
 

Genetic and non-genetic factors affecting the expression of COVID-19 relevant 
genes in the large airway epithelium 

Authors: Silva Kasela1,2,*, Victor E Ortega3, Molly Martorella1,2, Suresh Garudadri4, Jenna 
Nguyen5, Elizabeth Ampleford3, Anu Pasanen1,2, Srilaxmi Nerella5, Kristina L Buschur1,6, Igor Z 
Barjaktarevic7, R Graham Barr6, Eugene R Bleecker8, Russell P Bowler9, Alejandro P 
Comellas10, Christopher B Cooper7, David J Couper11, Gerard J Criner12, Jeffrey L Curtis13,14, 
MeiLan K Han13, Nadia N Hansel15, Eric A Hoffman16, Robert J Kaner17,18, Jerry A Krishnan19, 
Fernando J Martinez17, Merry-Lynn N McDonald20, Deborah A Meyers8, Robert Paine 3rd21, 
Stephen P Peters3, Mario Castro22, Loren C Denlinger23, Serpil C Erzurum24, John V Fahy5, 
Elliot Israel25, Nizar N Jarjour23, Bruce D Levy25, Xingnan Li8, Wendy C Moore3, Sally E 
Wenzel26, Joe Zein27, NHLBI SubPopulations and InteRmediate Outcome Measures In COPD 
Study (SPIROMICS), NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, 
Charles Langelier28,29, Prescott G Woodruff5, Tuuli Lappalainen1,2,†,*, Stephanie A 
Christenson5,†,* 

Affiliations: 
1 - New York Genome Center, New York, NY, USA 
2 - Department of Systems Biology, Columbia University, New York, NY, USA 
3 - Department of Internal Medicine, Section of Pulmonary, Critical Care, Allergy and 
Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA 
4 - Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA 
5 - Division of Pulmonary, Critical Care, Allergy, & Sleep Medicine, Department of Medicine, 
University of California San Francisco, San Francisco, CA, USA 
6 - Department of Medicine, Columbia University Medical Center, New York, NY, USA 
7 - Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen 
School of Medicine, University of California Los Angeles, Los Angeles, CA, USA 
8 - Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University 
of Arizona, Tucson, AZ, USA 
9 - Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, Denver, 
CO, USA 
10 - Division of Pulmonary and Critical Care, University of Iowa, Iowa City, IA, USA 
11 - Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 
USA 
12 - Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple 
University, Philadelphia, PA, USA 
13 - Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of 
Michigan Health System, Ann Arbor, MI, USA 
14 - Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA 
15 - Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins 
School of Medicine, Baltimore, MD, USA 
16 - Division of Physiologic Imaging, Department of Radiology, University of Iowa Hospitals and 
Clinics, Iowa City, IA, USA 
17 - Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Weill 
Cornell Medicine, New York, NY, USA 
18 - Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA 
19 - Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, 
Chicago, IL, USA 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.01.20202820doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.10.01.20202820
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

20 - Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, 
University of Alabama at Birmingham, Birmingham, AL, USA 
21 - Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, 
University of Utah, Salt Lake City, UT, USA 
22 - Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, 
University of Kansas School of Medicine, Kansas City, KS, USA 
23 - Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, 
University of Wisconsin-Madison, Madison, WI, USA 
24 - Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 
USA 
25 - Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and 
Women's Hospital, Boston, MA, USA 
26 - Department of Environmental and Occupational Health, Graduate School of Public Health, 
University of Pittsburgh, Pittsburgh, PA, USA 
27 - Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA 
28 - Division of Infectious Diseases, University of California San Francisco, San Francisco, CA, 
USA 
29 - Chan Zuckerberg Biohub, San Francisco, CA, USA 
 
†These authors contributed equally to this work. 
*Correspondence to:  
skasela@nygenome.org (S.K.), 
tlappalainen@nygenome.org (T.L.), 
Stephanie.Christenson@ucsf.edu (S.A.C.) 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.01.20202820doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.01.20202820
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Introductory paragraph  

Particular host and environmental factors influence susceptibility to severe COVID-19. We 

analyzed RNA-sequencing data from bronchial epithelial brushings - a relevant tissue for SARS-

CoV-2 infection - obtained from three cohorts of uninfected individuals, and investigated how non-

genetic and genetic factors affect the regulation of host genes implicated in COVID-19. We found 

that ACE2 expression was higher in relation to active smoking, obesity, and hypertension that are 

known risk factors of COVID-19 severity, while an association with interferon-related inflammation 

was driven by the truncated, non-binding ACE2 isoform. We discovered that expression patterns 

of a suppressed airway immune response to early SARS-CoV-2 infection, compared to other 

viruses, are similar to patterns associated with obesity, hypertension, and cardiovascular disease, 

which may thus contribute to a COVID-19-susceptible airway environment. eQTL mapping 

identified regulatory variants for genes implicated in COVID-19, some of which had pheWAS 

evidence for their potential role in respiratory infections. These data provide evidence that 

clinically relevant variation in the expression of COVID-19-related genes is associated with host 

factors, environmental exposures, and likely host genetic variation. 

Main text 
Coronavirus disease 2019 (COVID-19), the clinical syndrome caused by the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has led to a global crisis. As a 

respiratory virus, SARS-CoV-2 is hypothesized to gain entry into humans via the airway 

epithelium, where it initiates a host response that leads to the subsequent clinical syndrome. 

Despite an immense global burden of disease, the manifestations of SARS-CoV-2 infection vary 

enormously, from asymptomatic infection to progressive acute respiratory failure and death.  The 

viral or host features that determine the course of disease in each individual are poorly 

understood. Multiple clinical risk factors for severe COVID-19 have been identified, including older 

age, male sex, African American race, smoking, and comorbidities such as hypertension, obesity, 

diabetes, cardiovascular disease, and chronic airway diseases1–6, as well as host genetics6–9.  

The expression levels of genes that interact with the SARS-CoV-2 virus or are involved in the 

subsequent host response are hypothesized to be an important host factor that could partially 

underlie the substantial inter-individual variability in COVID-19 susceptibility and progression10–12. 

In this study, we analyzed genetic and non-genetic factors influencing the expression of human 

genes that have been implicated in COVID-19 (study design in Extended Data Fig. 1). We 

analyzed RNA-sequencing (RNA-seq) data from bronchial brushing samples obtained from the 
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SPIROMICS cohort13 (n = 163), notable for the high burden of COVID-19-relevant comorbidities 

and rich phenotype and whole genome sequencing (WGS) data from the TOPMed Project14. For 

replication, we used two asthma RNA-seq datasets, SARP (n = 156) and MAST (n = 35) as well 

as eQTL data from GTEx15. 

We first analyzed expression levels of ACE2, the receptor of the SARS-CoV-2 Spike protein that 

is the key host gene for viral entry16,17. Corroborating previous reports12,18–20, we found that current 

smoking, when compared to non-smoking, had the largest overall effect on ACE2 expression of 

any phenotypic feature studied in SPIROMICS, before and after adjustments for covariates (log2 

fold change (FC) = 0.30 ± 0.06, P = 1.7x10-7, Fig. 1a, Supplementary Table 1). This effect was 

absent in former smokers. In similarly adjusted models, we found no association between ACE2 

levels and Chronic Obstructive Pulmonary Disease (COPD, Extended Data Fig. 2a), nor with 

asthma in MAST20 (Extended Data Fig. 2b). In SARP, ACE2 levels were slightly lower in 

asthmatics compared to healthy controls (Extended Data Fig. 2c), which was largely driven by 

decreased expression of ACE2 only in asthmatics on oral steroids (Extended Data Fig. 2d). 
African American race was associated with increased ACE2 expression in both SPIROMICS and 

SARP, but no association after adjusting for covariates suggests that this was due to a higher 

prevalence of comorbid conditions (Extended Data Fig. 2e-f). However, ACE2 expression was 

significantly higher across datasets in association with two relevant comorbidities, obesity and 

hypertension (Fig. 1b-c, Extended Data Fig. 3a-e, Extended Data Fig. 4a-b). Of note, we further 

found that use of anti-hypertensives in SPIROMICS attenuates the association between ACE2 

and hypertension towards levels seen in non-hypertensive participants (Fig. 1c). When stratified 

by anti-hypertensive class, angiotensin receptor blockers (ARBs) and diuretics, but not ACE 

inhibitors or calcium channel blockers, were associated with lower ACE2 levels, partially 

dependent on smoking status (Extended Data Fig. 4c). Counterintuitively, modest decreases in 

ACE2 expression were seen in SPIROMICS in association with age (log2 FC = -0.064 ± 0.02, P = 

0.005 for every 10-year age increase, Fig. 1e) and male sex (log2 FC = -0.076 ± 0.035, P = 0.03, 

Fig. 1d) before and after adjustments, although similar associations were not seen in SARP or 

MAST. 
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Fig. 1: ACE2 gene expression associations in SPIROMICS. a-d, Boxplots showing that ACE2 log2 gene 
expression (x-axis) was increased in association with current but not former smoking as compared to never 
smokers (a), obesity (b, validated in the MAST and SARP cohorts, Extended Data Fig. 3a-b), hypertension 
(c, adjustments include anti-hypertensive treatment, validated in SARP, Extended Data Fig. 4a, data not 
collected in MAST), and female sex (d, not replicated in either MAST or SARP, data not shown). e, In 
SPIROMICS, ACE2 gene expression was modestly decreased in association with advancing age, but this 
finding was not replicated in either MAST or SARP (Supplementary Table 1A). f, Scatterplots showing 
that ACE2 gene expression increased in association with higher levels of our previously validated gene 
signatures of the airway epithelial response to interferon (left panel) and to IL-17 inflammation (right panel) 
after adjusting for smoking status. Both these findings were replicated in MAST and SARP (Supplementary 
Table 1B). g, Boxplots showing that ACE2 Exon 1c, which contributes to the truncated ACE2 transcript is 
differentially increased in association with our interferon signature while Exons 1a and 1b that contribute to 
the full length transcript are not associated. h, Scatterplots showing increased Exon 1a usage with 
advancing age that is not observed for Exon 1b and 1c. P-values indicated by: ****<0.0001, ***<0.001, 
**<0.01, *<0.05, ns=not significant in linear models adjusted for covariates. 
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As chronic airway inflammation, prevalent but heterogeneous in the airway diseases studied in 

the included cohorts, can influence gene expression and the host response to infections, we next 

studied how stereotypic adaptive airway immune responses affect ACE2 expression. We used 

our previously validated gene expression signatures to quantify Type 2-, Interferon-, and IL-17-

associated inflammation21–23. We found that ACE2 expression was associated with increased 

interferon-related inflammation, as previously reported10, as well as IL-17-related but not Type 2 

inflammation across datasets (Fig. 1f). Corroborating the association with IL-17 inflammation, 

genes highly co-expressed with ACE2 expression included genes in our IL-17 signature across 

datasets (Supplementary Table 2). Recent reports suggested that ACE2 induction by interferon 

stimulation may be explained by expression of a truncated ACE2 isoform (initiated from exon 1c 

instead of 1a/b) that does not bind the SARS-CoV-2 spike protein24,25. We first corroborated this 

finding, showing that our interferon-stimulated gene signature is associated with increased exon 

1c but not exons 1a or 1b usage (Fig. 1g). We also identified an increase in exon 1a usage with 

age suggesting that despite a decrease in overall ACE2 expression in association with age, 

expression of the full length ACE2 transcript may not be decreased (Fig. 1h). Importantly, 

differential exon 1c usage was not associated with any other clinical/biological outcomes of 

interest.  

These results overall indicate that smoking, obesity, and hypertension affect airway epithelial 

expression of functional ACE2 isoforms, as previously shown for smoking12,18,19. The ACE2 

association with interferon-related inflammation appears to be explained by the truncated version 

of ACE224,25. Together these findings suggest that smoking, obesity and hypertension may 

contribute to COVID-19 severity through an association with increased ACE2 expression, while 

other risk factors such as male sex and airway disease likely contribute via other mechanisms, 

corroborating recent evidence on sex differences in the immune response to COVID-1926. 

As the host’s ability to mount an appropriate response to respiratory viruses may alter 

susceptibility to severe infection, we next performed gene set enrichment analyses (GSEA) to 

determine whether clinical risk factors are associated with similar airway gene expression patterns 

indicative of a diminished immune response that we recently identified early in COVID-19 by 

nasal/oropharyngeal swab27. As we previously reported27, the genes differentially expressed in 

association with SARS-CoV-2 infection compared to other viruses at diagnosis indicate a 

diminished innate and adaptive immune response that may allow for unabated viral infection and 

account for the long pre-symptomatic period associated with COVID-19. We hypothesized that 

clinical risk factors uniquely associated with COVID-19 severity (e.g. cardiovascular disease, 
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hypertension) could predispose patients to develop more severe disease by contributing to this 

relative immunosuppression. We derived gene sets from our previously published RNA-seq data 

collected by nasal/oropharyngeal swab from patients at diagnosis of acute respiratory illness; 94 

had COVID-19, 41 had other viral illness, and 103 had no virus identified by metagenomic 

sequencing analysis27. First, we generated gene sets derived from the 100 genes most up- and 

downregulated in association with infection type to use to determine if there were global 

similarities in gene expression changes across datasets. For pathway analyses, we then 

generated COVID-19 relevant gene sets specific to particular canonical pathways by inputting 

significantly differentially expressed genes (FDR < 0.05) between SARS-CoV-2 infection and 

other viral respiratory illness into the Ingenuity Pathway Analysis canonical pathway function 

(Supplementary Table 3). GSEA was then performed using FGSEA28 in which these gene sets 

were tested against gene lists ranked by their log fold change differential expression in association 

with comorbid clinical risk factors. 

We found that the genes most downregulated in association with SARS-CoV-2 infection as 

compared to other viruses were significantly enriched amongst genes downregulated in 

association with obesity, hypertension, and cardiovascular disease in SPIROMICS (Fig. 2a-c). 

Findings for obesity were replicated in SARP and MAST, and for hypertension in SARP 

(Extended Data Fig. 5a-c, hypertension data not collected in MAST, cardiovascular disease data 

not collected in SARP or MAST). Conversely, genes upregulated in other viral infections (or 

conversely, downregulated by SARS-CoV-2) were upregulated in inflammatory airway conditions 

(current and former smokers, COPD) (Fig. 2d-f). Aging was associated with an enrichment in 

genes downregulated by SARS-CoV-2 infection only in MAST while genes upregulated with 

SARS-CoV-2 infection were enriched with increasing age across the datasets (Extended Data 
Fig. 5d-f). Our results demonstrate a sharp contrast between SARS-CoV-2 and other viral 

infections, which often trigger airway disease exacerbations by potentiating the chronic airway 

inflammation associated with these diseases and smoking exposure. We found this same pattern 

in association with asthma in MAST but not when considering asthma overall in SARP, potentially 

due to heterogeneity of its asthma subjects. When considering just asthmatics with uncontrolled 

symptoms or those on inhaled compared to no steroids (a marker of severity) we did find this 

same enrichment of genes up and downregulated in association with non-COVID viral infections 

(pathway enrichment shown in Fig. 2g). 
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Fig. 2: COVID-19-related gene set enrichment analyses in association with comorbidities. a-f, 
Barcode plots in which the vertical lines represent the 100 genes most upregulated (red) or downregulated 
(blue) in nasal/oropharyngeal swab samples obtained from COVID-19 patients as compared to other 
viruses at the time of diagnosis of an acute upper respiratory infection. These gene sets are plotted against 
log fold gene expression changes arranged from most downregulated to most upregulated with that 
comorbidity (horizontal grey bar). Lines above (red) and below (blue) the bar represent the running sum 
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statistic with a significant finding indicated when the line crosses the dashed line at either end of the plot. 
Genes downregulated by SARS-CoV-2 infection compared to other viruses were significantly enriched 
amongst genes downregulated in association with cardiovascular conditions overall (a), hypertension (b), 
and obesity (c), while in Current (d) and Former smoking (f) and in COPD (e) these downregulated genes 
in COVID-19 were enriched among upregulated genes in association with comorbidity. ** indicates FDR < 
0.05. g, COVID-19-related pathway gene sets were generated from an IPA analysis of the genes up and 
downregulated by SARS-CoV-2 infection compared to other viruses. Gene set enrichment scores for gene 
sets enriched at FDR < 0.05 (columns) are shown in the heatmap plotted against comorbidities (rows) with 
gene sets enriched amongst downregulated and upregulated genes indicated in blue and yellow, 
respectively. All pathways not enriched at FDR < 0.05 were shrunk to zero (white). Euclidean distance with 
average linkage was used for clustering. 

 

We used pathway gene set enrichment to determine the potential biological significance of these 

findings. We found across datasets that pathway gene sets derived from genes downregulated 

by SARS-CoV-2 infection as compared to other viruses were also enriched amongst genes 

downregulated in association with obesity, hypertension, cardiovascular disease, and aging (FDR 

< 0.05, Fig. 2g, Supplementary Table 4). Enriched downregulated pathways included those 

related to pro-inflammatory cytokines such as IL-6 and IL-17 as well as macrophage and 

granulocyte activation. Furthermore, pathways related to cardiovascular and metabolic disease 

signaling such as atherosclerosis and diabetes signaling were also enriched. We confirmed the 

enriched findings by separately performing IPA canonical pathway analyses on the genes 

differentially expressed (P < 0.05) in association with these comorbidities, finding similar results 

in these global/unsupervised analyses (Supplementary Table 5). Conversely, pro-inflammatory 

airway conditions such as smoking and COPD led to opposite effects. These findings suggest 

that obesity, hypertension, cardiovascular disease, and age are associated with a relative COVID-

19-relevant immunosuppression at the airway epithelium, which, by stunting early anti-viral host 

responses, could contribute to increased susceptibility to SARS-CoV-2 infection and disease 

severity. 

In order to map host genetic variants, we focused on 496 genes implicated in SARS-CoV-2 

infection (Supplementary Table 6): ACE2 and TMPRSS2, key genes for viral entry16; CTSL, 

CTSB, and BSG, which may have a role as alternative routes for viral entry16,29; host genes with 

protein-protein interactions with viral proteins30; differentially expressed genes as a response to 

the infection in cultured airway epithelial cells31; genes involved in autophagy that might 

counteract viral infection32; and other high interest genes from the COVID-19 Cell Atlas 

(www.covid19cellatlas.org). Our cis-eQTL mapping in SPIROMICS (n = 144) identified significant 

(genome-wide FDR < 0.05) genetic regulatory variation for 108 (21.8%) of these COVID-19-
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related genes (Fig. 3a, Supplementary Table 7), with many genes also having significant eQTLs 

in other tissues in GTEx15 (Supplementary Table 8). Given the sample size, we have good power 

to discover the vast majority of eQTLs with >2-fold effect on gene expression15. Many of the genes 

have a substantial genetic effect on gene expression: for example, the MERS receptor DPP433 

has a cis-regulatory variant rs6727102 where the alternative allele decreases expression by 3.3-

fold (Fig. 3a). In 16 genes, the genetic regulatory effects were >50% of the magnitude of the 

differential expression induced by SARS-CoV-2 infection (Fig. 3b). While the key genes ACE2 or 

TMPRSS2 did not have eQTLs in bronchial epithelium (Extended Data Fig. 6a-b), as previously 

reported20, TMPRSS2 has an eQTL in GTEx lung tissue. This is consistent with the lack of 

phenome-wide association signals34 or COVID-19 GWAS association at these loci9, suggesting 

that genetic regulation of these two genes is unlikely to contribute to potential host genetic effects 

on COVID-19. Many of the genes analyzed for eQTLs had variation in expression associated to 

clinical factors and comorbidities, with current smoking associated with the highest number of up-

and down-regulated genes in association with comorbidity (Extended Data Fig. 7a-b). Compared 

to ACE2, the effect of current smoking on the expression of TMPRSS2 was modest (Extended 
Data Fig. 6c), and as previously reported11, expression levels of TMPRSS2 were higher in 

asthmatic than healthy controls, but not in COPD, and it decreased in association with steroid use 

(Extended Data Fig. 6d).  

Cis-eQTLs from bronchial epithelium replicated at a high rate in those tissues from the GTEx v8 

dataset15 that have a large sample size or high epithelial cell abundance (Fig. 3c, Extended Data 
Fig. 8), reflecting similarity in cell type composition manifesting in similarity of regulatory variant 

activity15. However, relative to GTEx lung, our bronchial epithelium eQTLs included genes 

enriched for sensory perception of chemical stimulus and smell (Supplementary Table 9). In total 

of 143 genes with eQTLs in SPIROMICS were not tested in GTEx nor eQTLGen Consortium35, 

since bronchial epithelium is not well represented in previous eQTL catalogs. In addition to 

standard cis-eQTL mapping, we mapped cell type interacting eQTLs36 but none were discovered 

for the COVID-19-related genes.  
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Fig. 3: eQTLs in bronchial epithelium. a, Effect size measured as allelic fold change (aFC, log2) of the 
significant eQTLs for COVID-19 candidate genes. Error bars denote 95% bootstrap confidence intervals. 
b, Comparison of the regulatory effects and the effect of SARS-CoV-2 infection on the transcription of 
COVID-19 candidate genes in normal bronchial epithelial cells from Blanco-Melo et al.31 The graph shows 
regulatory effects as aFC as in a, and fold change (log2) of differential expression comparing the infected 
with mock-treated cells with error bars denoting the 95% confidence interval. Genes with adjusted P-value 
< 0.05 in the differential expression analysis are colored in black, genes with non-significant effect are 
colored in grey. Highlighted genes have eQTL effect size greater than 50% of the differential expression 
effect size on the absolute scale. DE - differential expression. c, Replication of cis-eQTLs from bronchial 
epithelium in GTEx v8 using the concordance rate (proportion of gene-variant pairs with the same direction 
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of the effect, left panel) and proportion of true positives (𝜋!, right panel). Upper panel shows the effect of 
sample size on the replication and concordance measures quantified as Spearman correlation coefficient 
(𝜌). Lower panel shows the replication and concordance measures as the function of epithelial cell 
enrichment of the tissues measured as median epithelial cell enrichment score from xCell. Grey dashed 
line denotes median enrichment score > 0.1, which classifies tissues as enriched for epithelial cells. 
Wilcoxon rank sum test was used to estimate the difference in replication estimates between tissues 
enriched or not enriched for epithelial cells. The 16 tissues enriched for epithelial cells are outlined in the 
figure legend, for the full color legend see Extended Data Fig. 8. 

 

To study the role of these regulatory variants in COVID-19 risk, we first analyzed eQTLs in the 

chromosome 3 locus with a significant association with hospitalization due to COVID-199 and 

severe COVID-19 with respiratory failure6,8. We found no significant eQTLs in the bronchial 

epithelium for any of the six genes in this locus (Extended Data Fig 6e), suggesting that this 

genetic association may be driven by other tissues or cell types with a role in COVID-19. Next, 

given that COVID-19 GWAS still have limited power, we analyzed how regulatory variants for 

COVID-19 relevant genes associate to other immune- or respiratory-related phenotypes in large 

GWAS. Indication of these variants affecting (respiratory) infections would provide hypotheses of 

variants that might play a role in COVID-19 risk and its comorbidities (Fig. 4a). Thus, we 

performed a pheWAS analysis by Phenoscanner v237,38 for the 108 lead cis-eQTLs for COVID19-

related genes and diverse set of phenotypes (Supplementary Table 10). Furthermore, we used 

the SPIROMICS phenotype data to study associations for 20 phenotypes (Supplementary Table 
11). Of these loci, 44 were associated with at least one phenotype (P < 10-5), with expected 

patterns - best powered GWAS traits having most associations and shared signals for highly 

correlated traits (Extended Data Fig. 9). We further used colocalization analysis to extract loci 

where the eQTL and GWAS signals are likely to share a causal variant, as opposed to spurious 

overlap, focusing on 20 loci with associations for hematological and respiratory system traits of 

which 12 colocalized (PP4 > 0.5, Fig. 4b, Supplementary Table 12). In Figure 4c, we show 

Interferon-induced transmembrane protein 3 (IFITM3) where the eQTL is associated with multiple 

blood cell traits of the immune system39 and neutrophil counts in SPIROMICS (P < 0.002). This 

gene is upregulated by SARS-CoV-2 infection31 and has a well-characterized role in the entry of 

multiple viruses, including coronaviruses40. Another interesting gene, ERMP1 (Fig. 4d) has an 

eQTL colocalizing with an asthma GWAS association in the UK Biobank. ERMP1 interacts with 

the SARS-CoV-2 protein Orf9c30, and severe asthma is a risk factor for COVID-19 hospitalization6 

and death41. An eQTL for the MEPCE gene that interacts with SARS-Cov-2 protein Nsp830 is 

associated with platelet parameters39 (Fig. 4e). Interestingly, platelets are hyperactivated in 
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COVID-1942,43 and platelet count could be used as a prognostic biomarker in COVID-19 

patients44–46. 

Fig. 4: Colocalization analysis of the regulatory variants for COVID-19-related genes. a, Illustration of 
the concept of how regulatory variants for COVID-19-related genes in bronchial epithelium can be possible 
candidates for genetic factors that affect infection or progression of the disease. Dotted lines denote the 
hypothesis we are able to create by searching for the phenotypic associations of the eQTLs for COVID-19-
related genes. b, Heatmap of the colocalization analysis results for 20 COVID-19-related genes with eQTLs 
that have at least one phenotypic association belonging to the experimental factor ontology (EFO) parent 
categories relevant to COVID-19 (respiratory disease, hematological or pulmonary function measurement,). 
Genes highlighted in bold indicate the loci involving COVID-19-relevant EFO categories with posterior 
probability for colocalization (PP4) > 0.5, suggesting evidence for shared genetic causality between eQTL 
and GWAS trait. In the TLE locus, the nearest genome-wide significant variant for forced expiratory volume 
in 1 second (FEV1) from Shrine et al.68 is more than 1Mb away, indicating that the association between the 
variant and FEV1 might be confounded by incomplete adjustment for height. c-e, Regional association plot 
for the GWAS signal on the upper panel and eQTL signal on the lower panel for IFITM3 (c), ERMP1 (d), 
MEPCE (e) locus, where the eQTL for the corresponding gene colocalizes with the GWAS trait relevant to 
COVID-19. Genomic position of the variants is shown on the x-axis and -log10(P-value) of the GWAS or 
eQTL association on the y-axis. The lead GWAS and eQTL variants are highlighted. 
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In summary, our findings demonstrate replicable associations between current smoking, obesity, 

hypertension and increased bronchial epithelial ACE2 expression potentially facilitating SARS-

CoV-2 entry into host cells. While we do find evidence that the truncated ACE2 transcript is 

present in the bronchial epithelium, it does not appear to account for these associations. It is, 

however, likely that much of the inter-individual variation in COVID-19 is driven by a more complex 

molecular response to the virus in the airway epithelium than expression of ACE2 alone. This 

supposition is supported by our results demonstrating that obesity, hypertension, cardiovascular 

comorbidities, as well as aging, are associated with a downregulation of mucosal immune 

response pathways similar to that seen in early SARS-CoV-2 infection in comparison to other viral 

infections. Together with clinical data and Mendelian randomization analyses of the causal role 

of smoking and BMI on severe COVID-1947, our result suggest that these important comorbidities 

increase COVID-19 susceptibility and severity by creating an airway microenvironment in which 

SARS-CoV-2 can gain a foothold before an effective host response is mounted. Conversely, we 

find that inflammatory airway conditions increase both innate and adaptive immune responses, 

potentially priming individuals for airway disease exacerbations in response to other viruses but 

not SARS-CoV-2, which has a different immune profile and does not appear to trigger 

exacerbations of airway diseases. Furthermore, we show that host genetics has a biologically 

meaningful effect on the expression of many genes that may play an important role in COVID-19, 

including genes of interest as future drug targets. We pinpoint multiple COVID-19-interacting 

genes for which genetic regulatory variants associate with immune- or respiratory-related 

outcomes; these variants may be candidates for host genetic risk factors for COVID-19, or its 

severity. Altogether, our findings of genetic and non-genetic factors affecting the expression of 

COVID-19-related genes in bronchial epithelium provide essential insights for understanding 

inter-individual variation of COVID-19 and developing therapeutic targets for COVID-19.  
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Methods 
Study population 
SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS): Data were 

obtained from participants who underwent research bronchoscopy within SPIROMICS, a multi-

site prospective cohort study of participants ages 40-80, across four strata (never smokers, 

smokers without COPD, mild/moderate COPD, and severe COPD. Full SPIROMICS study details 

including inclusion and exclusion criteria have been previously published13. Participants enrolled 

in SPIROMICS who consented to a research bronchoscopy and met all local requirements (e.g. 

any laboratory tests that are required by institutional policy to be administered prior to a 

bronchoscopy) were deemed eligible. Additional exclusion criteria for the SPIROMICS 

bronchoscopy sub-study48 included history of cardiac disease or other comorbid condition severe 

enough to significantly increase risks based on investigator discretion, requirement of 

supplementary oxygen at rest based on arterial oxygen pressure less than 60 mm Hg or arterial 

oxygen saturation less than 88%, severe lung function impairment defined as post-bronchodilator 

forced expiratory volume in 1 second (FEV1) less than 30% predicted, and use of anticoagulation 

or antiplatelet therapies.  

Severe Asthma Research Program (SARP): Adult and pediatric patients with and without asthma 

were recruited to the SARP III cohort between Nov 1, 2012, and Oct 1, 2014, by seven clinical 

research centers in the USA. The SARP protocol is an ongoing, six-visit, 3-year, longitudinal 

cohort study in which 60% of participants have severe asthma as defined by the European 

Respiratory Society/American Thoracic Society (ERS/ATS) criteria49. A subset of participants 

underwent research bronchoscopy. Exclusion criteria included history of smoking (>5 pack year 

smoking history), co-existing lung disease, and uncontrolled comorbidities. All healthy control 

subjects had to have no history of asthma and normal lung function and methacholine 

bronchoprovocation testing. Participants with asthma had to meet ATS/ERS criteria for asthma 

(bronchodilator response to albuterol or positive methacholine bronchoprovocation test). Asthma 

had to be clinically stable at the time of bronchoscopy.  

Mechanisms of ASThma Study (MAST): Mild steroid naive asthmatics and healthy controls 

underwent research bronchoscopy. All healthy control subjects had to have no history of asthma 

or allergies. Participants with asthma had to have a positive methacholine bronchoprovocation 

test and could not have used steroids in 6 weeks prior to enrollment. Additional exclusion criteria 

included respiratory infection within 4 weeks of enrollment and pregnancy.  
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Whole genome sequencing data 
Trans-Omics for Precision Medicine (TOPMed) Project14 data freeze 9 consist of whole genome 

sequences of 160,974 samples with at least 15x average coverage, including 2,710 individuals 

from the SPIROMICS study. We obtained unphased genotypes for all individuals from the 

SPIROMICS study at sites with at least 10x sequencing depth (minDP10 call set) aligned to the 

human reference genome build GRCh38. Details regarding the DNA sample handling, quality 

control, library construction, clustering and sequencing, read processing, and sequence data 

quality control are described on the TOPMed website (www.nhlbiwgs.org/genetic). Variants 

passing all quality control (QC) filters were retained. 

Derivation of airway epithelial transcriptomic data in SPIROMICS, SARP, and MAST 
Cytological brushings of the airway epithelium were obtained from lower lobe bronchi at the 

segmental or subsegmental carina. RNA was isolated with miRNeasy extraction kits (Qiagen Inc., 

Valencia, CA). RNA quantity and quality were evaluated using a NanoDrop Spectrophotometer 

(Thermo Fisher Scientific, Wilmington, DE) and Agilent 2100 Bioanalyzer (Agilent Technologies, 

Santa Clara, CA), respectively. Library preparation with multiplexing was performed using Illumina 

TruSeq Stranded Total RNA with Ribo-zero GOLD kit (SPIROMICS, SARP) or Human/Mouse/Rat 

kit (MAST) per manufacturer’s protocol. Samples were sequenced using one-hundred-fifty base-

pair (SPIROMICS) or one-hundred base-pair (SARP, MAST) paired end reads via the Illumina 

HiSeq platform at the UCSF Sandler Genomics core. FASTQ files were quality filtered and aligned 

to the Ensembl GRCh38 genome build using STAR50. Read counts were normalized using the 

regularized logarithm transformation function of the DESeq2 package51 in R, and batch corrected 

using the Combat function in the SVA package52 in R. Outlying samples with low quality (low raw 

read counts, high percentage of reads mapped to multiple loci, high percentage of unmapped 

reads) were identified by hierarchical clustering and principal component analyses and excluded 

from the final datasets. 

Differential expression analysis of ACE2 in relation to host/environmental factors 
Visualization and analyses of single gene and gene signature analyses were done using RLE 

normalized and COMBAT batch corrected gene expression from the DESeq2 and SVA packages 

in R. Linear regression models were fitted to evaluate associations between ACE2 expression 

(based on normalized count) and clinical variables. In SPIROMICS unadjusted models were 

evaluated along with models adjusted for potential confounders including smoking status, age, 

sex, body mass index (BMI), and race, as appropriate. For analyses of hypertension, adjusted 

analyses included anti-hypertensives as a covariate, in addition to sex, age, smoking status and 
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race. In SARP adjusted analyses included covariates for asthma, steroid use (inhaled steroids 

alone or inhaled plus oral steroids), age, sex, race, and BMI, as appropriate. Analyses of 

hypertension were done only in participants with asthma (due to availability of data), but 

adjustments for sex, age, BMI, and race were still done. In MAST analyses were adjusted for age, 

sex, asthma disease status, race, and BMI. 

Differential exon usage  
Following alignment, we indexed and sliced the SPIROMICS BAM files to include 51.6 kb of the 

ACE2 genomic region (chrX:15,556,393-15,608,016 in the hg38 genome build) using samtools53. 

GTF files were manually curated to include the three exons that contribute to differential isoform 

expression of ACE224. Full length ACE2 transcripts are generated from two independent first 

exons, Exons 1a and 1b, with Exon 1b shared between these transcripts. The truncated ACE2 

transcript that does not bind the SARS-CoV-2 virus but is associated with an interferon-stimulated 

gene response in experimental models originates from Exon 1c. Coordinates from the pre-print 

manuscript by Onabajo, et al.24 were used to curate the GTF file: Exon 1a: chrX:15,601,956-

15,602,158, Exon 1b: chrX:15,600,726-15,601,014, Exon 1c: chrX:15,580,281-15,580,420. The 

exons were then counted using the ASpli package54 in R. As per the ASpli and EdgeR package 

recommendations, raw exon counts were adjusted for gene counts to remove the signal from 

differential gene expression using the formula: (Exon Count in each sample*mean raw ACE2 

count)/raw ACE2 gene count in that sample. To adjust for differences in sequencing depth 

between samples the transformed counts were then multiplied by the size factor variable 

generated by the DESeq2 package from the sequencing analysis. Linear models adjusting for 

batch were then used to analyze differences in exon usage in association with covariates of 

interest. The primary analysis was to evaluate whether ACE2 exon 1c differential usage was 

associated with increases in our interferon-stimulated gene signature. In secondary analyses we 

determined whether clinical covariates were associated with differential exon 1c usage.  

Gene set enrichment analysis of expression changes induced by COVID-19 
Differential expression and gene set enrichment analyses were done using the limma55 and 

FGSEA28 packages in R. Data underwent TMM normalization and the voom transformation 

followed by linear model fit with empirical Bayes moderation of the standard errors. We built 

COVID-19 relevant gene sets from publicly available differential gene expression data27 from 

participants who underwent nasal/oropharyngeal swab sampling at the time of acute respiratory 

illness for COVID-19 diagnosis (94 participants with COVID-19, 41 with other viral illness, 103 

with no virus identified, viruses identified by metagenomic sequencing analysis). Expression gene 
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sets were built using the 100 genes most up- and downregulated in association with infection 

type. Biological pathway gene sets were built by inputting the genes differentially downregulated 

between SARS-CoV-2 infection and other viral illness (P < 0.05) into the Ingenuity Pathway 

Analysis canonical pathway function. The pathway assessments were limited to downregulated 

genes given the relationship between downregulated gene sets and comorbidities in the initial 

analyses of the 100 gene sets. Gene set enrichment analyses were then performed using 

FGSEA28 and the CAMERA function56 in limma against gene lists ranked by their log fold change 

differential expression in association with comorbid clinical risk factors. Barcode plots were made 

using CAMERA. Normalized enrichment scores for heatmaps were extracted from FGSEA (not 

available through CAMERA, but CAMERA and FGSEA statistical results were similar). As 

smoking so strongly influences gene expression, in SPIROMICS differential expression analyses 

input into GSEA algorithms to evaluate clinical factors such as obesity, hypertension, 

cardiovascular conditions, and sex were first done in former smokers only to limit the effect of 

smoking, adjusting for age, sex and BMI if appropriate. In sensitivity analyses, we repeated the 

analyses in all subjects, adjusting for smoking status as well and found similar results. As asthma 

and steroid use so strongly influence gene expression, in SARP differential expression analyses 

of these other clinical factors were limited to asthma participants on inhaled but not oral steroids. 

Secondary analyses included all asthma participants adjusting for steroid use, with similar 

findings. Findings were considered significant at P < 0.05 and false discovery rate (FDR) < 0.05 

if multiple corrections were necessary. For Extended Data Fig. 7, in which we evaluated COVID-

19-related genes identified by experimental data from the SARS-CoV-2 ex vivo infection of 

primary human bronchial epithelial cells31 or thought to be proteins that interact with SARS-CoV-

230, we reported findings at the less stringent P < 0.05 as these analyses were hypothesis 

generating only. 

COVID-19-related genes 
We mined the growing body of COVID-19 related literature to identify host genes implicated in 

SARS-CoV-2 infection discovered using different analytical approaches. The following studies 

were used to compose a list of COVID-19 candidate genes: 1) Hoffmann et al.16 that identified 

ACE2 as the receptor to be exploited by the SARS-CoV-2 for cellular entry, and proteases 

TMPRSS2 and cathepsin B/L both to be used by SARS-CoV-2 for S protein priming, whilst only 

TMPRSS2 is essential for viral entry and viral spread; 2) Gordon et al.30 that identified 332 high-

confidence SARS-CoV-2-human protein-protein interactions; 3) Blanco-Melo et al.31 that explored 

the transcriptional response to SARS-CoV-2 in vitro, ex vivo, and in vivo models; 4) COVID-19 
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Cell Atlas (www.covid19cellatlas.org) that highlights 17 genes including cathepsins and other viral 

receptors or receptor associated enzymes; 5) Gassen et al.32 that showed the role of SARS-CoV-

2 infection in restricting AMPK/mTORC1 activation and autophagy; 6) Wang et al.29 that reported 

a mediating role of CD147 (also known as BSG) in SARS-CoV-2 viral invasion. 

To narrow the list of differentially expressed genes following SARS-CoV-2 infection from Blanco-

Melo et al.31, we focused on the results from the ex vivo infection of primary human bronchial 

epithelial cells. To include in our candidate list, we chose genes that 1) have adjusted P-value < 

0.05 in the differential expression analysis from primary cells and either cell lines (Calu-3 or ACE2-

expressing A549 cells, low-MOI infection; excluded genes with adjusted P = 0) or samples derived 

from COVID-19 patients, and 2) log2 fold change > 0.5 in absolute scale in primary cells and log2 

fold change > 1 in absolute scale in the other experiment.  

In total, we selected 514 candidate genes implicated in COVID-19 from six different sources. Of 

them, 496 genes were expressed in bronchial epithelium. 

Expression quantitative trait mapping 
Expression quantitative trait (eQTL) mapping was performed in 144 unrelated individuals from the 

SPIROMICS bronchoscopy sub-study with WGS genotype data from TOPMed and gene 

expression from bronchial epithelium profiled with RNA-seq following the analysis pipeline from 

the Genotype-Tissue Expression (GTEx) Consortium15. Gene expression data was normalized as 

follows: 1) read counts were normalized between samples using TMM57 with the edgeR package 

in R58, 2) genes with TPM ≥ 0.1 and unnormalized read count ≥ 6 in at least 20% of samples were 

retained, 3) expression values were transformed using rank-based inverse normal transformation 

across samples. 

Next, Probabilistic Estimation of Expression Residuals59 (PEER) was used to infer hidden 

determinants of variability in gene expression levels due to technical and biological sources. 

According to the optimization analysis for selection of PEERs by sample size to maximize cis-

eGene discovery done in GTEx15, 15 PEERs were chosen to be used as covariates in eQTL 

mapping together with 4 genotype PCs and sex imputed from genotype data. 

To control population structure, principal component analysis (PCA) was conducted on post-

variant QC genotype data from unrelated SPIROMICS individuals. More precisely, PCA was 

performed on a set of LD-independent autosomal biallelic single nucleotide polymorphisms from 

not long-range LD regions60 with a call rate ≥ 99% and MAF ≥ 0.05 using smartpca from 
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EIGENSTRAT (github.com/argriffing/eigensoft/tree/master/EIGENSTRAT), turning off outlier 

removal (option -m 0). LD pruning was performed using Plink 1.961 based on pairwise genotypic 

correlation of 200 SNPs at a time, with a step of 100 SNPs, and using LD threshold of > 0.1 to 

remove one of a pair of SNPs (option --indep-pairwise 200 100 0.1). Top 4 PCs were 

chosen to be used to correct for population stratification. The top 4 PCs explained > 0.1% of the 

variance, and were associated with subpopulations inferred from 1000 Genomes Project using k-

nearest neighbors clustering (F-test P < 2×10−10, adj R2 = 0.36 − 0.98). 

Cis-eQTL mapping was performed using tensorQTL62 across 22,738 genes and 6,605,907 

variants with MAF ≥ 0.05 and variant call rate ≥ 0.9. Window-size was set to 1 Mb from the 

transcription start site (TSS) of the gene according to the GENCODE version 33, 10,000 

permutations were used to correct for multiple testing, and false discovery rate (FDR) < 0.05 was 

used to identify genes with statistically significant eQTLs (eGenes). We also used tensorQTL to 

map conditionally independent cis-eQTLs. 

Lead cis-eQTL effect size was quantified as allelic fold change63 (aFC), ratio of expression of the 

haplotype carrying the alternative allele to expression of the haplotype carrying the reference 

allele of an eQTL. Gene expression data normalized with DESeq2 size factors51 and log2-

transformed were used as input together with the processed genotype VCF file. aFC was 

calculated requiring at least 2 samples (--min_samps 2) and minimum 1 observation of each 

allele (--min_alleles 1), and adjusting for the same covariates as in cis-eQTL mapping. To 

calculate confidence intervals 100 bootstrap samples were used. aFC estimates that hit the 

absolute cap value (log2(100)) were set to missing. 

Cell type interacting expression quantitative trait mapping 
Firstly, we used xCell64 to estimate 64 immune and stroma cell types from the gene expression 

signatures of bronchial epithelium. TPM expression matrix of 144 bronchial brush samples 

together with 30 samples from each tissue type from GTEx was uploaded to the UCSF xCell 

Webtool (xcell.ucsf.edu). Then, the following linear regression model was used to map cell type 

interaction eQTLs (ieQTLs): p ~ g+i+g×i+C, where p is the phenotype vector (inverse normalized 

gene expression), g is the genotype vector, i is the cell type enrichment score from xCell (inverse 

normalized), g×i is the interaction term, and C is the covariates matrix as used in eQTL mapping. 

Cell types with a median xCell enrichment score > 0.05 were included in the analysis. There were 

29 cell type signatures that met this criteria: B cells, basophils, CD4 TCM, CD4 TEM, CD8 naïve 

T cells, common lymphoid progenitor (CLP), common myeloid progenitor (CMP), class switched 
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memory B cells, DCs, eosinophils, HSCs, keratinocytes, M1 and M2 macrophages, monocytes, 

osteoblasts, plasma cells, preadipocytes, sebocytes, smooth muscle, TH2 cells, antigen-

presenting, immature, classical and plasmacytoid dendritic cells, pro B cells, and 

microenvironment and immune scores. Mapping of ieQTLs was done using tensorQTL62, and only 

variants within 1Mb of the TSS of each gene tested and with MAF > 0.1 in the samples belonging 

to the top and bottom halves of the distribution of cell type abundance were included. Regression 

coefficients and P-values were calculated for all terms in the model, and ieQTLs were identified 

by testing for the significance of the interaction term. Top nominal P-values for each gene were 

corrected for multiple testing at the gene level using eigenMT65 as implemented in tensorQTL. 

Significance across genes was determined by adjusting eigenMT P-values using the Benjamini-

Hochberg procedure with FDR of 0.05. 

Replication of cis-eQTLs in GTEx 
We performed replication of cis-eQTLs (gene-variant pairs) found from bronchial epithelium in the 

Genotype-Tissue Expression (GTEx) project v8 release15. Using cis-eQTL summary statistics 

across 49 tissues from GTEx, we calculated the proportion of true positives66, 𝜋!, to estimate the 

proportion of sharing of cis-eQTLs between bronchial epithelium and GTEx tissues. We assessed 

the allelic direction of the cis-eQTLs from bronchial epithelium and GTEx tissues by calculating 

concordance rate, the proportion of gene-variant pairs with the same allelic direction. This 

comparison was restricted to cis-eQTLs with nominal P-value < 1x10-4 in the given GTEx tissue. 

Next, we analyzed the replication and concordance measure as a function of sample size and 

median cell type enrichment scores for seven cell types36: adipocytes, epithelial cells, 

hepatocytes, keratinocytes, myocytes, neurons, and neutrophils. Tissues with median enrichment 

score > 0.1 were classified as being enriched for the given cell type. We used Wilcoxon rank sum 

test to estimate the difference in replication and concordance estimates between tissues enriched 

or not enriched for the given cell type. 

cis-eQTLs not identified in previous large eQTL catalogs 
To investigate the tissue-specificity of cis-eQTLs from bronchial epithelium, we performed gene-

level lookup in GTEx v8 and eQTLGen Consortium35. We identified genes with significant 

regulatory effects in SPIROMICS (FDR < 0.05) that were tested in neither catalog. 

Then, we used the functional profiling webtool g:GOSt (version e99_eg46_p14_f929183) from 

g:Profiler67 to perform pathway analysis of the 492 significant eGenes in SPIROMICS not tested 

in GTEx v8 Lung. Method g:SCS was used for multiple testing correction corresponding to 
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experiment-wide threshold of α = 0.05. Significant eGenes from SPIROMICS (n = 4,881) that 

have at least one annotation (option “Custom over annotated genes”) were used as a background 

in the enrichment test. 

pheWAS of lead COVID-19 cis-eQTLs in SPIROMICS 
We performed phenome-wide association studies in 1,980 non-Hispanic White (NHW) and 696 

individuals from other ethnic and racial groups from SPIROMICS for the 108 lead cis-eQTLs to 

evaluate for phenotypic associations with spirometric measures, cell count differentials, 

immunoglobulin concentrations, longitudinal exacerbation risk, self-reported asthma history, 

cardiovascular diseases, CT scan measures of emphysema (bilateral percentage lung density <-

950HFU at total lung capacity), CT scan functional small airways disease (PRM-fSAD), and 

alpha1-antitrypsin concentrations (subgroup of 1,191 NHW and 396 from other racial/ethnic 

groups). PheWAS regression-based models were performed using PLINK 2/0 and included 

principle components of ancestry, sex, BMI, age, and smoking pack-years. Models for CT scan 

measures also included site and height while alpha1-antitrypsin concentrations included c-

reactive protein. 

CT scan measures, eosinophil counts, and IgE concentrations were log-transformed. Significance 

threshold was set for the number of eQTLs tested across phenotypes (P < 4.63x10-4). 

Lookup of phenome-wide associations with PhenoScanner v2 
PhenoScanner v237,38 was used to lookup phenotype associations for the cis-eQTL variants from 

large-scale genome-wide association studies (GWAS) with association P-value < 10-5. We 

queried PhenoScanner database based on the rs IDs of the lead cis-eQTLs obtained from dbSNP 

version 151 (GRCh38p7, including also former rs ID to query). The phenoscanner R package 

(github.com/phenoscanner/phenoscanner) was used to perform the queries. Query results were 

filtered to keep one association for each of the variants per trait, preferring summary statistics 

from newer studies, studies with larger sample size, or based on UK Biobank data (GWAS round 

1 results from the Neale Lab). Description of Experimental Factor Ontology (EFO) terms and 

classification to EFO broader categories were obtained from the GWAS Catalog or by manually 

searching EMBL-EBI EFO webpage (www.ebi.ac.uk/efo/). 

The regulatory variants for CEP250, FAR2, and TLE3 have phenotypic associations with both 

body height and pulmonary function test (PFT) measures from PhenoScanner. As GWAS 

analyses from the Neale Lab using UK Biobank data do not include height as a covariate in the 

model, we used the results of the lung function GWAS by Shrine et al.68 to confirm if the suggestive 
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signal for PFT trait has been observed before or rather seems to be an artefact of incomplete 

adjustment for height. Of note, Shrine et al.68 have discovered 279 lung functions signals in the 

meta-analysis of UK Biobank and the SpiroMeta Consortium. We looked up the nearest GWAS 

hits to the eQTL, and calculated LD between the variants in the African and European populations 

using LDpop69 web tool. 

Colocalization analysis 
Multiple trait associations observed for a single variant do not necessarily translate into shared 

genetic causality. To assess evidence for shared causal variant of a cis-eQTL and a GWAS trait, 

we used the Bayesian statistical test for colocalization, coloc. We used the newer version of 

coloc70 that allows conditioning and masking to overcome one single causal variant assumption 

(condmask branch of coloc from github.com/chr1swallace/coloc). We only tested colocalization 

for loci where the eQTL had at least one phenotypic association based on the lookup analysis 

with Phenoscanner from the following EFO parent categories: hematological measurement, 

pulmonary function measurement, respiratory disease. From each of the smaller EFO categories, 

we chose one trait with the smallest P-value for which we were able to find summary statistics 

using GWAS Catalog REST API or among the Neale Lab GWAS round 2 results 

(www.nealelab.is/uk-biobank/). Coloc was run on a 500-kb region centered on the lead cis-eQTL 

(+/- 250 kb from the variant) with priors set to p1 = 10-4, p2 = 10-4, p3 = 5x10-6. We used the 

coloc.signals() function with mode = iterative and method = mask for GWAS traits with LD 

data from the 1000 Genomes Project to match the ancestry of the discovery population (e.g., 

choosing CEU for LD if the discovery population is of European ancestry). We allowed for a 

maximum of three variants to mask, with an r2 threshold of 0.01 to call two signals independent 

and P-value threshold of 1x10-5 to call the secondary signal significant. We used method = 

single for the eQTLs, because the corresponding eGenes did not have secondary independent 

signals. We prioritized eGenes with posterior probability for colocalization (PP4) > 0.5 as loci with 

evidence for colocalization.  
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Data availability 

The SPIROMICS gene expression data will be available in dbGaP. The SARP gene expression 

data will be available through the Gene Expression Omnibus (GEO). The MAST dataset is 

available in GEO under accession number GSE67472. TOPMed WGS freeze 9 data are available 

in dbGaP under accession number phs001927. 

Full eQTL summary statistics for the 496 COVID-19-related genes can be downloaded from 

https://github.com/LappalainenLab/spiromics-covid19-eqtl/tree/master/eqtl/summary_stats.  

Code availability 

eQTL mapping analyses code has been deposited to the GitHub repository at 

https://github.com/LappalainenLab/spiromics-covid19-eqtl. 
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