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Abstract 
Efficient presentation of aberrant peptide fragments by the human leukocyte antigen class I (HLA-I) genes 

is necessary for immune detection and killing of cancer cells. Patient HLA-I genotypes are known to 

impact the efficacy of cancer immunotherapy, and the somatic loss of HLA-I heterozygosity has been 

established as a factor in immune evasion. While global deregulated expression of HLA-I has been 

reported in different tumor types, the role of HLA-I allele-specific expression loss – that is, the preferential 

RNA expression loss of specific HLA-I alleles – has not been fully characterized in cancer. In the present 

study, we quantified HLA-I allele-specific expression (ASE) across eleven TCGA tumor types using a 

novel method from input RNA and whole-exome sequencing data. Allele-specific loss in at least one of 

the three HLA-I genes (ASE loss) was pervasive and associated to worse overall survival across tumor 

types, including pancreatic adenocarcinomas, prostate carcinomas and glioblastomas, among others. In 

particular, our analysis shows that detection of neoantigens with binding affinity to the specific HLA-I 

genes subject to ASE loss was a top prognostic indicator of overall survival. Additionally, we found that 

ASE loss hindered immunotherapy in retrospective analyses. Together, these results highlight the 

prevalence of HLA-I ASE loss – a previously uncharacterized phenomenon in cancer – and provide initial 

evidence of its clinical significance in cancer prognosis and immunotherapy treatment.  
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Introduction 

Somatic mutations and chromosomal instability drive carcinogenesis and progression. Mutant peptide 

fragments derived from aberrant proteins can trigger a cytotoxic T-cell response through recognition of 

neoantigens that differ sufficiently from the normal host peptides1. As expression of HLA-I genes is 

necessary for neoantigen presentation in cancer cells, disruptions in HLA-I expression can have major 

implications on immune evasion. Meta-analyses of human cancers indicate abnormal or lowered HLA-I 

expression in particular for non-small cell lung cancer, breast carcinoma, head-neck squamous cell 

carcinoma, melanoma, as well as bladder, pancreas and prostate tumors, in up to 90% of primary 

samples2,3,4,5. Although downregulation of HLA class I can allow tumor cells to escape immune detection 

by cytotoxic T-cells, complete HLA-I loss makes cells vulnerable to natural killer (NK) antitumor activity 

as they are no longer able to present self-antigens on the cell surface6. The tumor microenvironment, 

therefore, plays a critical role in immune escape3, and it has been suggested that decreased expression 

of HLA-I, but not complete loss, can allow tumors to escape from both T-cell and NK surveillance7. 

Downregulation of HLA-I is associated with worse prognosis3,8, but it is also associated with a decreased 

metastatic potential9.   

Patient HLA-I genotypes are known to impact the efficacy of cancer immunotherapy10,11 and the loss of 

HLA-I germline heterozygosity (LOH) – through partial or full chromosome 6 loss or focal deletion of the 

HLA locus – is a common molecular mechanism driving abnormal HLA-I expression5. LOH, traditionally 

assessed through analysis of microsatellite markers, is frequently observed in many tumor types such as 

head-neck12 and pancreatic cancer13. Haplotype-specific copy number inference through computational 

approaches has enabled LOH assessment from standard next-generation DNA sequencing, showing 

that LOH occurs in 40% of non-small-cell lung cancers14. While a few tools have recently reported HLA 

allele-specific quantification of mRNA expression15 (ASE), even at single-cell resolution16, there is 

currently no gold standard for HLA-I ASE from RNA-seq data. Furthermore, the clinical significance of 

HLA-I LOH at the level of expression (ASE loss) is poorly understood across cancer subtypes.   

In the present study, we aimed to systematically characterize HLA-I ASE loss across tumor types using 

a novel, accurate allele-specific quantification method (Figure 1a) that builds upon previously established 

high-resolution HLA genotyping protocols from RNA-seq17,18. In light of ubiquitous HLA-I aberrant 

expression in cancer, we hypothesized that HLA-I ASE loss may constitute a universal immune escape 

mechanism with significant clinical impact, particularly in the context of immunotherapy. HLA-I ASE in 

cancer tissue was first quantified using our tool, arcasHLA-quant19, for 3,585 individuals across eleven 

TCGA molecular tumor subtypes (Figure 1b) of the brain, head and neck, lung, breast, pancreas, kidney, 

bladder, prostate and the skin. Paired tumor RNA and DNA sequencing was required for this study, in 

addition to matched normal DNA controls (see Cohort descriptions in Online Methods). As a consistency 
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check, we verified that gene-specific quantification levels obtained with arcasHLA-quant by summing 

minor and major allele expression for each HLA-I gene (HLA-A, HLA-B and HLA-C), were consistent with 

expression levels as inferred through alternate methods20 available on the TCGA portal (Pearson 

correlation coefficients in the range 0.64-0.94, p < 10-16 across tumor subtypes, e.g. BLCA, 

Supplementary Figure 1a). Next, for each HLA-I gene, we inferred the expressed copy number for each 

genotyped allele (e.g. HLA-A1 and HLA-A2 in the case of an HLA-A heterozygous individual; see HLA-I 

genotyping and ASE quantification). Compared to HLA-I expression in normal tissue samples from 

GTEx21, TCGA subtypes showed significant differences in the distribution of minor allele frequencies 

(Supplementary Figure 1b). Thus, we posited that extensive allelic imbalance observed was due to the 

tumor component in the bulk samples. Using inferred estimates of tumor purity and ploidy22, we then 

defined tumor HLA-I ASE loss for the TCGA cases with detectably high HLA-I expression imbalance in 

minor-major allele pairs in any of the class I HLA genes (Figure 1a; see Tumor purity and ploidy inference, 

and Assessment of ASE loss in Online Methods). Our assessment of HLA-I ASE loss was consistent with 

detection of nonsense HLA mutations in TCGA (Supplementary Table 1; see ASE loss and nonsense 

HLA-I mutations in Online Methods). 

 
Results 
HLA-I allele-specific expression loss is pervasive across tumor types. We first determined that HLA-

I ASE loss is pervasive across TCGA tumor subtypes23 (Figure 1b, c): ASE loss was detected in every 

tumor type analyzed, with prostate (PRAD), head and neck (HNSC), pancreatic (PDAC) and lung 

adenocarcinomas (LUAD) exhibiting HLA-I ASE loss at frequencies above 45% in their respective 

cohorts, while glioblastomas (GBM) showed a markedly lower incidence of ASE loss at 14%. Overall, 

HLA-I ASE loss was due to HLA-A in 55% of cases, to HLA-B in 39% and to HLA-C in 45% of cases, with 

loss at all three genes occurring at a rate of 23%. We then asked whether ASE loss was accompanied 

by somatic DNA lesions (e.g. chromosomal or focal deletions) at the corresponding HLA-I loci. Using 

LOHHLA14, we found that only a fraction of ASE losses showed evidence of DNA haplotype loss (Figure 

1c; see Assessment of somatic loss of HLA-I haplotypes). The maximal proportion of DNA-to-expression-

only loss was found in TCGA-GBM (57%), while TCGA-PRAD had the smallest such proportion (under 

14%). Our estimates of ASE loss are consistent with established literature on several tumor types. For 

example, in pancreatic cancer (TCGA-PDAC), previous studies13 indicate that LOH occurs in 21% of 

cases, while expression loss without LOH occurs much more frequently (in 58% of cases). Other reports 

find higher incidence of somatic LOH than what we show here. In head-neck cancer (TCGA-HNSC) for 

instance, LOH was previously detected in 49% of cases with deregulated HLA-I expression12 (in our data, 

30%). More notably, in non-small-cell lung cancer, LOH was detected in 40% of cases14, while in our data 
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we found somatic loss in about 15-19% of cases (Figure 1c). These discrepancies may possibly be due 

to differences in cohort selections, methodologies, sequencing depth, or smaller sample sizes in 

previously published assessments of LOH and HLA-I expression. Nonetheless, our results suggest that 

the majority of HLA-I ASE loss occurs in cancer occurs through epigenetic or other expression regulatory 

mechanisms instead of somatic DNA lesions.  
 
HLA-I allele-specific expression loss decreases overall survival in cancer. Next, we hypothesized 

that presence of HLA-I ASE loss might lead to shorter survival times across tumor types, owing to a gain 

of immune escape potential. In order to conduct a pan-cancer analysis of the clinical significance of ASE 

loss, we defined thirty tumor sample features to be incorporated into a multivariable Cox regression 

stratified by tumor type (Supplementary Table 2). In addition to age at diagnosis, tumor purity and ploidy 

estimates, we focused on immune-related and microenvironmental features. To that end, we included 

HLA-I patient genotype (at the level of HLA allele supertypes24 and HLA-I germline homozygosity; see 

HLA-I genotyping supertypes in Online Methods), and immune cell subtype proportions as inferred 

through in silico decomposition methods25 (including CD4+ and CD8+ T-cells, B-cells, NK-cells and 

macrophages; see In silico decomposition into immune cell subtypes). Finally, we included several 

features related to predicted neoantigens, HLA allele-specific neoantigen affinities and mutational burden 

in the tumor samples26 (see Computational identification of neopeptides). Our Cox proportional-hazards 

model of overall survival (n = 3386, with 2453 censored events), stratified across all eleven TCGA 

molecular subtypes and including all features, showed a trend for HLA-I ASE loss contribution towards 

worse prognosis (p = 0.07; hazard ratio, HR, = 1.17; 95% confidence interval, CI: 0.99-1.37; 

Supplementary Table 2). However, the largest-effect predictor of poorer overall survival was the 

neoantigen count adjusted for ASE status of the HLA-I allele with the highest binding affinity (p = 0.01, 

HR = 1.38, 95% CI: 1.08-1.77; or HR = 1.02 per neoepitope; see Figure 2a, Supplementary Figure 2, 

Supplementary Table 2). Consistent with this observation, we found that detection of neoantigens with 

binding affinity to kept alleles had an overall beneficial effect in the pan-cancer analysis (p = 0.03, HR = 

0.83, 95% CI: 0.7-0.98; or HR = 0.98/neoepitope). Predictive features based on neoantigen counts with 

major and minor HLA-I allele affinities respectively, independent of ASE loss, did not have the same 

significant effects on overall survival (Supplementary Table 2). Two other variables were associated with 

shorter overall survival: age at diagnosis (p < 0.005, HR = 1.31, 95% CI: 1.21-1.40; or HR = 1.02/year), 

and tumor ploidy (p < 0.005, HR = 1.16, 95% CI: 1.08-1.25). ASE loss showed a trend towards shortening 

survival in seven tumor subtypes: PRAD, HNSC, PDAC, LUSC, KIRP, KIRC and GBM (Supplementary 

Tables 3, 4a; see Statistical analyses); but our ASE data were not significant in separate analyses by 

tumor subtype – due to a lack of power, differences in the quality and quantity of neoantigen predictions 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2020. ; https://doi.org/10.1101/2020.09.30.20204875doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.30.20204875
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

across TCGA, and gaps in characterizing the phenotypes of tumor-infiltrating immune cells (such as T-

cell exhaustion27). In the high-powered pan-cancer analysis, however, our data suggest a significant 

clinical impact of HLA-I ASE loss towards poor prognosis, particularly when the loss phenotype is 

accompanied by an increased count of neoantigens predicted to have a higher binding affinity to the 

alleles that are lost. 

 

HLA-I allele-specific expression loss contributes to decreased overall survival in PDAC. Next, in 

order to mitigate potential limitations of modeling allele-specific binding, we only considered neoantigen 

counts adjusted for the ASE status of the HLA-I gene with the highest predicted affinity. In addition, since 

tumor purity was associated with ASE loss (Supplementary Table 5), in order to further limit ASE loss 

calling errors due to extremely low purity levels, we also filtered out TCGA samples with purity below 

10% in subsequent revised survival analyses (see Cohort descriptions). In these revised subtype-specific 

analyses (Supplementary Table 4b; Supplementary Figure 3), a single cancer type showed a significant 

association with overall survival: TCGA-PDAC28 (p = 0.03, HR = 1.30, 95% CI: 1.03-1.63; or HR = 

1.75/neoepitope). Specifically, the subgroup with worse prognosis exhibited HLA-I ASE loss concomitant 

with detection of neoantigens predicted with higher affinity towards HLA-I genes subject to expression 

loss (Figure 2b). Even without accounting for neoantigen HLA-I affinities, ASE loss alone contributed to 

worse survival in PDAC (p = 0.23, HR = 1.34, 95% CI: 0.84-2.20; Supplementary Figure 4).  

 

Next, we validated widespread HLA-I ASE loss in an independent cohort of 96 laser-capture micro-

dissected pancreatic ductal adenocarcinoma samples29 where RNA-seq was performed separately on 

cleanly delineated epithelial and stroma compartments (CUMC cohort: CUMC-E for epithelial samples 

and CUMC-S for the stroma; see Cohort descriptions in Online Methods). Indeed, HLA-I ASE loss was 

strongly associated with the tumor epithelial compartment (Fisher exact test, OR = 3.98, p < 10-5), which 

further supports our hypothesis that ASE loss occurs in the cancer cells from bulk mixtures. Additionally, 

HLA-I ASE loss resulted in shorter survival when detected in CUMC-E (p-val = 0.05, HR = 1.59, 95% CI: 

1-2.51). There was no survival impact, however, for ASE loss in CUMC-S (Supplementary Figure 5).  

 

We subsequently interrogated potential associations between HLA-I ASE loss in pancreatic cancer and 

well-characterized transcriptional subtypes (classical versus basal)30,31,32,33, as well as tumor stage. We 

found that ASE loss in PDAC was present in both subtypes from TCGA, but that it was enriched in basal 

tumors (OR = 1.88, p = 0.15). Moreover, detection of HLA-I ASE loss in the basal subtype, but not in the 

classical one, was associated with worse survival, suggesting the existence of a basal-like subcategory 

of PDAC characterized by HLA-I ASE loss and poorer prognosis (Figure 2c). These results were 
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consistent with alternate definitions of transcriptional subtypes (Supplementary Figures 6, 7). Finally, 

ASE loss detected at AJCC stage 2B had a significant impact towards shorter survival; ASE loss was 

detected in earlier stages too, although without noticeable clinical effect (Figure 2c). The association to 

transcriptional subtype was also validated in CUMC-E, where HLA-I ASE loss was detected 

predominantly in tumors with squamous features (OR = 4.02, p = 0.11). Altogether, our findings indicate 

that HLA-I allele-specific expression loss is a prognostic marker of shorter overall survival in pancreatic 

ductal adenocarcinoma, particularly in squamous-type, later stage tumors. 

 

HLA-I allele-specific expression loss decreases efficacy of anti-PD-1 immunotherapy in 
metastatic melanoma. Finally, we hypothesized that HLA-I ASE loss could be a factor in the efficiency 

of immune checkpoint blockade immunotherapies. We revisited a previously published metastatic 

melanoma cohort34 with pre-treatment (n = 46) and on-treatment (n = 29) samples (see Cohort 

descriptions) and inferred HLA-I ASE loss as described before. As in TCGA, HLA-I ASE loss was largely 

due to minor-major allelic imbalance in the bulk samples (Supplementary Figure 8). Excluding samples 

with ultra-low tumor purity (purity below 10%), we found ASE loss both pre- and on-Nivolumab therapy 

in about 37% of the cases (Figure 3). Furthermore, ASE loss contributed to worse overall survival whether 

assessed before or during therapy. The group with on-therapy ASE loss showed a slightly greater effect 

on prognosis (p = 0.10, HR = 2.28, 95% CI: 0.85-6.11). It is well known that HLA class I homozygosity 

can reduce overall survival with immune checkpoint blockade10 (Supplementary Figure 9). As such, we 

also analyzed the impact of ASE loss separately for individuals heterozygous at all three HLA-I genes 

(henceforth “fully heterozygous” cohort). For these individuals, ASE loss resulted in significantly worse 

prognosis (p = 0.02, HR = 4.28, 95% CI: 1.22 – 15.0; Figure 3) when expression loss occurred on-therapy 

(that is, one-month after the start of therapy34). To a large extent, decreased survival might be predictable 

for heterozygous individuals even before therapy, although the results are not as conclusive pre-

treatment (p = 0.1, HR = 2.15, 95% CI: 0.85-5.42). By taking neoantigen predictions into account, the 

survival impact was more striking for the fully heterozygous cohort (p = 0.02, HR = 6.24, 95% CI: 1.34-

29.1; Supplementary Figure 10). Results with the full cohort (including cases with ultra-low tumor purity) 

showed the same trend towards worse prognosis, particularly for fully heterozygous individuals with on-

treatment ASE loss (p = 0.06, HR = 3.25, 95% CI: 0.97-10.9; Supplementary Figure 11). Interestingly, 

among the fully heterozygous individuals with on-treatment samples and RECIST v1.1-defined response 

(n = 17), there were only 3 responders (complete or partial), and all of them had the HLA-I ASE wildtype 

phenotype (OR = inf., p = 0.21). Among pre-treatment samples, ASE loss resulted in suggestively lower 

odds of responding to subsequent treatment (OR = 0.67, n. s.). In addition, survival associations were 

not explained by factors such as sample purity or somatic LOH (Supplementary Figures 12, 13). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2020. ; https://doi.org/10.1101/2020.09.30.20204875doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.30.20204875
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

Therefore, our results highlight a potential significant clinical impact of HLA-I ASE loss on the efficacy of 

anti-PD-1 immunotherapy in metastatic melanoma. 

 
Conclusion 
Altogether, our work demonstrates that HLA-I ASE loss – as inferred through our allele-specific RNA-seq 

quantification method, arcasHLA-quant – is a frequent phenomenon across tumor types. Moreover, the 

majority of ASE loss cases do not seem to result from somatic DNA deletions in HLA-I. In a pan-cancer 

analysis, among predictor variables related to HLA-I and immune cell infiltration, we found that detection 

of neoantigens with binding affinity to specific class I genes subject to ASE loss was a top prognostic 

indicator of overall survival. In addition, ASE loss was shown to contribute to a worse prognosis in PDAC, 

as well as in metastatic melanoma under immune checkpoint blockade therapy. Our study has some 

limitations related to the lack statistical power in stratified analyses, the difficulty of HLA allele-specific 

quantification, the challenges of computational neoantigen binding prediction and the complexity of 

overall survival outcomes. However, the prevalence of ASE loss and the initial clinical impact that we 

have established here should highlight the importance of further investigations of HLA-I ASE in cancer, 

with the goal of understanding the underlying mechanisms and the timing of this potentially reversible 

lesion in tumor evolution.  
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Fig. 1 | HLA class I allele-specific expression loss is pervasive in cancer. a. Workflow for 
assessment of HLA-I allele-specific expression loss (ASE loss) in bulk RNA-seq, from input RNA and 
whole-exome (WES) sequencing data. b. TCGA subtypes analyzed in this work (project names listed 
clock-wise in the pie chart). c. Proportion of HLA-I ASE loss across TCGA subtypes (orange) as inferred 
using arcasHLA-quant, and proportion of cases where expression loss is accompanied by somatic DNA 
loss (blue), as inferred with the LOHHLA tool from WES data. 
 
(Panel a. was created with BioRender.) 
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Fig. 2 | HLA class I allele-specific expression loss contributes to worse overall survival in cancer.  
a. Prognostic features in a pan-cancer Cox proportional-hazards model of overall survival, stratified by 
tumor type. Thirty features were standardized (mean 0, standard deviation 1) and included (full list in 
Supplementary Figure 2 and Table 2). We incorporated neoantigen levels accounting for ASE status of 
HLA-I alleles with the highest predicted binding affinity, and counted neoantigens with higher affinity 
towards either the “kept” or the “lost” alleles (if any). The neoantigen count with lost-allele affinity was the 
largest-effect predictor of survival. b. Survival curves in TCGA-PDAC: cohort with HLA-I ASE loss and 
simultaneous detection of neoantigens with predicted affinity towards genes subject to loss has a worse 
prognosis. c. Survival curves of TCGA-PDAC according to transcriptional subtype and tumor stage. 
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Fig. 3 | HLA class I allele-specific expression loss decreases efficacy of anti-PD-1 immunotherapy 
in metastatic melanoma cohort (Riaz et al., 2017). Extensive HLA-I ASE loss in melanoma cohort pre- 
and on-treatment with Nivolumab. Fully heterozygous individuals with ASE loss detected on-treatment 
show significantly worse overall survival.  
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Online Methods 

Cohort descriptions: TCGA. We have included 3585 tumors from TCGA23 across eleven molecular 

subtypes (breakdown illustrated in Figure 1b) where whole exome sequencing (WES) samples were 

available from the tumor and from normal tissue, in addition to matched RNA-seq derived from the same 

tumor sample. ASE loss ratios were calculated (Figure 1c) based on these TCGA cases. For survival 

analyses and other clinical associations, we excluded cases without age at diagnosis information and 

cases without overall survival data. In total, 3386 cases were included in the Cox regression analyses 

(Figure 2a). For the TCGA-PDAC dataset, we eliminated TCGA cases that were not classified as 

pancreatic ductal adenocarcinoma using the criteria laid out in the following reference: Nicolle, R. et al.,  

2019. In addition, we excluded samples with ultra-low purity estimate (sequenza-inferred purity below 

10%; see Tumor purity and ploidy inference below) in subsequent survival analyses. In total, 3187 cases 

satisfied the purity condition (purity > 0.1). The TCGA-PDAC cohort consisted of 122 individuals with 

DNA/RNA data, age and overall survival information; and 112 individuals with the added tumor purity 

criterion. GTEx. We also included an arbitrary selection of samples from GTEx21 from bladder (all 

samples available for download, n = 11), brain (n = 21), lung (n = 21), pancreas (n = 21) and skin tissues 

(n = 21). These samples served as normal controls for HLA-I allele-specific expression imbalance levels 

(Supplementary Figure 1b). CUMC cohort. We analyzed a previously published cohort at Columbia 

University29 (denoted as CUMC, n = 192) comprised of epithelial samples (CUMC-E, n = 96) and stroma 

samples (CUMC-S, n = 96) that were cleanly delineated through laser-capture microdissection and 

subsequently processed and sequenced separately. All n = 96 cases were diagnosed as PDAC, and had 

overall survival information available. The vast majority of samples (94%) were stage 2A or 2B. Riaz et 

al., 2017. For the analysis of ASE loss in metastasis, we included a retrospective study of pre- and on-

treatment samples in metastatic melanoma34. In all, we identified n = 75 cases with paired DNA and RNA 

samples as required for our pipeline (Figure 1a). For all analyses with the Riaz dataset (Figure 3), we 

excluded cases with ultra-low purity (sequenza-inferred purity below 10%): there were n = 41 pre- and n 

= 25 on-treatment cases remaining.  

 

HLA-I genotyping and HLA supertypes. For all the TCGA cohorts in this study, high-resolution HLA 

class I genotyping (performed with Polysolver35 from normal WES samples) was previously available23. 

For the metastatic melanoma cohort, the HLA-I genotypes were also previously available10. For the 

CUMC and the GTEx cohorts, high-resolution HLA-I genotyping was performed from RNA-seq using 

arcasHLA17. In the former, only the stromal compartment was used to infer patient HLA genotypes. All 

HLA supertypes24 were annotated in the TCGA cohort for each subject and included as binary predictor 

variables in the multivariate Cox regressions.  
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HLA-I allele-specific expression (ASE) quantification. arcasHLA-quant19 quantifies allele-specific and 

gene-level expression given an individual's genotype, that is either determined using arcasHLA from 

RNA-seq (as for the CUMC cohort in pancreatic cancer) or through DNA-based methods (eg. Polysolver) 

when normal WES samples are available. Similar to existing approaches15, the arcasHLA-quant method 

first builds a customized transcriptome reference by replacing the default HLA transcripts from the human 

chromosome 6 reference (GRCh 38) with patient-specific HLA-I allelic cDNA references obtained from 

the IMGT/HLA database36. Subsequently, reads from input BAM files are extracted as in arcasHLA, and 

allele-specific expression quantification is performed using Kallisto37. This approach extends the workflow 

and applicability of arcasHLA; importantly, the same pipeline for extracting reads from input samples and 

constructing graph-based references for pseudo-mapping – which give arcasHLA high-resolution 

accuracy in genotyping HLA class I and class II genes from RNA-seq – are used for arcasHLA-quant. 

The arcasHLA-quant pipeline is developed in Python and can be run as a command-line instruction set 

or in a virtual environment. It is publically available: https://github.com/roseorenbuch/arcasHLA-quant.  

 
Tumor purity and ploidy inference. We used the sequenza22 algorithm with default parameters to 

obtain purity and ploidy estimates for all the TCGA samples, and likewise for the samples from the 

metastatic melanoma cohort (Riaz et al., 2017). Among all the solutions proposed by the model, we 

selected the purity-ploidy pair with the highest posterior probability. For the purpose of calculating ASE 

loss in the CUMC cohort, because we did not have DNA sequencing available, we assumed that the 

laser-capture microdissected CUMC-E and CUMC-S samples had 100% purity, and ploidy equal to 2.0. 

For comparison, the mean TCGA-PDAC purity was 53%, with a standard error of the mean (SEM) equal 

to 2.6%, while the mean ploidy was 2.02 with SEM equal to 0.05. 

 
Assessment of allele-specific expression loss (ASE loss). In order to determine the status of HLA-I 

ASE loss in the tumor component of bulk RNA-seq, we incorporated the following two pieces of 

information: tumor purity and ploidy inferred from paired tumor and normal samples; and HLA ASE 

inferred from RNA-seq using arcasHLA-quant. Similar to a previously published criterion for somatic LOH, 

LOHHLA14, we first determined a purity- and ploidy-adjusted tumor expressed copy number (expCN) for 

each HLA-I allele, as follows:  

(1)             

 

where AF denotes the allelic frequency (namely, the ratio of reads attributed to each allele over the total 

read count for the corresponding HLA gene) in the bulk sample, ⍴ denotes the tumor purity and ψ, the 

overall tumor ploidy (obtained from sequenza22). Second, as in LOHHLA, we defined ASE loss as the 
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occurrence of a minor allele expCN below 0.5 in at least one HLA-I gene (HLA-A, -B or -C). We note that 

formula (1) yields an expressed copy number (expCN) of 1 for both minor and major alleles in the case of 

a heterozygous class I HLA gene with perfectly balanced allelic expression levels (i.e. with AF = 0.5), 

and 100% tumor purity (⍴ = 1.0) and normal ploidy (ψ = 2.0). 

 

ASE loss and nonsense HLA-I mutations. Disrupted HLA-I expression can also result from the 

accumulation of somatic mutations in HLA-I5. However, somatic mutations in HLA-I are relatively 

infrequent in TCGA, varying from below 1% incidence in BRCA and GBM, to around 5% in BLCA, LUAD 

and SKCM, and up to 10% in HNSC8,35. Using a comprehensive list of HLA-I mutations in TCGA38, we 

identified 22 nonsense HLA-I mutations in our cohort in the following subtypes (Supplementary Table 1): 

HNSC (15), LUSC (2), BLCA (2), LUAD (1), KIRP (1), SKCM (1). We found that 10/22 cases with 

nonsense mutations were annotated as ASE loss at the correct HLA-I gene, with an additional set of 6/22 

cases exhibiting a less stringent measure of allelic imbalance (specifically, minor-to-major allelic ratio < 

0.5) but no ASE loss as we have defined it. Only 5/22 cases with nonsense HLA-I mutations showed no 

allelic expression imbalance in our analysis (in one TCGA-HNSC case, an HLA-A homozygous individual 

had an HLA-A nonsense mutation where ASE loss could not be assessed). Therefore, our quantification 

approach is consistent with detection of nonsense HLA mutations in 76% (16/21) of TCGA cases, 

suggesting enough sensitivity suitable for capturing putative nonsense-mediated decay in bulk RNA-

seq39.  

 

Assessment of somatic loss of HLA-I haplotypes. We used LOHHLA14 to infer HLA-I allele-specific 

copy number variation and determine somatic LOH at the level of DNA, from input tumor and normal 

paired WES samples (see Figure 1c). We set the minimum coverage threshold at 5, and used the default 

configuration for all other parameters. In this study, we focused on somatic LOH cases that also exhibited 

HLA-I ASE loss (Figure 1c). We used the criteria for LOH-positive as indicated by LOHHLA, namely: 

allelic copy number (CN) < 0.5 and p-value < 0.05. As such, this led to the inclusion of all cases with bi-

allelic DNA loss and with bi-allelic negative CNs within the LOH-positive cases. Cases that resulted in 

LOHHLA errors were excluded from the comparison with arcasHLA-quant ASE loss. 

 
In silico decomposition into immune cell subtypes. We used the CIBERSORT25 LM22 signature 

matrix containing twenty-two functionally defined human immune-cell subtypes in order to quantify the 

immune cell infiltration in the tumor RNA-seq samples. We used the CIBERSORT support-vector 

machine approach with default parameters for each sample in TCGA. However, since the method 

produces a weight decomposition of each bulk sample into fractional contributions from each immune 
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subtype that sum to 1, this method is not entirely adequate for separating tumor cell signatures from 

immune cell signatures since it does not include a tumor component in the final decomposition. Owing to 

a lack of normal tissue expression signatures for each corresponding TCGA cohort in our study, for each 

tumor bulk sample we corrected every immune cell proportions by only retaining the immune cell 

subtypes reported by CIBERSORT that had a fractional contribution exceeding 10%. Subsequently, we 

defined the following immune features for Cox regression analyses (Figure 2a) by adding the latter 

corrected LM22 subtype fractional parts according to their corresponding immune lineage category: 

CD4+ T-cells, CD8+ T-cells, B-cells, Macrophages, NK-cells and Other Macrophages. For example, the 

B-cell category was defined as the sum of corrected proportions for the following LM22 subtypes: “B cells 

memory”, “B cells naïve” and “Plasma cells”. Among the corrected proportions of tumor-infiltrating 

immune cell types in the full-scale Cox regression analysis, we found that macrophages contributed to 

worse prognosis (HR = 1.10; not significant, n.s.), while CD4+ and CD8+ T-cells decreased the hazard 

rate of death (HRs = 0.97, 0.95 resp.; n. s.). Both of these indications, although not statistically significant 

in this study, are consistent with existing literature that highlights an unfavorable role for tumor-associated 

macrophages40 and a favorable effect of cytotoxic T-lymphocytes targeting cancer cells41. 

 
Computational identification of neopeptides. We used the pVAC-seq pipeline26 with the NetMHCcons 

binding strength predictor to identify neoantigens42. NetMHCcons integrates three state-of-the-art 

methods NetMHC, NetMHCpan and PickPocket to give the most accurate predictions42. As required, we 

used the variant effect predictor from Ensembl to annotate variants for downstream processing by pVAC-

Seq43. For each single-residue missense alteration, HLA-I allele-specific binding affinities were predicted 

for all the wild-type and mutant peptide fragments of varying lengths (from 8 to 11 amino acids). The 

mutant peptide with the strongest binding affinity was kept for downstream analysis. The total 

immunogenic neoantigen count (Figure 2a) was determined for each individual as the number of 

predicted mutant epitopes with a median IC50 score below 500. This feature, called “immunogenic 

neoantigen count (all)”, was subsequently included in the Cox model of overall survival. And additional 

count of immunogenic antigens was determined after applying the following conservative quality filter: 

tumor RNA variant allele frequency (VAF) > 0.1, tumor DNA VAF > 0.1, tumor RNA depth > 0, tumor 

DNA depth > 2 and (normalized) gene expression > 1. The filtered neoantigen count predictor variable 

was called “immunogenic neoantigen count (QC filter)”. Only total immunogenic neoantigens were 

included in the variables adjusted for HLA-I ASE loss status, “neoantigen count: affinity to lost HLA allele” 

and “neoantigen count: affinity to kept HLA allele”; as well as those adjusted for ASE status: “neoantigen 

count: affinity to minor HLA allele” and “neoantigen count: affinity to major HLA allele”. 
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Statistical analyses. Comparisons between total HLA-I expression by HLA gene, as inferred through 

arcas-quant and through alternate methods available on the TCGA portal, were calculated using the 

Pearson correlation (Supplementary Figure 1a). Comparisons between minor allele frequencies of HLA-

I alleles across eleven TCGA subtypes and GTEx normal samples were assessed with the Mann-Whitney 

and Kolmogorov-Smirnov 2-sample tests (Supplementary Figure 1b). For all multivariable survival 

analyses and tumor subtype stratification, we used the Cox proportional-hazards model (Figure 2a). HRs 

for each of the thirty tumor features included in Figure 2a (and Supplementary Figure 2, Supplementary 

Table 2) were reported after feature standardization (to mean 0 and standard deviation 1). For binary 

variables, HRs were also reported without standardization. P-values for the HRs were reported for the 

two-tailed z-test of each coefficient in the Cox regression. For the risk assessment of ASE loss in different 

cohorts, Kaplan-Meier curves were also plotted and p-values of the log-rank test were reported (Figures 

2b and 3; Supplementary Figures 3 – 7, 9 – 13). The full-scale Cox regression model including all thirty 

immune and HLA-related predictor variables was underpowered when deployed separately to each 

TCGA subtype (only TCGA-SKCM gave a significant likelihood ratio test < 0.05 with Bonferroni 

correction; Supplementary Table 3). Instead, for each molecular subtype in TCGA we analyzed univariate 

Cox regression models, as well as a simplified model using only 6 predictor features: age at diagnosis, 

ploidy, HLA-I ASE loss, as well as macrophage, CD4+ and CD8+ T-cell proportions (Supplementary 

Table 4a). ASE loss was associated with worse prognosis in 7/11 tumor subtypes (PRAD, HNSC, PDAC, 

LUSC, KIRP, KIRC and GBM), it had no survival effect in LUAD, and was seen to contribute, 

paradoxically, towards longer survival in 3/11 subtypes (SKCM, BLCA and BRCA); however, with the 

exception of GBM, none of these associations with HLA-I ASE loss were significant. At the same time, in 

univariate regressions, the neoantigen count with binding specificity towards lost HLA-I alleles contributed 

towards shorter overall survival in 6/11 tumors, while the neoantigen count with HLA-I kept-allele affinity 

also showed improved survival in 6/11 (non-significant results). For analyses of transcriptional subtype 

associations with ASE loss in pancreatic ductal adenocarcinoma, for analyses of clinical response data 

in the CUMC cohort, and for enrichments of ASE loss in CUMC-E as compared to CUMC-S, p-values 

and ORs were calculated with the two-tailed Fisher exact test. All correlation, comparative and survival 

analyses were performed in Python (version 2.7) using the following packages: numpy (version 1.15.4), 

scipy (version 1.0.1) and lifelines (version 0.17.0). 
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