients reached its
peak shattering the health system of Lombardy, Italy, by March-end [20]. Health-care
workers had to go through the immense mental stress left with a formidable choice of
prioritizing young and healthy adults over elderly for allocation of life support, espe-
cially unwanted ignoring of those who are extremely unlikely to survive [16,52]. Real
estimates of mortality with 14-day delay demonstrated underestimating the COVID-
19 outbreak and indicated a grave future with a global CFR of 5.7% in March [4].
The contact tracing, quarantine, and isolation efforts have a differential effect on the
mortality due to COVID-19 among countries. Even though it seems that the CFR
of COVID-19 is less compared to SARS (10%) and MERS (36%), there are concerns
about it being eventually returning as the seasonal flu, causing a second wave or future
pandemic [45,48]. Thus, real-time nowcasting and forecasting with foretelling predic-
tions are required to reach a statistically validated conjecture in this current health
crisis. Some of the impacting leading-edge research concerning real-time projections
of COVID-19 confirmed cases, recovered cases, and mortality using statistical, epi-
demiological and machine learning models are given in Table 1. However, forecasting
COVID-19 pandemics is harder and this is primarily due to the following major factors
[29]:

• Very less amount of data is available;
• Less understanding of the factors that contribute to it;
• Model accuracy is constrained by our knowledge of the virus. With an emerging

disease such as COVID-19, many biologic features of transmission are hard to
measure and remain unknown.
• Another source of uncertainty, affecting all models, is that we don’t know how

many people are, or have been, infected.
• We are certainly missing a substantial number of cases due to virologic testing,

so models fitted to confirmed cases are likely to be highly uncertain [23].
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Table 1. Related works on forecasting of the COVID-19 pandemic

Research Topic Date Countries Model Results Main Conclusion

Forecasting con-
firmed & recovered
cases [35]

Jan 22 - April 30,
2020

World data TP–SMN–AR time
series (Autoregressive
series based on two-
piece scale mixture
normal distributions)

MAPE = 0.22%
for confirmed cases;
MAPE = 1.6% for
recovered

Provided reasonable
forecasts in terms of
error & model selec-
tion

Short-term forecast-
ing of cumulative
confirmed cases [50]

Inception - April 18-
19, 2020

Brazil ARIMA, Cubist
regression, Ran-
dom Forest, Ridge,
Support Vector
Regression (SVR),
Stacking-Ensemble
Learning (SEL)

Forecast errors lower
than 6.9%

SVR & SEL models
are suitable tools for
forecasting COVID-
19.

Modelling & forecast-
ing daily cases [1]

Jan 11 - Feb 10, 2020 China Susceptible-
Infectious-Recovered-
Dead model

Estimated aver-
age reproduction
number (R0) ∼
2.6;CI : (45, 000 −
180, 000);CFR ∼
0.15%

Simulations pre-
dicted a decline of
the outbreak at the
end of February

Forecasting & risk as-
sessment [11]

Jan 30-31 - April 4,
2020

Canada, France, In-
dia, South Korea, UK

ARIMA,WBF, Hy-
brid ARIMA-WBF,
Regression Tree

MAE & RMSE least
for Hybrid Wavelet
ARIMA

Hybrid ARIMA-
WBF have better
performance;country-
wise total cases,% of
elderly people, total
country population,
doctors/ 1000 peo-
ple,lockdown period,
time-period of cases,
and hospital beds /
1000 people affect the
CFR significantly.

Forecast [46] Jan 22 - March 11,
2020

Global data Exponential smooth-
ing models

Ten-days-ahead fore-
casts have actual
cases within 90% CI

Forecasts reflect the
significant increase in
the trend of global
cases with growing
uncertainty.

AI-based Forecast
[24]

Jan 11 - Feb 27, 2020 China Data driven AI-based
methods

Using the multiple-
step forecasting till
April 19, 2020 for 34
provinces/cities.

The accuracy of the
AI-based methods for
forecasting the tra-
jectory of COVID-19
was high.

Long-term trajecto-
ries of COVID-19 [10]

Inception - June 17,
2020

Spain & Italy Integrated deter-
ministic (SIRCX)
- stochastic (AR)
approach

Basic reproduction
number and esti-
mated future cases
are computed.

Integrated model
shows significant
improvement in the
long-term forecasting
of COVID-19 cases
for Italy and Spain.

Real-time forecast
[51]

Feb 5 - February 24,
2020

China Generalized logis-
tic growth model,
Richards model,
sub-epidemic wave
model

Mean case estimates
and 95% prediction
intervals emulsifies
the global picture
(5,10,& 15) days
ahead.

All methods perform
similarly & increase
in data inclusion de-
creases the width of
prediction intervals.

Predictions and role
of interventions [49]

Live forecast India Extended state-space
SIR epidemiological
models

Live forecasts with
broad confidence in-
tervals

Lock down has a
high chance of reduc-
ing the number of
COVID-19 cases, to
buy time for prepara-
tion.

Forecasting and now
casting domestic &
international spread
[61]

Dec 31 - Jan 28, 2020 China Susceptible-Exposed-
Infectious-Recovered
model

R0 =
2.68(95%CI2.47, 2.86)
; Epidemic doubling
time 6.4 days (95%
CI 5.8, 7.1)

COVID-19 is no
longer contained
withing China, &
human-human trans-
mission became
evident.

Forecast [17] Jan 22- March 15,
2020

China, Italy & France Susceptible, Infected,
Recovered, Dead
model

Recovery rate is simi-
lar for Italy & China,
while infection and
death rate appear to
be different.

There is a certain
universality in the
time to evolution of
COVID-19.

Machine learning-
based forecasts of
COVID-19 [56]

Jan 22 - April 10,
2020

India Multi layer percep-
tron (MLP)

Forecast for 69 days MLP method gives
good predictions.

Time series forecasting models work by taking a series of historical observations and
extrapolating the patterns into the future. These are great when the data are accurate,
the future is similar to the past. There are essentially two general approaches to fore-
casting a time series: (a) generating forecasts from a single model; and (b) combining
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forecasts from many models (Hybrid experts). In classical time series forecasting,
the autoregressive integrated moving average (ARIMA) model is used predominantly
for forecasting linear time series [6], which has a significant strong assumption of
linearity in the system and homoscedastic error distribution; typically without sudden
jumps and bursts. Individual models such as ARIMA, Wavelet ARIMA (WBF)[14],
generalized autoregressive conditional heteroskedasticity (GARCH) [15] and Theta
method [2,28] are inadequate to model such situations. Usage of non-linear time
series techniques in infectious disease modeling have successfully demonstrated the
success of artificial neural networks (ANN) and autoregressive neural networks
(ARNN) [8,34,38,63]. There are also a vast literature available on the hybrid models
motivated by the seminal work of Bates & Granger [3] and followed by a plethora
of empirical applications showing that combination forecasts are often superior to
their individual counterparts. The idea of hybridizing time series models are by no
means new – see for example [3,9,11,13,30,63]. Most recently, some promising hybrid
models combining linear and nonlinear time series models are proposed for COVID-
19 [10,11] and dengue [9] forecasting and performed well for predicting these epidemics.

Motivated by this, this study considers the time series data sets of coronavirus
confirmed cases which show non-linearity, non-stationary and non-Gaussian patterns,
making decisions based on a discrete model critical and unreliable. Another difficulty in
COVID-19 data from the modeling aspect is the unavailability of sufficient data points,
which generates biased predictions and estimates, which can be well maneuvered by
neural nets [42]. Most of the relevant studies focused on the outbreak’s short-term and
long-term forecasts of reported confirmed cases have a broad range of fluctuations,
wide confidence intervals, poorly reported data/model specifics, and predictive per-
formance being too optimistic the models are becoming unreliable [62]. Hybridization
of two or more models is the most common solution [40] for optimizing forecasting
performance, and efficacious with unknown complete data characteristics [32]. The
importance of hybrid methodology with a fusion of linear and non-linear forecasting
models, becomes evident in tackling such dynamic/non-linear time series and its in-
built time-changing variance, complex autocorrelation structure [11,44]. With growing
expectations of advanced parsimonious hybrid forecasting methods accompanied by
precise accuracy and more accurate forecasts, the main objectives of this study are:

• To propose a simple and computationally efficient hybrid forecasting model
which generates short-term and long-term out-of-sample forecasts for eight pro-
foundly affected countries (United States of America (USA), India, Brazil, Rus-
sia, South Africa, Mexico, Spain, and Iran).
• To compare the suggested method with traditional discrete and hybrid forecast-

ing models with finer accuracy.
• To prove the model’s stationarity and ergodicity properties from statistician’s

point of view.
• To recommend policy-making decisions, resource allocation based on these fore-

casts.
• To discuss the merits and future challenges that has to be addressed while work-

ing with the proposal for epidemiological forecasting.

Therefore, this study proposes a novel hybrid Theta autoregressive neural network
model (TARNN) model combining Theta and ARNN models that can capture
complex COVID-19 data structures. The linearity is controlled by the Theta method
in the initial phase, while the non-linear trend of the COVID-19 data sets is adjusted
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by the ARNN model using residual values obtained from the base Theta model.
The proposed model has easy interpretability, robust predictability and can adapt
seasonality indices. Desirable statistical properties like asymptotic stationarity and
ergodicity of the proposed TARNN model are explored. Through experimental
evaluation, we have shown the excellent performance of the proposed hybrid model
for the COVID-19 pandemics forecasting for eight different countries’ data sets.

The rest of the paper is organized as follows: Section 2 discusses the detailed formu-
lation of the proposed hybrid TARNN model. The ergodicity and stationarity of the
proposed hybrid model are discussed in Section 3. In Section 4, we discuss the country-
wise COVID-19 confirmed case data sets, preliminary of data analysis, performance
evaluation metrics, and the experimental results. The discussions about the results
and practical implications are given in Section 5. Finally, we conclude the paper with
a direction for future research in Section 6.

2. Methodology

This study proposes a novel hybrid model based on Theta and ARNN models to
forecast the confirmed cases of COVID-19 for eight profoundly affected countries.
We start by discussing the single forecasting models to be used in the hybridization
followed by the detailed formulation of the proposed hybrid Theta-ARNN (TARNN)
model.

2.1. Theta Method

The ‘Theta method’ or ‘Theta model’ is a univariate time series forecasting technique
that performed particularly well in M3 forecasting competition and of interest to
forecasters [2]. The method decomposes the original data into two or more lines, called
theta lines, and extrapolates them using forecasting models. Finally, the predictions
are combined to obtain the final forecasts. The theta lines can be estimated by simply
modifying the ‘curvatures’ of the original time series. This change is obtained from a
coefficient, called θ coefficient, which is directly applied to the second differences of
the time series:

Y ”
new(θ) = θY ”

data, (1)

where Y ”
data = Yt−2Yt−1+Yt−2 at time t for t = 3, 4, · · · , n and {Y1, Y2, · · · , Yn} denote

the observed univariate time series. In practice, coefficient θ can be considered as a
transformation parameter which creates a series of the same mean and slope with that
of the original data but having different variances. Now, Eqn. (1) is a second-order
difference equation and has solution of the following form [28]:

Ynew(θ) = aθ + bθ(t− 1) + θYt, (2)

where aθ and bθ are constants and t = 1, 2, · · · , n. Thus, Ynew(θ) is equivalent to a
linear function of Yt with a linear trend added. The values of aθ and bθ are computed
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by minimizing the sum of squared differences:

t∑
i=1

[Yt − Ynew(θ)]2 =

t∑
i=1

[(1− θ)Yt − aθ − bθ(t− 1)]2 . (3)

Forecasts from the Theta model are obtained by a weighted average of forecasts of
Ynew(θ) for different values of θ. Also, the prediction intervals and likelihood-based
estimation of the parameters can be obtained based on a state space model which is
demonstrated in [28]. The generalized version of the Theta method is suitable for for
automatic forecasting of time series [55].

2.2. ARNN Model

Artificial Neural Network-based forecasting methods received increasing interest in
various applied domains in late 1990s. A wide variety of neural nets are popularly
used for supervised classification, prediction and nonlinear time series forecasting [64].
The architecture of a simple feedforward neural network can be described as a network
of neurons arranged in input layer, hidden layer, and output layer in a prescribed order.
Each layer passes the information to the next layer using weights that are obtained
using a learning algorithm [18]. ARNN model is a modification to the simple ANN
model especially designed for prediction problems of time series data sets [18]. ARNN
model uses a pre-specified number of lagged values of the time series as inputs and
number of hidden neurons in its architecture is also fixed [26]. ARNN(p, k) model uses
p lagged inputs of the time series data in a one hidden layered feedforward neural
network with k hidden units in the hidden layer. Let x denotes a p-lagged inputs and
f is a neural network of the following architecture:

f(x) = c0 +

k∑
j=1

wjφ
(
aj + b′jx

)
; (4)

where c0, aj , wj are connecting weights, bj are p-dimensional weight vector and φ is
a bounded nonlinear sigmoidal function (e.g., logistic squasher function or tangent
hyperbolic activation function). These Weights are trained using a gradient descent
backpropagation [53]. Standard ANN faces the dilemma to choose the number of hid-
den neurons in the hidden layer and optimal choice is unknown. But for ARNN model,
we adopt the formula k = [(p+ 1)/2] for non-seasonal time series data where p is the
number of lagged inputs in an autoregressive model [26].

2.3. Proposed TARNN Model

In this section, we describe the propose hybrid model based on Theta method and
ARNN model and we name it TARNN model. The proposed TARNN model is based
on an error re-modeling approach and there are broadly two types of error calculations
popular in the literature which are given below [39].

Definition 2.1. In the additive error model, the forecaster treats the expert’s estimate
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as a variable, Ŷt, and thinks of it as the sum of two terms:

Ŷt = Yt + et,

where Yt is the true value and et be the additive error term.

Definition 2.2. In the multiplicative error model, the forecaster treats the expert’s
estimate Ŷt as the product of two terms:

Ŷt = Yt × et,

where Yt is the true value and et be the multiplicative error term.

Now, even if the relationship is of product type, in the log-log scale it becomes
additive. Hence, without loss of generality, we may assume the relationship to be
additive and expect errors (additive) of a forecasting model to be random shocks. But,
this is violated when there are complex correlation structures in the time series data
and less amount of knowledge is available about the data generating process. A simple
example is the daily confirmed cases of the COVID-19 cases for various countries where
very little is known about the structural properties of the current pandemic. Thus,
we need two-stage modeling approach to formulate this complex time series problem.
The proposed TARNN model is a hybrid model based on additive error re-modeling
approach. The hybrid TARNN approach consists of three basic steps:

• In first step of the TARNN model, the Theta method is applied to the time series
data to model the linear components of given time series data set.
• Theta model generates in-sample forecasts and the error series is calculated.
• In the next phase, the residuals (additive errors) generated by the Theta method

are re-modeled using a nonlinear ARNN model. Finally, both the forecasts ob-
tained from the Theta and ARNN models are combined together to get the final
forecasts for the given time series.

The mathematical formulation of the proposed hybrid TARNN model (Zt) is as
follows:

Zt = Lt +Nt,

where Lt is the linear part and Nt is the nonlinear part of the hybrid model. We can
estimate both Lt and Nt from the available time series data. Let L̂t be the forecast
value of the Theta model at time t and εt represent the error residuals at time t,
obtained from the Theta model. Then, we write

εt = Zt − L̂t.

These left-out residuals are further modeled by ARNN model and can be represented
as follows:

εt = f(εt−1, εt−2, ..., εt−p) + εt,

where f is a nonlinear function and the modeling is done by the ARNN model as de-
fined in Eqn. (4) and εt is supposed to be the random shocks. Therefore, the combined
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forecast can be obtained as follows:

Ẑt = L̂t + N̂t,

where N̂t is the forecasted value of the ARNN model. An overall flow diagram of the
proposed TARNN model is given in Figure 1.

In the proposed TARNN model, ARNN is applied to re-model the left-over autocor-
relations in the residuals which Theta model individually could not model. Thus, the
proposed TARNN model can be considered as an error re-modeling approach. This is
important because due to model mis-specification and disturbances in the pandemic
rate time series, the linear Theta model may fail to generate white noise behavior for
the forecast residuals. The TARNN approach eventually can improve the predictions
for the epidemiological forecasting problem as shown in Section 4.

Figure 1. Flow diagram of the proposed TARNN model

Remark 1. The idea of the additive error modelling is useful for modeling complex
time series for which achieving random shocks based on individual forecasting models is
difficult. More precisely, the TARNN approach is developed for forecasting the COVID-
19 confirmed cases for which the data generating process and the various characteristics
of the epidemic are still unknown. The proposed TARNN model only assumes that
the linear and nonlinear components of the epidemic time series can be separated
individually.
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3. Ergodicity and Stationarity of the proposed TARNN model

In this section, we derive the results for ergodicity and asymptotic stationarity of the
proposed TARNN model. The ergodicity and stationarity is of particular importance
from a statistician’s point of view in time series analysis since for such processes a
single realization displays the whole probability of the data generating process. We use
several previous results on nonlinear time series and Markov chains to find sufficient
conditions for which the overall process is ergodic and stationary [7,12,58].
To start, we write the underlying stochastic model of the Theta method using the state
space approach. We initialize the model by setting Y1 = l1 and then for t = 2, 3, · · · ;
and drift term b, let

Yt = lt−1 + b+ εt and lt = lt−1 + b+ αεt ;

where {εt} is assumed to follow Gaussian white noise with mean zero and variance σ2

and α is the smoothing parameter for the simple exponential smoothing (SES) model.
Now, Yt follows a state space model which gives forecasts equivalent to SES with drift
[28]. Also, Yt can be written in the following form:

Yt = Yt−1 + b+ (α− 1)εt−1 + εt. (5)

The above is an ARIMA(0,1,1) process with drift term [28]. The left-out residuals of
Theta model is further modeled by ARNN process. We consider the ARNN process
generated by the additive noise of the ARIMA(0,1,1) process with drift. Let εt be the
process defined by the stochastic difference equation of the following form:

εt = f(εt−1, εt−2, · · · , εt−p,Θ) + εt, (6)

where εt is an i.i.d. noise process and f(·,Θ) is a feedforward neural network with
weight (parameter) vector Θ and inputs εt−1, εt−2, · · · , εt−p. The definition of f is
given in Eqn. (4).

3.1. Time Series as Markov chains

We start by defining the following notations:

zt−1 =
(
εt−1, ..., εt−p

)′

F (zt−1) =
(
f(zt−1), εt−1, ..., εt−p+1

)′

et =
(
εt, 0, ..., 0)

′

Then Eqn. (6) can be written as follows [12]:

zt = F (zt−1) + et (7)

with zt, et ∈ Rp. In this section, we show the (strict) stationarity of the state space
form, as defined in Eqn. (7). The problem of showing {zt} to be stationary is closely
related to the ergodicity of the process [60]. A Markov chain {zt} is called geometrically
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ergodic if there exists a probability measure π on the state space (Rp,B) and a constant
ρ > 1 such that

lim
n→∞

ρn‖Pn(z,A)− π(A)‖ = 0 (8)

for each z ∈ Rp, B is the Borel σ-algebra on Rp and ‖ · ‖ denotes the total variation
norm. If Eqn. (8) holds for ρ = 1, then {zt} is called ergodic.

The definition for Pn(z,A) can be given as the probability that {zn} moves from z
to the set A ∈ B in n steps: Pn(z,A) = P (zt+n ∈ A|zt = z) . Also, expression for π(A)
is as follows:

π(A) =

∫
P 1(z,A)π(dz) for all A ∈ B.

Thus, we call π as the stationary measure and the distribution of zt converges to π if
{zt} is ergodic. Then, we say {zt} is asymptotically stationary [36]. To establish the
ergodicity of TARNN processes, we need the concept of irreducibility and aperiodicity.
A Markov chain {zt} is called irreducible if

∞∑
n=1

Pn(z,A) > 0 for all z ∈ Rp,

whenever λ(A) > 0 and λ denotes the Lebesgue measure on (Rp,B). Thus, for an
irreducible Markov chain, all parts of the state space can be reached by the Markov
chain irrespective of the starting point. Now, an irreducible Markov chain is aperiodic
if there exists an A ∈ B with λ(A) > 0 and for all C ∈ B, C ⊆ A with λ(C) > 0, there
exists a positive integer n such that

Pn(z, C) > 0 and Pn+1(z, C) > 0 for all z ∈ Rp.

Hence, it is possible that the Markov chain returns to given sets only at specific time
points for an aperiodic Markov chain. For most general time series models, irreducibil-
ity and aperiodicity cannot be assumed automatically. But for a TARNN process,
these conditions can be checked. In general, it is sufficient to assume the distribution
of the noise process to be an absolutely continuous component with respect to Lebesgue
measure and the support of the probability density function (PDF) is sufficiently large.

3.2. Main Results

It is clear from the above discussion that if the Markov chain is geometrically ergodic
then its distribution will converge to π and the corresponding time series will be called
asymptotically stationary, see also [58]. Lemma 3.1 states that the state space of the
Markov chain cannot be reduced depending on the starting point.

Lemma 3.1. Let {zt} is defined by (7), and let E|εt| <∞ and the PDF of εt is positive
everywhere in R. Then if f is defined by (4), the Markov chain {zt} is ϕ-irreducible
and aperiodic.
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Proof. Since the support of the PDF of εt is the whole real line, that is, the PDF
is positive everywhere in R, then we can say that {zt} is ϕ-irreducible by using [12].
In our case, every non-null p-dimensional hypercube can be reached in p steps with
positive probability (and hence every non-null Borel set A). A necessary and sufficient
condition for {zt} to be aperiodic is to have a set A and positive integer n such that
Pn(z,A) > 0 and Pn+1(z,A) > 0 for all z ∈ A [58]. In this case, this is true for all n
due to consideration of the unbounded additive noise.

The theorem below states the necessary condition for geometric ergodicity of a
Markov chain. This can be obtained using the decomposition technique and ergodicity
of stochastic difference equations [12].

Theorem 3.2. Suppose {zt} is defined as in (6) and (7), F be a compact set that can
be decomposed as F = Fh + Fd, and the following conditions hold:
(i) Fh(.) is continuous and homogeneous and Fd(.) is bounded;
(ii) E|εt| <∞ and probability distribution function of εt is positive everywhere in R;
then {zt} is geometrically ergodic.

Proof. {zt} satisfies the following equation:

zt = F (zt−1) + et ; t ≥ 1, and F : Rp → Rp. (9)

Let Fh be continuous and homogeneous, viz., Fh(cz) = cFh(z) for all c > 0, zt ∈ Rp,
and Fd is bounded. Let the origin, O, be a fixed point of Fh. It is important to note that
εt satisfies the condition (ii) in Theorem 3.2. We are going to show that the existence
of a continuous Lyapunov function, V , in a neighbourhood of the origin which will
ensure the geometric ergodicity of (7).

To start with we let W ⊆ Rp, the closure of W by W and its boundary by Ŵ . We also
let V be defined over the closure of the unit ball. We let p0 = inf‖z‖=1 V (z), where
‖ · ‖ denote the Euclidean norm. Also, let G be the maximal connected component of
{z : V (z) < p0

2 } that contains the origin. Then we have F (G) ⊂ G.
Let g(z) = inf{r ≥ 0, z ∈ rG}, z ∈ Rp, where rG = {rz, z ∈ G}. Then g(z) is well
defined and it can easily be checked that g has the following properties:

(1) g(cz) = cg(z), for all c > 0.
(2) There exists 0 < c < C <∞ such that c‖z‖ ≤ g(z) ≤ C‖z‖.
(3)

(
z/g(z)

)
∈ Ĝ.

(4) There exists ε > 0, 0 < θ < 1 such that for all z ∈ Ĝ, y ∈ Rp, we have
‖y − F (z)‖ < ε⇒ y ∈ G and g(y) < θ.

Now, for Eqn. (7), εt satisfies E|εt| <∞. Let A ∈ B and z ∈ Rp, we define P (z,A) be
the transition probability function as:

P (z,A) =

∫
A−F (z)

f(t)P(dt).
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Thus, it holds that ∫
g(y)P (z, dy)

=

∫
g
(
Fh(z) + t

)
f(t)P(dt)

=

∫
‖t/g(z)‖<ε

g(z)g

(
Fh

(
z

g(z)

)
+

t

g(z)

)
f(t)P(dt)

+

∫
‖t/g(z)‖≥ε

g(z)g

(
Fh

(
z

g(z)

)
+

t

g(z)

)
f(t)P(dt)

<
[
θg(z)

]
+
[
M + g(z)β(z)

]
for some M > 0.

Here |β(z)| < B <∞ for all z and β(z)→ 0 as ‖z‖ → ∞. We let h(z) = g(z) + 1, and
r be such that

|β(z)| < (1− θ)
4

for ||z|| > r.

Then for r0 = max

(
r, 4(C+1)

(1−θ)p

)
, there exists B′ such that

(1)
∫
f(y)P (z, dy) < B′ <∞ when ||z|| ≤ r0.

(2)
∫
f(y)P (z, dy) < 1

2(1 + θ)h(z) when ||z|| > r0.

Using Theorem 4 of [60], we can conclude that {zt} is geometric ergodic.

The next theorem gives the main result for asymptotic stationary of the TARNN
model.

Theorem 3.3. Let E|εt| <∞ and the PDF of εt is positive everywhere in R, and {εt}
and {zt} are defined as in (6) and (7), respectively. Then if f is a nonlinear neural
network as defined in (4), then {zt} is geometrically ergodic and {εt} is asymptotically
stationary.

Proof. The noise process εt satisfies E|εt| <∞ by assumption (e.g., Gaussian noise).
It is also important to note that neural network activation functions, more precisely
logistics or tan-hyperbolic activation functions, are continuous compact functions and
have bounded range. Thus {zt} satisfies all the criteria to be geometrically ergodic
and using Theorem (3.2), one can write that for the ARNN process with Fh ≡ 0 and
Fd ≡ F . Thus, the series {εt} is asymptotically stationary.

Remark 2. Some interpretations and practical implications of the theoretical results
are given below:

• The geometric rate of convergence in Theorem 3.3 implies that the memory
of TARNN process vanishes exponentially fast. This implies that the simplest
version of the proposed model converges to a Wiener process.
• This is important for predictions over larger intervals of time, for example, one

might train the network on an available sample and then use the trained network
to generate new data with similar properties like the training sample. The results
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for the asymptotic stationarity can guarantee that the proposed hybrid model
can not have growing variance over time.

• From practitioners point of view, when the data is generated by the irreducible
TARNN process, the estimated weights are not too far from the true weights.
Then, one can draw an indirect conclusions on the statistical nature of the ob-
served data based on the estimated weights.

4. Experimental Analysis

4.1. COVID-19 Data Sets

Data is collected from the “Our World in Data” public repository (Link: https:

//ourworldindata.org/coronavirus) on eight countries: USA, Brazil, India, Rus-
sia, South Africa, Mexico, Spain and Iran with USA, India, Brazil and Russia leading in
the number of confirmed cases of COVID-19. Eight univariate time-series of confirmed
cases are analyzed for generating future outbreak predictions. The data is also avail-
able in this GitHub repository: https://github.com/owid/COVID-19-data/tree/

master/public/data. The long term memory property of a time series is measured
using the Hurst exponent (HE) [37]. The value of HE lying between 0.5 and 1 proves
that the series has sufficiently long memory. To calculate the HE for the given data
sets, we have used ‘pracma’ package in R statistical software. All the data sets have
long-term memory and the nonlinearity is confirmed using Terasvirta’s neural network
test [57] applied on all the data sets.

4.2. Preliminary Data Analysis

A summary of the COVID-19 data sets of confirmed cases is shown in Table 2. USA has
the maximum number of observations of 192 and highest mean,variability, followed by
India (182), Russia (181) , Spain (180), Iran (162), Brazil (156), and Mexico (153). The
Skewness values obtained from the data sets away from symmetric range of (-0.5,0.5)
of and kurtosis ≥ 1 indicates towards skewed data. The values of the Jarque–Bera (JB)
test statistic are away from zero with desired p-values, establishes the data sets are non-
normally distributed, except for Iran. Also, it highlights that even though the inception
of COVID-19 outbreak varies across borders, the epidemic curves hardly have any
decline in new confirmed cases, though flattening the curve. Nonlinear and nonseasonal
models are included in the analysis and compared with traditional ARIMA, GARCH,
Theta, ARNN, hybrid WBF-ARIMA [11], hybrid WBF-GARCH [54], hybrid ARIMA-
ARNN [11]. A pictorial view of the training data sets along with auto-correlation
function (ACF) and partial ACF (PACF) plots are given in Figure 2.

Table 2. Descriptions of COVID-19 data sets of confirmed cases for USA, Brazil, India, Russia, South Africa,

Mexico, Spain and Iran.
Country Date No. of Days Minimum value Max value Mean Standard deviation Skewness Kurtosis JB test p-value

USA 01/21 - 07/30/2020 192 0 78427 23057.20 20910.43 0.7290 2.8163 17.2741 0.0001
Brazil 02/26 - 07/30/2020 156 0 69074 16360.67 17172.34 0.8983 2.8981 21.0469 0.0000
India 01/30 - 07/30/2020 182 0 52123 8702.154 12921.09 1.7909 5.4357 142.2829 0.0000

Russia 02/01 - 07/30/2020 181 0 12640 4580.055 3956.639 0.0290 1.4616 17.8740 0.0000
South Africa 03/06 - 07/30/2020 147 0 13944 3204.918 4325.744 1.2776 3.2182 40.2798 0.0000

Mexico 02/29 - 07/30/2020 153 0 8438 2669.601 2452.852 0.4894 1.9025 13.7855 0.0010
Spain 02/01 - 07/30/2020 180 0 9181 1582.283 2201.895 1.7508 5.2113 128.6291 0.0000
Iran 02/20 - 07/30/2020 162 0 5275 1845.117 875.5673 -0.1613 3.5602 2.8206 0.2444
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Figure 2. Training COVID-19 data sets of confirmed cases and corresponding ACF, PACF plots for USA,

Brazil, India, Russia, South Africa, Mexico, Spain and Iran
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Time series
forecasting

tools

Classical Advanced Hybrid

ARIMA [6]

GARCH
[54]

Theta [2]

WARIMA
[43]

ARNN [18]

ARIMA-
ARNN [9]

WBF-
ARIMA
[11]

TARNN
(Proposed)

Figure 3. Time series forecasting tools (available and proposed) used in this study.

4.3. Performance Evaluation Metrics

The performance of different forecasting models are evaluated based on root mean
square error (RMSE) and mean absolute error (MAE) metrics for eight COVID-19
data sets [26]:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2; MAE =
1

n

n∑
i=1

|yi − ŷi|,

where, yi is the actual value, ŷi is the predicted value, and n denotes the number of
data points. By definition, the lower the value of these performance metrics, the better
is the performance of the concerned forecasting model.

4.4. Results

A schematic diagram is presented in Figure 3 to give an outline of the models to
be used in this section. We start the experimental evaluation for all the data sets
with the classical ARIMA(p, d, q) using ‘forecast ’ [27] statistical package in the R
statistical software [47]. The proposed hybrid Theta-ARNN (TARNN) model with
ten and fifty days ahead of prediction can indicate the extent of the pandemic. The
nonlinear, non-stationary, and non-Gaussian structure of the data sets were confirmed
by statistical tests in Table 2. The performances of traditional single models ARIMA,
GARCH, Theta, ARNN, and hybrid models like hybrid WBF-ARIMA model,
hybrid WBF-GARCH model, hybrid ARIMA-ARNN model were compared with the
proposed novel hybrid Theta-ARNN (TARNN) model for all these eight COVID-19
data sets in Table 3.

In the proposed TARNN model, linear modelling is done with Theta model using
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‘thetaf’ function under the “forecast” package in R statistical software. Nonlinear
modelling with ARNN approach is done with “caret” package using ‘nnetar’ function
in R statistical software. After fitting the Theta model, we generate prediction
for ten and fifty day time steps to compute the residual values (plots are given in
Figure 4). Further, Theta residuals are modelled with ARNN(p, k) model having
a pre-defined Box-Cox transformation set λ = 0 to ensure the forecast values to
stay positive. The value of p and k are obtained by training the network and this
is indeed a data reliant approach. Further, we add both the linear and non-linear
forecasts to obtain the final forecast results. Theta model was fitted to eight data
sets namely USA, Brazil, India, Russia, South Africa, Mexico, Spain and Iran.
Further, model residuals of these eight countries were trained using ARNN(12,6)
ARNN(20,10), ARNN(9,5), ARNN(7,4), ARNN(7,4), ARNN(14,8), ARNN(11,6)
and ARNN(3,2) models with an average of 20 networks for all eight datasets, each
of which is a 12-6-1, 20-10-1, 9-5-1, 7-4-1, 7-4-1, 14-8-1, 11-6-1 and 3-2-1 networks
with 85, 221, 56, 37, 37, 129, 79 and 11 weights and with 492095, 33990, 40429,
196628, 59296, 646.9, 18603 and 102346 estimated σ2, respectively. Finally, the
predicted results of both Theta and ARNN models are added together to obtain
the estimated forecasts of the proposed TARNN model. In a similar way, we
applied hybrid WBF-ARIMA model, hybrid WBF-GARCH model, hybrid ARIMA-
ARNN models over eight COVID-19 confirmed case datasets for comparison purposes.

Root mean square error (RMSE) and mean absolute error (MAE) were utilized to
evaluate the predictive performance of the models [11]. Availability of data points is
limited, thus implementation of the advanced deep learning techniques will result in
over-fitting and biased estimates [22]. Actual vs. predicted values of well-performed
model are plotted in Figure 5. As the Theta model is fitted on the residual time
series, predictions are generated for the next ten (July 31 2020 to August 09 2020)
and fifty (July 31 2020 to September 18 2020) time steps respectively. The real-time
short-term forecasts using ARIMA, Theta, ARNN and hybrid ARIMA-ARNN and
the proposed TARNN model are shown in Table 6 and the real-time long-term
forecasts are illustrated in Table 7.

We compared our proposed TARNN model with traditional single models (ARIMA,
GARCH, Theta, ARNN) along with hybrid WBF-ARIMA model, hybrid WBF-
GARCH model and the experimental results are reported in Table 3. The performance
of the proposed hybrid Theta-ARNN (TARNN) model is superior as compared to
all the traditional individual and hybrid models on average. In comparison to other
hybrid models, six out of eight data sets of COVID-19 confirmed cases, our proposed
TARNN model outperformed all the hybrid and traditional individual models in the
significant edge. The theoretically proven asymptotic stationarity of the proposed
hybrid model also suggests that the model cannot have a growing variance over time.
The consistency and adequacy in experimental results empirically approves the same.
Thus, the efficacy of the proposed methodology of the proposed hybrid model is
experimentally validated.

All the results can be effortlessly updated with the help of R-shiny application as new
data becomes available. This publicly availble repository link https://github.com/

arinjita9/COVID-19-Forecasting-by-TARNN- contains the current data files and R
scripts for the TARNN model which ensures the repeatability and reproducibility of
the results presented in this study.
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Country ARIMA Theta Hybrid ARIMA-ARNN Hybrid Theta-

ARNN(TARNN)

USA

Brazil
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Mexico
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Figure 4. Comparison of Residual Plots among different forecasting models with COVID-19 confirmed cases
of USA, Brazil, India, Russia, South Africa, Mexico, Spain and Iran
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Figure 5. Actual and Predicted values of COVID-19 confirmed cases for different forecasting models for USA,
Brazil, India, Russia, South Africa, Mexico, Spain and Iran
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Figure 6. Real-time out of sample forecasts (10 days ahead) of COVID-19 confirmed cases for different
forecasting models for USA, Brazil, India, Russia, South Africa, Mexico, Spain and Iran
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Figure 7. Real-time out of sample forecasts (50 days ahead) of COVID-19 confirmed cases for different
forecasting models for USA, Brazil, India, Russia, South Africa, Mexico, Spain and Iran
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Table 3. Quantitative measures of performance for different forecasting models on eight time series (training data sets only) of COVID-19 confirmed

cases for USA, Brazil, India, Russia, South Africa, Mexico, Spain and Iran.

Performance

Measures ARIMA GARCH Theta ARNN WBF-ARIMA WBF-GARCH ARIMA-ARNN Theta-ARNN(TARNN)

RMSE

USA 3714.3930 4827.5000 4524.3999 1787.7300 3961.0590 4594.2280 3639.0044 721.5658
Brazil 5626.7170 7687.0980 7761.1186 374.6499 6418.9380 7038.8090 144.8500 178.0458
India 819.4440 1040.8900 267.5700 908.2841 875.9043 712.7757 264.8608 201.0696
Russia 834.1711 1003.6880 920.3669 645.0402 887.1931 949.5511 776.6565 443.4280
South Africa 791.7877 1001.3170 980.9843 266.8777 770.2982 898.1525 49.1428 243.5067
Mexico 531.6361 679.1138 646.5100 57.1257 530.8732 681.1689 24.8734 24.4335
Spain 798.6674 1021.8120 914.8947 204.9399 909.3630 880.0793 171.5842 136.3910
Iran 440.9657 565.7666 453.3910 329.3327 486.8946 489.1197 418.5036 319.9160

MAE

USA 2468.3730 2794.1200 2837.2370 1153.2170 2489.6140 2913.2490 2220.4390 468.6335
Brazil 3344.2160 4169.0690 4678.6480 199.1100 3589.1310 4632.4600 72.7800 90.2053
India 425.9808 490.2410 487.5586 459.6912 465.4272 444.2688 176.4697 128.7718
Russia 370.7757 367.7794 361.7216 315.1817 373.6445 370.7152 383.5546 202.6083
South Africa 430.3521 472.0016 471.0693 175.7308 423.5596 497.7752 30.7241 160.3598
Mexico 377.0140 408.4892 428.7757 34.3695 361.7373 419.8514 15.1884 15.1298
Spain 482.3321 498.3005 479.3767 119.0491 533.3984 517.9961 109.8681 87.5449
Iran 237.4884 228.9164 239.7712 197.2631 286.3805 270.5897 209.4984 182.8744

5. Discussions

In this study, we proposed a novel hybrid Theta-ARNN (TARNN) model using residual
modelling approach that performs considerably well for confirmed cases of COVID-19
forecasting for the countries that includes the ones with the highest number of cases
USA, followed by India, Brazil, Russia. The proposed TARNN model filters linearity
using the Theta model and can better explain the linear, nonlinear and non-stationary
tendencies present in the selected COVID-19 data sets as compared to the traditional
single and hybrid models. It also yields better forecast accuracy than various tradi-
tional single and hybrid models like ARIMA, GARCH, Theta, ARNN, WBF-ARIMA,
WBF-GARCH and ARIMA-ARNN for six out of eight countries which are USA, In-
dia, Russia, Spain and Iran. The proposal will be useful in decision and policy makings
for government officials and policymakers to allocate adequate health care resources
for the coming days in responding to the crisis. Time series of epidemics can oscillate
heavily due to various epidemiological factors and these fluctuations are challenging to
be captured adequately for precise forecasting. This newly-developed model can still
predict with better accuracy provided the conditions of asymptotic stationarity of hy-
brid model are satisfied. This method can be used to update real-time forecasts as more
data becomes available. The study covering multiple countries can be utilized without
geographical borders, and reflect the impact of of social distancing, wearing masks,
lock down, shutdown, quarantine and sanitizing properly measures implemented by
authorities. Both the short-term and long-term out of sample forecasts show oscilla-
tory behaviour with upward trend and don’t show any stiff decay sooner except Iran.
All the seven different countries except Spain are going to face unlike uplifts in the
number of new confirmed cases of COVID-19 pandemic. Followed by the both short-
term and long-term out of sample forecasts reported in this paper, the lockdown and
shutdown periods can be adjusted accordingly to handle the uncertain and vulnerable
situations of COVID-19 pandemic. The newly-developed Theta-ARNN (TARNN) can
efficiently predict COVID-19 cases, compared to traditional single and hybrid models.
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Prevalent techniques in literature were unable to completely capture the nonlinear
behavior of stochastic time series containing inherent random shock component. This
new method have significant theoretical (established ergodicity and stationarity of the
proposed TARNN process) as well as practical implications. Authorities and health
care can modify their planning in stockpile and hospital-beds depending on these
forecasts of the COVID-19 pandemic.

6. Conclusions and Future Challenges

This work developed a novel hybrid Theta-ARNN (TARNN) to predict the subsequent
COVID-19 outbreaks accurately and respond to pandemics more efficiently. Our
proposed model is useful for nowcasting and forecasting of COVID-19 and the model
can be further improved for multivariate time series set up when one get data sets
on exogenous variables that impact on COVID-19 daily cases. Many parameters
associated with COVID-19 transmission are still poorly understood. The resulting
model uncertainty is not always calculated or reported in a standardized way. Once
we can incorporate these variables, we can improve our estimates and update the
TARNN model accordingly.

Since purely statistical approaches don’t account for how transmission occurs, they
are generally not well suited for long-term predictions about epidemiological dynamics
(such as when the peak will occur and whether resurgence will happen) or for inference
about intervention efficacy. Most forecasting models therefore limit their projections
to one week or a few weeks ahead. Also, the problem of using confirmed cases to fit
models is further complicated by the fact that the fraction of cases that are confirmed
is spatially heterogeneous and time-varying. Amid enormous uncertainty about the
future of the COVID-19 pandemic, the proposed TARNN model yields quantitative
projections that policymakers may need in the short term to allocate resources or plan
interventions. To conclude this model can further be extended for similar non-linear
and non-Gaussian forecasting problems arising in other applied domains.

References

[1] C. Anastassopoulou, L. Russo, A. Tsakris, and C. Siettos, Data-based analysis, modelling
and forecasting of the covid-19 outbreak, PloS one 15 (2020), p. e0230405.

[2] V. Assimakopoulos and K. Nikolopoulos, The theta model: a decomposition approach to
forecasting, International journal of forecasting 16 (2000), pp. 521–530.

[3] J.M. Bates and C.W. Granger, The combination of forecasts, Journal of the Operational
Research Society 20 (1969), pp. 451–468.

[4] D. Baud, X. Qi, K. Nielsen-Saines, D. Musso, L. Pomar, and G. Favre, Real estimates of
mortality following covid-19 infection, The Lancet infectious diseases (2020).

[5] M.N.K. Boulos and E.M. Geraghty, Geographical tracking and mapping of coronavirus
disease covid-19/severe acute respiratory syndrome coronavirus 2 (sars-cov-2) epidemic
and associated events around the world: how 21st century gis technologies are supporting
the global fight against outbreaks and epidemics (2020).

[6] G.E. Box, G.M. Jenkins, G.C. Reinsel, and G.M. Ljung, Time series analysis: forecasting
and control, John Wiley & Sons, 2015.

[7] P.J. Brockwell and A. Lindner, Strictly stationary solutions of autoregressive moving av-
erage equations, Biometrika 97 (2010), pp. 765–772.

22

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.01.20205021doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.01.20205021


[8] E. Cadenas and W. Rivera, Wind speed forecasting in three different regions of mexico,
using a hybrid arima–ann model, Renewable Energy 35 (2010), pp. 2732–2738.

[9] T. Chakraborty, S. Chattopadhyay, and I. Ghosh, Forecasting dengue epidemics using
a hybrid methodology, Physica A: Statistical Mechanics and its Applications (2019), p.
121266.

[10] T. Chakraborty and I. Ghosh, An integrated deterministic-stochastic approach for pre-
dicting the long-term trajectories of covid-19, medRxiv (2020).

[11] T. Chakraborty and I. Ghosh, Real-time forecasts and risk assessment of novel coronavirus
(covid-19) cases: A data-driven analysis, Chaos, Solitons & Fractals (2020), p. 109850.

[12] K.S. Chan and H. Tong, On the use of the deterministic lyapunov function for the er-
godicity of stochastic difference equations, Advances in applied probability 17 (1985), pp.
666–678.

[13] R.T. Clemen, Combining forecasts: A review and annotated bibliography, International
journal of forecasting 5 (1989), pp. 559–583.

[14] A.J. Conejo, M.A. Plazas, R. Espinola, and A.B. Molina, Day-ahead electricity price
forecasting using the wavelet transform and arima models, IEEE transactions on power
systems 20 (2005), pp. 1035–1042.

[15] J.C. Duan, The garch option pricing model, Mathematical finance 5 (1995), pp. 13–32.
[16] E.J. Emanuel, G. Persad, R. Upshur, B. Thome, M. Parker, A. Glickman, C. Zhang, C.

Boyle, M. Smith, and J.P. Phillips, Fair allocation of scarce medical resources in the time
of covid-19 (2020).

[17] D. Fanelli and F. Piazza, Analysis and forecast of covid-19 spreading in china, italy and
france, Chaos, Solitons & Fractals 134 (2020), p. 109761.

[18] J. Faraway and C. Chatfield, Time series forecasting with neural networks: a comparative
study using the air line data, Journal of the Royal Statistical Society: Series C (Applied
Statistics) 47 (1998), pp. 231–250.

[19] G. Grasselli, A. Pesenti, and M. Cecconi, Critical care utilization for the covid-19 outbreak
in lombardy, italy: early experience and forecast during an emergency response, Jama 323
(2020), pp. 1545–1546.

[20] G. Grasselli, A. Zangrillo, A. Zanella, M. Antonelli, L. Cabrini, A. Castelli, D. Cereda, A.
Coluccello, G. Foti, R. Fumagalli, et al., Baseline characteristics and outcomes of 1591
patients infected with sars-cov-2 admitted to icus of the lombardy region, italy, Jama 323
(2020), pp. 1574–1581.

[21] W.j. Guan, Z.y. Ni, Y. Hu, W.h. Liang, C.q. Ou, J.x. He, L. Liu, H. Shan, C.l. Lei, D.S.
Hui, et al., Clinical characteristics of coronavirus disease 2019 in china, New England
journal of medicine 382 (2020), pp. 1708–1720.

[22] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: data
mining, inference, and prediction, Springer Science & Business Media, 2009.

[23] I. Holmdahl and C. Buckee, Wrong but useful—what covid-19 epidemiologic models can
and cannot tell us, New England Journal of Medicine (2020).

[24] Z. Hu, Q. Ge, L. Jin, and M. Xiong, Artificial intelligence forecasting of covid-19 in china,
arXiv preprint arXiv:2002.07112 (2020).

[25] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu,
et al., Clinical features of patients infected with 2019 novel coronavirus in wuhan, china,
The lancet 395 (2020), pp. 497–506.

[26] R.J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice, OTexts, 2018.
[27] R.J. Hyndman, G. Athanasopoulos, C. Bergmeir, G. Caceres, L. Chhay, M. O’Hara-

Wild, F. Petropoulos, S. Razbash, and E. Wang, Package ‘forecast’, Online] https://cran.
r-project. org/web/packages/forecast/forecast. pdf (2020).

[28] R.J. Hyndman and B. Billah, Unmasking the theta method, International Journal of Fore-
casting 19 (2003), pp. 287–290.

[29] J.P. Ioannidis, S. Cripps, and M.A. Tanner, Forecasting for covid-19 has failed, Interna-
tional journal of forecasting (2020).

[30] M. Khashei and M. Bijari, An artificial neural network (p, d, q) model for timeseries

23

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.01.20205021doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.01.20205021


forecasting, Expert Systems with applications 37 (2010), pp. 479–489.
[31] A.J. Kucharski, T.W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, R.M. Eggo, F.

Sun, M. Jit, J.D. Munday, et al., Early dynamics of transmission and control of covid-19:
a mathematical modelling study, The lancet infectious diseases (2020).

[32] L.I. Kuncheva, Combining pattern classifiers: methods and algorithms, John Wiley &
Sons, 2004.

[33] Q. Li, W. Feng, and Y.H. Quan, Trend and forecasting of the covid-19 outbreak in china,
Journal of Infection 80 (2020), pp. 469–496.

[34] A. Maleki, S. Nasseri, M.S. Aminabad, and M. Hadi, Comparison of arima and nnar
models for forecasting water treatment plant’s influent characteristics, KSCE J. CIV.
ENG. 22 (2018), pp. 3233–3245.

[35] M. Maleki, M.R. Mahmoudi, D. Wraith, and K.H. Pho, Time series modelling to forecast
the confirmed and recovered cases of covid-19, Travel Medicine and Infectious Disease
(2020), p. 101742.

[36] S.P. Meyn and R.L. Tweedie, Markov chains and stochastic stability, Springer Science &
Business Media, 1993.

[37] J. Mielniczuk and P. Wojdy l lo, Estimation of hurst exponent revisited, Computational
statistics & data analysis 51 (2007), pp. 4510–4525.
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