
 

 

COVID-19 Classification of 
X-ray Images Using Deep 
Neural Networks  

Abstract  

Objectives 

In the midst of the coronavirus disease 2019 (COVID-19) outbreak, chest X-ray (CXR) imaging is 

playing an important role in diagnosis and monitoring of patients with COVID-19. Machine learning 

solutions have been shown to be useful for X-ray analysis and classification in a range of medical 

contexts. In this study, we propose a machine learning model for detection of patients tested 

positive for COVID-19 from CXRs that were collected from inpatients hospitalized in four different 

hospitals. We additionally present a tool for retrieving similar patients according to the model’s 

results on their CXRs.  

Methods 

In this retrospective study, 1384 frontal CXRs, of COVID-19 confirmed patients imaged between 

March-August 2020, and 1024 matching CXRs of non-COVID patients imaged before the 

pandemic, were collected and used to build a deep learning classifier for detecting patients 

positive for COVID-19. The classifier consists of an ensemble of pre-trained deep neural networks 

(DNNS), specifically, ReNet34, ReNet50¸ ReNet152, vgg16, and is enhanced by data 

augmentation and lung segmentation. We further implemented a nearest-neighbors algorithm that 

uses DNN-based image embeddings to retrieve the images most similar to a given image.  

Results 

Our model achieved accuracy of 90.3%, (95%CI: 86.3%-93.7%) specificity of 90% (95%CI: 

84.3%-94%), and sensitivity of 90.5% (95%CI: 85%-94%) on a test dataset comprising 15% 

(350/2326) of the original images. The AUC of the ROC curve is 0.96 (95%CI: 0.93-0.97).  

Conclusion 

We provide deep learning models, trained and evaluated on CXRs that can assist medical 

efforts and reduce medical staff workload in handling COVID-19.  
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Key Points   

● A machine learning model was able to detect chest X-ray (CXR) images of patients tested 

positive for COVID-19 with accuracy and detection rate above 90%.  

● A tool was created for finding existing CXR images with imaging characteristics most 

similar to a given CXR, according to the model’s image embeddings.  

Abbreviations 

● CXR - chest x-ray 

● COVID-19 - Coronavirus Disease 2019 

● RT-PCR - reverse transcription polymerase chain reaction 

● ROC - receiver operating characteristic 

● P-R curve - precision-recall curve 

● AUC - area under the curve 

● GT - ground truth 

● FPR - false positive rate 

● TPR - true positive rate 

1 Introduction  

The Coronavirus Disease 2019 (COVID-19) pandemic, caused by the SARS-CoV-2 virus, poses 

tremendous challenges to healthcare systems around the world, and requires physicians to 

make fast clinical decisions under pressure. After many months that led to exhaustion of the 

medical teams, hospitals are confronting renewed surges with overwhelming numbers of new 

patients seeking medical aid. Some patients approach the emergency departments with 

respiratory symptoms, and others that are being evaluated for different reasons, are 

asymptomatic yet positive for COVID-19.   

The prevalent test used for COVID-19 identification is Reverse Transcription Polymerase Chain 

Reaction (RT-PCR) (1–3), despite its high false negative rates. The undetected fraction of active 

patients inevitably leads to uncontrolled viral dissemination, masking hidden essential 

epidemiological data (4–6). Additionally, RT-PCR testing kits are expensive, processing them 

requires dedicated personnel and can take hours to days. Rapid and accurate methods of 

diagnosis that do not rely on medical staff are therefore becoming crucial for the control of the 

pandemic. CXRs of COVID-19 patients can demonstrate typical findings including peripheral 

opacities and ground glass patterns in the absence of pleural effusion (5,7,8), and therefore 

may be used as a triage test,  for establishing and grading pulmonary manifestations, as well as 

for follow up. 

Deep learning models have shown impressive abilities in image related tasks, including in many 

radiological contexts (9–11). They have great potential in assisting COVID-19 management 
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efforts, but require large amounts of training data. When training neural networks for image 

classification, images from different classes should only differ in the task specific characteristics; 

it is important, therefore, that all images are taken from the same machines. Otherwise, the 

network could learn the differences, e.g., between machines associated with different classes 

rather than identifying physiological and anatomical COVID-19 characteristics.  

Portable X-ray machines are predominant in COVID-19 handling (12), and most available CXRs 

of patients with COVID-19 in Israel come from portable X-rays. While COVID-19 is easier to detect 

in CT (13), CT is more expensive, exposes the patient to higher radiation, and its decontamination 

process is lengthy and causes severe delays between patients. The major challenge with the use 

of CXR in COVID-19 diagnosis is its low sensitivity and specificity in current radiological practice. 

A recent study found that the sensitivity of CXRs was poor for COVID-19 diagnosis (14). 

This study aims to develop and evaluate machine learning tools for COVID-19 identification and 

management. A large dataset of images from portable X-rays collected in 4 different hospitals 

was used to train and evaluate a network that can detect COVID-19 in the images with high 

reliability and to develop a tool for retrieving CXR images that are similar to a query CXR image, 

based on a metric defined by the classifier. The network results in detection accuracy of 90.3%, 

specificity of 90% and sensitivity of 90.5%.  

2 Materials and Methods  

Data and patients 

This retrospective study took place during and after the first wave of the COVID-19 pandemic in 

Israel, and included patients aged 18 years and older in four medical centers in Israel. The data 

for this study includes a total of 2427 frontal (AP/PA) CXR images from 1384 patients (63 +/- 18 

years, f:m= 832:552), 360 of which with a positive COVID-19 diagnosis and 1024 negative. All 

images come from portable X-ray machines. For COVID-19 positive patients, the standard 

protocol was that every symptomatic patient with positive RT PCR test for COVID 19 was 

admitted to the hospital, even if symptoms were mild. Routine chest X-rays were performed at 

the day of admission and then later for follow up. COVID-19 positive images include a wide 

range of minimal to severe pulmonary damage, which, for the purpose of this work were all read 

as positive COVID-19. The non COVID-19 images were obtained from CXRs taken by the same 

X-ray machines from January 2017 to April 2019, before the start of the pandemic, meaning 

there are no false negatives in our cohort. These include normal as well as abnormal 

radiographs with other clinical conditions. 

The test set was taken from the full CXR dataset and contains 350 CXR (15%) of which 179 

(51%) are positive for COVID-19 and 171 (49%) are negative. For patients with multiple images, 

their images were used either for the test set or for the train set, never for both. This is done to 

prevent the model from identifying patient-specific image features (e.g., medical implants) and 

associating them with the label. Both train and test sets include patients from all four hospitals.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 26, 2021. ; https://doi.org/10.1101/2020.10.01.20204073doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.01.20204073
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

All images were used in the highest available resolution without lossy compression; 4% 

(101/2426) of the images were excluded due to lateral positioning, or due to rectangular artifacts 

in the image, of these 98 were COVID-19 positive. No additional selection criteria were used to 

exclude images based on clinical radiological findings. 

Image Processing 

The model pipeline (Figure 1), begins with a series of preprocessing steps, including 

augmentation, normalization, and segmentation of the images.  

Augmentations are transformations that change features such as image orientation and 

brightness. These properties are irrelevant for correct classification, but may vary during image 

acquisition, and can affect the training performance of the network because of its rigid 

registration with respect to orientation and pixel values. They serve to enlarge the dataset by 

creating a diverse set of images, increasing model robustness and generalizability (15,16). 

Importantly, augmentations should correspond to normal variation in CXR acquisition; to ensure 

this we consulted with radiologists when defining the augmentation parameters (see 

Supplemental Material for details).  

The normalization process aims to standardize image properties and scale. It consists of 

cropping black edges, standardizing the brightness and scaling the size of each image to 

1024X1024 pixels using bilinear interpolation. 

To enhance performance we created an additional image channel using lung segmentation via 

a U-net  pre-trained on an external dataset  as detailed in (17). This network produces a pixel-

mask of the CXR indicating the probability that each pixel belongs in the lungs, allowing the 

network to access this information while training. Input images contain 3 channels: the original 

CXR, the segmentation map, and one filled with zeroes. This is done to accommodate the pre-

trained models we used that use 3-channel RGB images. 

 

Figure 1: Full pipeline workflow overview. First each image undergoes processing consisting of: augmentation, which is a set of 

visual transformations (transformations shown: (a) original image, (b) brighten, (c) horizontal flip, (d) 7 degrees rotation, (e) CLAHE 
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transformation, (f) scale), normalization, in order to set a standard scale of image size and color, and segmentation, which 

emphasizes the area of the lungs and is combined to the image. The entire image set is then fed into a Neural Network which 

produces a classification outcome for each image as positive for coronavirus disease 2019 (COVID-19) or negative for COVID-19. 

In addition, embedded features are extracted from the last layer of the network and are used to find images with similar 

characteristics to a given image as learned by the network. 

Network architecture and output 

We compared five network models: ResNet34, ResNet50, ResNet152 (18), VGG16 (19) and 

CheXpert (9). The general approach of these architectures is to reduce images from a high-

dimensional to a low-dimensional space such that a simple boundary can be used to separate 

image classes. The models were trained using transfer learning, i.e. loading weights pre-trained 

on the ImageNet database (18,19) or on the CheXpert dataset (9) and subsequently retraining 

them on our data. We additionally classify the images using an ensemble model that outputs the 

average of the networks’ results. 

In addition to classification, we propose a method for retrieving a number of CXR images that 

are the most similar to a given image. The activation of layers of the neural network serve as 

embeddings of the images into a vector space, and should capture information about clinical 

indications observed in the images. We use the embeddings produced by the network’s last 

layer to search for similarity between the resulting vectors, and retrieve the nearest neighbors of 

each image.  

Statistical analysis 

For model evaluation we used accuracy, sensitivity, specificity, and area under the curve (AUC) 

for receiver operating characteristic (ROC) and precision recall (P-R) curves. Confidence 

intervals (CIs) were calculated by running a training of the model 10 times using different 

divisions of training and testing sets, then taking 100 bootstrap samples out of the test set for 

each division, and calculating the requested metrics on each of these divisions and bootstrap 

samples. The CIs for each run are then given by the 2.5th and 97.5th percentiles for each 

metric. We report the CIs for the original data split within the paper. See Supp. Fig s7 for more 

detailed results from all 10 data divisions. 

.3 Results  

 

Data acquisition  

The patient data included in this study are shown in Table 1. The imaging dataset consists of a 

total of 2426 CXRs, of which 53% (1289/2426) are positive for COVID-19 and 47% (1138/2426) 

are negative; 4% (101 of 2426, 98 positive) of the images were excluded due to lateral 

positioning or having rectangular artifacts covering parts of the image. To our knowledge this is 

one of the largest datasets of original COVID-19 labeled X-ray images.  

Table 1: Demographic statistics on patients and chest images in this study.  
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Label No. of 
patients 

No. of images Sex 
(men/women/unknown) 

Age (years +/- 
std) 

COVID-19 
positive 

360 1191 199(55%) /132(36%) 
/29(9%) 

60 +/- 18  

COVID-19 
negative 

1024 1135 353(34%) /323(32%) 
/348(34%) 

65 +/- 19 

 
 

Quantitative analysis of the model 

The performance of the network was tested on 15% (350 of 2426) of the images that were not 

used for training. The metrics we used are accuracy (proportion of successful classifications), 

sensitivity (also – recall, the proportion of positively labeled images that were classified 

correctly) and specificity (proportion of correctly classified negative images). Results for five 

different networks can be seen in Table 2. The neural network with the best results was 

ResNet50, and was used for analyses requiring network embeddings (t-SNE and KNN). The 

ensemble model, which averages over the output of multiple networks, achieved accuracy of 

90.3%, (95%CI: 86.3%-93.7%) specificity 90.0% (95%CI: 84.3%-94%), and sensitivity 

90.5% (95%CI: 85%-94%) on the test images. The AUC of the ROC curve is 0.96 (95%CI: 0.93-

0.97). The ROC curve is provided in Figure 2a, showing the relationship between the false 

positive rate (FPR) and the true positive rate (TPR) for different classification threshold values. 

Figure 2b presents the P-R curve, which shows a similar tradeoff between precision (proportion 

of positively classified images that were correctly classified) and recall, with AUC of 0.96 

(95%CI: 0.94-0.97). Both figures show a broad range of thresholds for which both high 

performance metrics are attainable.  

We trained the ResNet50 model on the dataset with and without all preprocessing stages. As 

seen in Table 2, preprocessing incurs an improvement of 4% in accuracy and 5% in sensitivity. 

In analyzing subgroups of our patient cohort, we found that prediction accuracies are higher for 

females than males (Supp. Fig. 1), but there is no strong effect of age on model performance 

(Supp. Fig. 2).  

Table 2: Comparison of accuracy, sensitivity and specificity of various deep networks 

trained and tested on the same test set. 

 

Training Model Accuracy (%) Sensitivity (%) Specificity (%) 

ResNet34 86.8 (305 of 351) 83.81 (151 of 180) 90.0 (154 of 171) 
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ResNet50 90.0 (316 of 351) 90.5 (163 of 180) 89.4 (153 of 171) 

ResNet50 - No preprocessing 85.1 (298 of 350) 82.1 (147 of 179) 88.3 (151 of 171) 

ResNet152 87.1 (306 of 351) 83.3 (150 of 180) 91.2 (156 of 171) 

CheXpert 80.6 (283 of 351) 81.1 (146 of 180) 80.6 (137 of 171) 

VGG16 85.2(299 of 351) 81.6 (147of 180) 88.8 (152 of 171) 

Ensemble* 90.3 (317 of 351) 90.5 (163 of 180) 90.0 (154 of 171) 

 
*Bold: model with best accuracy and sensitivity is the ensemble shown in bold.  
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Figure 2: Performance of the model. (a)  Confusion Matrix of the classification. True positive rate (TPR) at the bottom right corner, 

true negative rate (TNR) at the top left corner, false positive rate (FPR) at the top right corner, and false negative rate (FNR)  at the 

bottom left corner. (b) Receiver Operating Characteristic (ROC) curve. The curve shows the relation between true positive rate 

(TPR) and false positive rate (FPR) as the threshold of the separation between positive and negative classification is varied. The 

performance of the model is measured by the area under the curve (AUC). Ideally, the curve should cover as much area as possible 

up to the upper left corner (AUC score of 1), which minimizes the FPR while maximizing the TPR. The AUC is 0.95 (c) Precision-

Recall curve. Shows the relation between Precision and Recall. Precision and Recall are affected from different classes of the data, 

thus can vary in scores when data is imbalanced (e.g. more observations of positive or negative compared to the other). We would 

like to have the AUC as large as possible up to the upper right corner, which maximizes both Precision and Recall. (d) Classification 

score histogram. Ground truth (GT) labels are in colors. Every image is scored on a scale between 0 and 1 with threshold of 0.5, 

seen as a dashed line, such that all images with a higher score will be classified as positive for COVID-19 and images below as 

negative. Negatively labeled images that received a score above 0.5 are, therefore, incorrectly classified images, and vice versa 

with respect to positively labeled images. However, the closer the image score is to one of the edges (0 or 1), the stronger the 

confidence in the image’s classification. The accumulation of two distinct colors on the edges point to good separation of many 

observations with strong confidence in the classification.  

 

Qualitative analysis of the model 

The binary decision of whether a patient has COVID-19 is based on an activation score 

between 0 and 1 outputted by the network and corresponding to the probability the network 

assigns to the positive label. We generated a histogram of these scores (Figure 2d), and 

observe that the majority of the correctly classified points are accumulated at the edges, while 

the wrongly classified images are more spread out along the x-axis.  

We additionally visualize the distinction made by the model using t-distributed Stochastic 
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Neighbor Embedding (t-SNE) (20). t-SNE uses a nonlinear method to reduce high dimensional 

vectors into two dimensions, making it possible to visualize the data points and reveal 

similarities and dissimilarities between them. We the last layer of the network to obtain an 

embedding of the images into a vector space. These embeddings are then inputted to the t-

SNE. Figure 3 shows these image embeddings as points in a 2-dimensional space, colored by 

their GT labels. The figure depicts two distinct clusters, revealing a similarity between most 

images belonging to the same label. 

 

Figure 3: t-distributed Stochastic Neighbor Embedding (t-SNE). A high- dimensional feature vector is extracted for each image from 

the last layer before the network output, which are used for decision of the output of the neural network, and is reduced into 2 

dimensions. Each point on the graph represents the features of an image after dimension reduction and arrangement in space. Next 

the images were colored according to their ground truth (GT), thus revealing two main clusters. The clusters are mostly in one color 

each, which essentially shows a strong association of the features, extracted from the decision layer and are used to arrange in 

space, with the GT of the images, represented by the colors. 

We also examine the model’s performance over time, by plotting the prediction scores 

according to the days from admission. As the disease progresses, lung findings can become 

more prominent. This is in line with the results, seen in Figure 4. The model performance 

improves over time, with most classification errors occurring on a patient’s first image, taken 

upon hospital admission.  
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Figure 4: Classification score as a function of time change. The first image of each patient was acquired at the same day of first 

admission; we note that time value as day 0. Other images of patients which were scanned more than once were noted with time 

value according to the number of days since the first image was acquired, thus representing the time elapsed from first admission 

and is ordered on the x-axis. The y-axis shows the classification score of each image between 0 (=negative for COVID-19) and 

1(=positive for COVID-19), such that closer to the edge indicates more confidence in the network’s classification. (a) the 

arrangement of the classification score as a change of time. As more days elapse since first admission, the more confident the 

classification. (b) Mean values of classification scores for all images of the same day value. 

 

In order to test the model’s performance on a more difficult task, we use it to classify 22 CXRs, 

9 positive for COVID-19 and 13 negative, determined by radiologists as challenging to 

diagnose. Challenging images included images from patients with a positive COVID-19 PCR 

that either have minimal parenchymal abnormalities and look normal to the radiologist’s eye, or 

have pulmonary infiltrates similar to preexisting diseases other than COVID 19. The accuracy 

on this task was 77%, and the sensitivity 77%. In Figure 5, three correctly classified images 

from this test are shown with the network’s classification score and the GT.  

 

 

Figure 5: Three images labeled by a radiologist as hard to diagnose. Despite this, the model was able to classify them correctly. 

Each image is scored with classification score on a scale between 0 and 1 with threshold of 0.5 such that all images with confidence 

score above the threshold will be labeled as positive for COVID-19 and images below as negative. The ground truth (GT) of each 

image is also shown.  
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As an additional tool, we applied K-Nearest Neighbors (KNN) on the image embeddings in order 

to retrieve images similar to each other as shown in Figure 6. For each image we retrieve 4 

images with the closest image embeddings; averaging over these images’ predictions achieves 

87% accuracy (305/350), 91.2% specificity (156/171), and 83.2% sensitivity (149/179), meaning 

that the nearest images typically have the same labels.  

 

Figure 6: In the figures, the left image is a CXR from the test set, and the two on the right are the two images closest to it from the 

training set, given the image embeddings from the network’s last layer.  (a) All three images are COVID-19 Negative. The distances 

between the middle and rightmost images to the left one are 0.54 and 0.56 respectively. (b) All three images are COVID-19 positive.  

The distances between the middle and rightmost images to the left one are 0.51 and 0.55 respectively. The overall mean distance 

between training and test images is 3.9+/-2.5 (mean +/- std). The mean distance between all positive training and positive test 

images is 1.4+/-1.9, between negative training and negative test images 2.2+/-1.3, and between images from different classes is 5.8 

+/-1.9. Images from different classes are further away from each other, but whether a close distance truly corresponds to similar 

lung findings still requires verification.  

4 Discussion  
In this study we developed a deep neural network pipeline to classify chest X-ray (CXR) images 

of patients as coronavirus disease 2019 (COVID-19) positive or negative, and to identify which 

X-ray scans are similar to each other. We achieved a detection rate of above 90% using both 

the ensemble model and ResNet50. In addition, we created a tool that retrieves the CXR 

images most similar to a given image. This can provide physicians with a reference to previous 
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patients that had similar CXR findings. They can use the internal information they have from the 

hospital about these previous patients to support decisions for further treatment.  

Early approaches to COVID-19 classification using neural networks relied on publicly available 

image sources, including COVID-19 image data collection (21) with 481 COVID-19 positive 

images and COVID-Net open source initiative with 473 COVID-19 X-ray images (22–26). Some 

efforts include separation of multiple classes of lung and chest conditions including COVID-19 

(27), and others attempt outcome prediction (28,29).  

Such efforts have a number of drawbacks, highlighted in the detailed review presented in (30). 

These datasets were compiled from various sources, often using one source only for COVID-19 

images and another only for COVID-19 negative images and other non-COVID conditions (30). 

Positive and negative images in these datasets may therefore be produced by different X-ray 

machines, in particular portable and fixed machines, which give rise to images with different 

expressions of acquisition-related features. This can allow the network’s predictions to rely on 

features related to the source more than on the relevant medical information (32). In addition, 

they include a limited number of positive COVID-19 CXR images, which may cause the model 

to overfit (31), as it is exposed to a relatively small number of characteristics from the data. This 

impairs the ability to generalize to external datasets. These models’ reliability still needs to be 

verified on external data. A dataset with more positive COVID-19 images as used in this study, 

containing 1191 positive CXRs, tends to be more stable.  

In this work we sought to address the limitations of previous studies in several ways. 

Importantly, we took care to include in our dataset CXRs from the same machines both for 

patients positive and negative to COVID-19. We used raw images without compression that 

may result in loss of features and introduction of source-dependent artifacts. Moreover, our 

dataset contained diverse data from four medical centers and was balanced between COVID-19 

and non-COVID-19 images. 

A recent effort has shown more reliable results based on a larger, more uniformly sourced, 

dataset and comes closer to the goal of developing tools that can be used in clinical settings 

(11). They achieved a sensitivity of 88% with a specificity of 79%. Our approach improves on 

these notably solid results in terms of performance (sensitivity of 90.5% and specificity of 

90.0%). As we show, this performance increase may have resulted from the image pre-

processing, particularly the inclusion of augmentations and the addition of a segmentation 

channel. This leads to a performance increase of 8.4 percentage points in sensitivity and 1.1 

percentage points in specificity (Table 2 – ResNet50 vs. ResNet50 no preprocessing), and also 

in balancing of the sensitivity and specificity results.  

Another novelty of our work is that we introduced a content-based image retrieval tool that 

identifies similar CXRs based on a metric defined by using the image embeddings given by the 

second to last layer of ResNet50. As ResNet50 was trained for COVID-19 classification, we 

expect similar images under this metric to represent similar cases in terms of their clinical 

condition. This tool enables medical staff to search the database to identify relevant study cases 

for a new case under consideration. We note that the scoring process for this similarity measure 

still requires further investigation in a clinical setting. We would ideally like to compare the 

disease progression for patients that were found by our tool to have similar lung findings. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 26, 2021. ; https://doi.org/10.1101/2020.10.01.20204073doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.01.20204073
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

As future work, we intend to deploy our model for testing in a clinical setting within the hospitals. 

We also plan to work on COVID-19 severity classification. A limitation of our study is that 

preexisting medical illnesses and comorbidities were not integrated into the analysis of both 

COVID-19 and control datasets, due to a lack of access to clinical data of the patients. Our 

COVID-19 negative cohort comprises patients with a multitude of diseases, but with the 

absence of precise labels, we cannot analyze our ability to separate between COVID-19 and 

any specific lung morbidity. Moreover, our classifier is tailored towards portable X-rays within 

the four hospitals that provided the data. It requires further fine tuning to be used in other 

hospitals or diagnostic settings.  

In summary, we developed a deep neural network which is able to reliably detect patients with 

coronavirus disease 2019. Even though medical imaging has not yet been approved as a 

standalone diagnosis tool (12), we believe it can be used as an aid to medical judgement with 

the advantage of immediate outcome. We also created a tool for X-ray image retrieval based on 

lung similarities. This tool can help physicians draw connections between patients with similar 

disease manifestations, by referring them to images with similar lung characteristics. These 

images may be linked internally to the corresponding patients, and the treatment and outcome 

of these patients can then inform decisions upon treatment for the current patient.  
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Supplemental Material 

The supplemental material includes a number of additional analyses. We provide extra details 

about the performance of the algorithm when considering the sex and age of the subjects, more 

information about the processing of images and the details of the augmentation procedures, and 

an additional figure demonstrating the segmentation algorithm. We also provide more details 

about the architectures used in our study and choice of training parameters. Finally, we provide 

a bootstrap analysis in order to estimate the dependency of the performance of the model on 

different divisions of the data. 

Analysis of patient subgroups 

The figures below depict the gender distribution and age distribution of the patients in the test 

set.

 
Figure s1: gender distribution of patients in test set (a) Gender of the patients negative for COVID-19. (b) Gender of the patients 

positive for COVID-19. 
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Figure s2: Age distribution of patients in test set. (a) Age distribution of non COVID-19 patients, split by correct and incorrect labels 

(b) Age distribution of the patients positive for COVID-19. 

 

 

For two of the hospitals, we have labels specifying whether the lung scan is normal or abnormal 

for non-COVID-19 patients, abnormal meaning there is some medical finding in the lungs.  

 

Hospital Total COVID-19 
negative images 

Normal  Abnormal  

Rabin Medical Center  767 366 401 

Shaare Zedek 145 70 75 

Data preprocessing  

Before training, each image goes through a preprocessing pipeline. We start by cropping out 

areas that contain only text around the images themselves. We then unify the image sizes, 

preserving the original aspect ratios via padding, and apply a CLAHE filter (a filter that was seen 

to enhance images and improve deep learning performance (34)). On the training data, we also 

apply a series of augmentations.  

Augmentation  

Augmentations are transformations performed on the data that serve a dual purpose. First, 

applying the augmentations creates additional diverse sets of images from the existing ones and 

enables one to artificially increase a dataset to improve performance (16). Augmentations are 

therefore very commonly used on medical images, where datasets tend to be relatively small(15). 

Second, these transformations can help the network generalize better (15), as they alter features 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 26, 2021. ; https://doi.org/10.1101/2020.10.01.20204073doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.01.20204073
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

that are unimportant to the identification of COVID-19 in the lungs. This way the network can learn 

the important features and ignore the irrelevant ones. Crucially, the transformations must preserve 

the image labels - a coronavirus patient must still be identifiable as one. To ensure this, we 

consulted with radiologists when defining the transformations and their parameter ranges. The 

augmentations are performed randomly, with parameters chosen uniformly within the defined 

range as seen in Figure s3. Not all augmentations are applied each time, but rather each 

augmentation has a certain probability of being applied, represented by p below:  

1. brighten, p=0.4  

 

2. gamma contrast, p=0.3  

3. CLAHE, p=0.4  

4. rotate d ∈ [7,7] degrees p=0.4  

5. shear d ∈ [7,7] degrees p=0.4  

6. scale up to 0.2 on each axis p=0.4  

7. flip from left to right, p=0.5  

8. either sharpen or apply Gaussian blur  

9. horizontal flip, p =0.5. 

We decided to apply left to right flips, as COVID-19 is known to affect the lungs symmetrically. 

Thus, flipping will not change the characteristic manifestation of the disease. Moreover, some X-

ray images may be taken from the back, and we do not always have clear labels as to the direction 

in which the X-ray was taken. Adding flips of the images can make the network robust to this.  
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Figure s3: Image augmentation. In order to increase the number of images which can improve training performance, several different 

transformations are performed with a certain probability. The transformations showed: On top: (a) Original image, (b) Brighten, (c) 

Sharpen, (d) Gamma contrast, (e) Shear. On bottom: (f) Rotate 7 degrees, (g) CLAHE, (h) Gaussian blur, (i) Scale, (j) Horizontal flip. 

Segmentation  

A novel aspect of our model architecture is adding an additional input channel to each image in 

the form of a probability vector, which indicates for each pixel the probability it belongs to the lung. 

These probabilities are obtained by applying a pre-trained U-net to segment the lung area from 

the image.  Adding this mask as an additional channel to the X-ray image helps the network focus 

on the lung area while training. An example of segmentation can be seen in Figure s4. 

 
Figure s4: Lung segmentation using a U-net architecture. 

Network architecture  

Deep learning-based automated diagnosis approaches have been gaining interest in recent 

years, mainly due to their ability to extract sophisticated features from images. This allows to 

describe an image in an alternative way from which we can derive computational conclusions. 

Based on that, our network architecture consists of two main parts - feature extraction, and 

decision head. The feature extractor is a neural network based on a Resnet50 architecture that 

gets an image as input (in our case - 2D image), performs mathematical operations on it and 

outputs a feature map, namely a matrix of numbers which describe the image. This matrix of 

features is converted to a vector (with the same values) and then goes into the decision head 

which is a simple neural network. In our case it consists of 3 fully connected layers. The output of 

the decision head is two numbers which describe the confidence of the algorithm about the 

classification results: COVID-positive or COVID-negative. In addition, the last layer (a vector) in 

the decision head is referred to as the “embedding” and is used as an input to the t-SNE and KNN 

algorithms described in the text. 
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Figure s5: Pipeline of the neural network stage in inference time. Input images are passed through a sequence of convolutional layers 

that extract lower-dimensional vector representations for each image; these representations are optimized for the task at hand, in our 

case - separation in the vector space between images belonging to different label classes. 

Training details 

Training was performed with the Adam optimizer with an initial learning rate of 1e-6 which was 

exponentially decreased as epochs progressed. We used cross-entropy as a loss function with 

an L2 regularization with regularization coefficient 1e-2. The best test accuracy scores were 

achieved after 32 epochs. The models were built and trained using Pytorch 1.6; all code will be 

made available upon publication.  

Bootstrap on the results 

To analyze the stability and reliability of our results, we randomly split the data into train and test 

sets 10 times. In each split, the training set comprises 85% of the data, and each patient is used 

only for one of the sets.  

For each split, we train the model on the train set, and then take 100 bootstrap samples from 

the corresponding test set, and compute the accuracy, specificity, sensitivity and AUROC for 

every bootstrap sample. Figure s6 shows that while there is some sensitivity to the way we split 

the data, most of the splits achieve similar results. The histograms show the distribution of 

scores obtained for each split. Split0 (in green) is the original split of the data that we worked 

with, and the one we reported all of our results on.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 26, 2021. ; https://doi.org/10.1101/2020.10.01.20204073doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.01.20204073
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Figure s6: Distributions of results for100 bootstrap sampling for each one of 10 random splits of the data (a) Accuracy (b) Specifity 

(c) Sensitivity (d) Area under ROC curve. 
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