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Abstract 29 

Coronavirus disease 2019 (COVID-19) has had a major disease burden on many countries around 30 

the world. The spread of COVID-19 is anticipated to have a major impact on developing countries 31 

including African nations. To establish a point-of-care test for COVID-19, we developed a dry 32 

loop–mediated isothermal amplification (LAMP) method to detect severe acute respiratory 33 

syndrome coronavirus 2 (SARS-CoV-2) RNA. We carried out reverse transcription (RT)-LAMP 34 

using the Loopamp SARS-CoV-2 Detection kit (Eiken Chemical, Tokyo, Japan). The entire mixture 35 

except for the primers is dried and immobilized inside the tube lid. To determine the specificity of 36 

the kit, 22 viral genomes associated with respiratory infections, including the SARS coronavirus, 37 

were tested. No LAMP product was detected in reactions performed with RNA from these 38 

pathogens. The sensitivity of this assay, determined by either a real-time turbidity assay or 39 

colorimetric change of the reaction mixture, as evaluated by the naked eye or under illumination 40 

with ultraviolet light, was 10 copies/reaction. After the initial validation analysis, we analyzed 24 41 

nasopharyngeal swab specimens collected from patients suspected to have COVID-19. Nineteen 42 

(79.2%) of the 24 samples were positive for SARS-CoV-2 RNA, as determined by real-time 43 

RT-PCR analysis. Using the Loopamp SARS-CoV-2 Detection kit, we detected SARS-CoV-2 RNA 44 

in 15 (62.5%) of the 24 samples. Thus, the sensitivity, specificity, positive predictive value, and 45 

negative predictive value of the Loopamp 2019-CoV-2 detection reagent kit were 94.0%, 96.0%, 46 

95.9%, and 94.1%, respectively. The dry LAMP method for detection of SARS-CoV-2 RNA was 47 

fast and easy to use, solves the cold chain problem, and therefore represents a promising tool for 48 
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diagnosis of COVID-19 in developing countries. 49 

50 
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Author summary 51 

Coronavirus disease 2019 (COVID-19) is a major public health problem around the world. A 52 

reliable point-of-care (POC) test for severe acute respiratory syndrome coronavirus 2 (SARS 53 

CoV-2) is urgently needed, especially in developing countries. The loop-mediated isothermal 54 

amplification (LAMP) method amplifies template nucleotides under isothermal conditions with 55 

high efficiency and specificity, both of which are major advantages for a POC test. In addition, 56 

because dry LAMP reagents can be stored at 4°C, it is suitable for use in developing countries.  57 

We evaluated the specificity and sensitivity of the Loopamp SARS-CoV-2 Detection kit (Eiken 58 

Chemical, Tokyo, Japan), a dry LAMP method for amplifying viral RNA. The initial validation 59 

study revealed that the method was highly specific and sensitive (lower detection limit: 10 60 

copies/reaction). We then analyzed 24 nasopharyngeal swab specimens from patients suspected to 61 

have COVID-19. Using the Loopamp SARS-CoV-2 Detection kit, SARS-CoV-2 RNA was detected 62 

in 15 (62.5%) of the 24 samples. Compared with the standard real-time reverse transcription PCR, 63 

the sensitivity, specificity, positive predictive value, and negative predictive value of the Loopamp 64 

SARS-CoV-2 Detection kit were 78.9%, 100%, 100%, and 55.6%, respectively. 65 

66 
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Introduction 67 

 68 

The outbreak of coronavirus disease 2019 (COVID-19), caused by the novel coronavirus designated 69 

as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), started in Wuhan, China, in 70 

December 2019 [1, 2]. To date, the outbreak has spread rapidly around the world [1, 2], and WHO 71 

has declared it a pandemic. Clinical trials have evaluated several drugs to date, with remdesivir and 72 

systemic corticosteroids showing promise for moderate and severe diseases, respectively [3]. 73 

Several characteristic clinical findings, such as fever and dry cough with typical signs of pneumonia 74 

on chest computed tomography [4-6], history of close contact with a patient or visits to endemic 75 

areas [7, 8], are useful in diagnosing COVID-19. However, many patients have mild symptoms or 76 

are asymptomatic, hampering accurate diagnosis based on clinical features [9-11]. Therefore, a 77 

rapid diagnostic method is necessary in order to provide definitive diagnosis of COVID-19.   78 

 Real-time reverse transcription–polymerase chain reaction (RT-PCR) is widely used for 79 

diagnosis of COVID-19 [12, 13]. The method is very useful for testing large numbers of samples at 80 

large hospitals, diagnostic companies, and local health facilities. However, a point-of-care (POC) 81 

test for COVID-19 is also important for management of suspected patients in less resourced settings. 82 

In addition, because expansion of COVID-19 to developing countries is a major public health 83 

concern, there is an urgent need to develop rapid diagnostic tests for COVID-19. Real-time RT-PCR 84 

requires a special thermal cycler with precision optics that monitor fluorescence emission from 85 

sample wells. By contrast, the loop-mediated isothermal amplification (LAMP) method can amplify 86 
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template nucleotides under isothermal conditions with efficiency and specificity as high as those of 87 

nested double PCR [14]. Due to its speed, ease of use, and cost-effectiveness, LAMP has been 88 

widely used for POC testing for various infectious diseases, including COVID-19 [14-17]. 89 

Furthermore, the dry LAMP reagent mixture, which can be stored at 4°C, is much easier to handle 90 

and more heat-stable than liquid reagents. Therefore, the dry LAMP method would very useful for 91 

diagnosis of tropical infectious diseases in regions including Africa [18], which is expected to be the 92 

next epicenter of COVID-19. The aim of this study was to evaluate the performance of the LAMP 93 

method using dry reagents for rapid diagnosis of COVID-19 infection. Although several studies 94 

have already been published on the use of LAMP to detect SARS-CoV-2 [19-21], this is the first 95 

study to evaluate the performance of dry LAMP reagents for this purpose. 96 

97 
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 8 

Materials and methods 98 

 99 

Viruses and RNA for initial validation analysis 100 

A total of 22 respiratory pathogens were used for the initial validation analysis of specificity of the 101 

primers in this study. Twenty-two viral genomes are listed in Table 1. The Middle East respiratory 102 

syndrome coronavirus (MERS-CoV) EMC strain was kindly provided from Dr. Ron A. M. Fouchier, 103 

Erasmus Medical Center, Rotterdam, the Netherlands. The SARS-CoV Frankfurt 1 strain was 104 

kindly provided from J. Ziebuhr, University of Würzburg, Germany. The clinical isolates of Human 105 

coronaviruses (HCoV)-HKU1, OC43, NL63, and 229E were described by previous study [22-24]. 106 

In vitro transcribed RNA (GenBank accession number MN908947), synthesized using ScriptMax 107 

Thermo T7 Transcription Kit (TOYOBO, Osaka, Japan), was used to determine the detection limit 108 

of the Loopamp SARS-CoV-2 Detection kit (Eiken Chemical, Tokyo, Japan).  109 

 110 

Clinical specimens 111 

From March 7 to April 30, 2020, nasopharyngeal swabs were collected from patients suspected to 112 

have COVID-19 at a university hospital in Japan. Swab samples were collected using a flocked 113 

sterile plastic swab applicator and placed in 3 mL of BD universal viral transport medium (Becton, 114 

Dickinson and Company, Franklin Lakes, NJ, USA). RNA was extracted from the swab samples 115 

immediately. This study was approved by the institutional review board of Fujita Health University 116 

(No. HM19-493). Written informed consent was obtained from each patient. 117 
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 118 

RNA extraction  119 

Viral RNA was extracted from 140 µL of BD universal viral transport medium in which a 120 

nasaopharyngeal swab was immersed. RNA extraction was performed using the QIAamp Viral 121 

RNA mini kit (QIAGEN, Chatsworth, CA, USA). After extraction, RNA was eluted in 60 μL of 122 

buffer AVE and stored at −80°C.  123 

 124 

Real-time RT-PCR 125 

Real-time RT-PCR assays for detecting SARS-CoV-2 were performed using TaqMan Fast Virus 126 

1-Step Master Mix (Thermo Fisher Scientific, Waltham, MA, USA). Primers and probes were as 127 

follows: NIID_2019-nCOV_N_F2, 5’-AAATTTTGGGGACCAGGAAC-3’; 128 

NIID_2019-nCOV_N_R2, 5’- TGGCAGCTGTGTAGGTCAAC-3’; NIID_2019-nCOV_N_P2; 5’- 129 

FAM ATGTCGCGCATTGGCATGGA BHQ-3’ [25]. Single-well denaturation, reverse transcription, 130 

and amplification steps were performed on a QuantStudio 1 Real-Time PCR System (Thermo 131 

Fisher Scientific, Waltham, MA, USA) in the standard mode. Primer and probe concentrations were 132 

as follows: NIID_2019-nCOV_N_F2, 500 nM; NIID_2019-nCOV_N_R2, 700 nM; 133 

NIID_2019-nCOV_N_P2, 200 nM. PCR conditions were as follows: RT at 50 °C for 5 min; 134 

enzyme activation at 95 °C for 20 sec; and 45 cycles of denaturation at 95 °C for 15 sec and primer 135 

annealing/extension/fluorescence emission at 60°C for 60 sec. The real-time RT-PCR reaction 136 

mixture (20 µL total volume) contained 5.0 µL of 4× Fast Virus Master Mix, 1.0 µL of 137 
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primer–probe pre-mix, 5.0 µL of template RNA and nuclease-free water. 138 

 139 

Reverse Transcription–LAMP 140 

Reverse transcription (RT)-LAMP was carried out using the Loopamp SARS-CoV-2 Detection kit 141 

(Eiken Chemical). Because the entire mixture except the primers is dried and immobilized inside 142 

the tube lid, 10 microliters of purified RNA and 15 microliters of SARS-CoV-2 specific primer sets 143 

were added to the bottom of the tube, and then the tube was inverted several times to resuspend the 144 

enzyme and buffer. The full reaction mixture was collected at the bottom of the tube by a quick 145 

spin-down. The mixture was incubated in a real-time turbidimeter (LA-200; Eiken Chemical) for 35 146 

min at 62.5°C. For visual evaluation of fluorescence, the reaction tube was illuminated with 147 

ultraviolet light using an ultraviolet illumination system (WSE-5300; ATTO, Tokyo, Japan) and and 148 

also observed by the naked eye.  149 

150 
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Results 151 

 152 

Specificity and sensitivity of LAMP methods. 153 

To determine the specificity of the Loopamp SARS-CoV-2 Detection kit, we tested 22 viral 154 

genomes including SARS coronavirus, Middle East Respiratory Syndrome (MERS) coronavirus, 155 

other human coronaviruses, influenza viruses, and respiratory syncytial viruses associated with 156 

respiratory infections (Table 1). No LAMP product was detected in reactions performed with RNA 157 

from these pathogens. These results were confirmed by a turbidity assay and agarose gel 158 

electrophoresis analysis (data not shown). To determine the sensitivity of the Loopamp 159 

SARS-CoV-2 Detection kit, in vitro transcribed RNAs were serially diluted in 10 mM Tris buffer 160 

containing 0.1 mM EDTA and 50 ng/mL of carrier RNA were used to define the detection limit. The 161 

sensitivity of this assay, determined by either the turbidity assay or colorimetric change of the 162 

reaction mixtures evaluated by the naked eye, was 10 copies/reaction (Fig. 1).  163 

 164 

Evaluation of clinical applications 165 

To evaluate the performance of the Loopamp SARS-CoV-2 Detection kit as a POC test, we 166 

analyzed 24 nasopharyngeal specimens collected from patients suspected of having COVID-19, 167 

including three asymptomatic individuals who came into close contact with COVID-19 patients 168 

(Table 2). Nineteen (79.2%) of the 24 samples were positive for SARS-CoV-2 RNA by real-time 169 

RT-PCR analysis. Using the Loopamp SARS-CoV-2 Detection kit, SARS-CoV-2 RNA was detected 170 
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in 15 (62.5%) of the 24 samples. The four false-negative samples contained low copies of viral 171 

RNA (2.6, 2.3, 2.2, and 0.5 copies/reaction) and were collected during the convalescent phase of 172 

illness (days 7 to 20). Thus, the sensitivity, specificity, positive predictive value, and negative 173 

predictive value of the Loopamp SARS-CoV-2 Detection kit were 78.9%, 100%, 100%, and 55.6%, 174 

respectively.  175 

176 
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Discussion 177 

 178 

Ease of use, speed, and low cost of amplifying target nucleotides is a significant advantage of the 179 

LAMP assay as a POC test. Accordingly, several investigators have developed SARS-CoV-2 LAMP 180 

assays [16, 19-21, 26]. To further leverage the advantages of the LAMP method, several 181 

improvements have been reported, including colorimetric detection using the naked eye [20] or 182 

fluorescent detector [26] and direct detection of target sequence without RNA extraction. These 183 

improvements shorten and simplify the workflow of the LAMP method [20], and enable 184 

high-throughput analysis. Using the LAMP method with dry reagents allows the use of this assay in 185 

developing countries, as the reagents can be stored in refrigerators that overcomes the requirement 186 

for strict cold-chain transportation and storage of the reagents. Therefore, in this study, we 187 

investigated the performance of the SARS-CoV-2 dry LAMP method.     188 

No amplification was observed with other viral genomes (including SARS coronavirus, 189 

MARS coronavirus, and other human coronaviruses associated with respiratory infections) using 190 

the SARS-CoV-2 dry LAMP method (Table 1), indicating that this LAMP assay can specifically 191 

amplify SARS-CoV-2. In addition, the detection limit of the kit, based on the turbidity assay and 192 

colorimetric change determined by the naked eye, was 10 copies/reaction, almost the same or 193 

slightly higher than the previously reported SARS-CoV-2 LAMP assays [26]. These initial 194 

validation analysis demonstrated that the SARS-CoV-2 dry LAMP method is highly specific and 195 

sensitive. Huang et al. have shown that SARS-CoV-2 RNA can be amplified by the LAMP assay 196 
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without RNA extraction [20], in line with our previous studies for detection of herpes simplex virus 197 

[27] and human herpesvirus-6 [28] . Therefore, to further improve the LAMP method as a POC test, 198 

a direct detection method should be developed.  199 

In order to evaluate the performance of SARS-CoV-2 dry LAMP for analyzing clinical 200 

samples, we analyzed 24 nasopharyngeal swab specimens collected from patients suspected of 201 

having COVID-19. The sensitivity and specificity of this assay was sufficient for practical purposes. 202 

In 24 nasopharyngeal swab specimens, there are only 5 SARS-CoV-2 RNA negative samples. While 203 

there were 4 false-negative test results, as shown in Table 2, they represented specimens with the 204 

lowest copy numbers. In particular, two of the four false-negative samples were collected on days 205 

18 and 20 to confirm the absence of viral genome prior to hospital discharge. Given that all samples 206 

with more than 4.4 copies/reaction were detected by both turbidity assay and colorimetric changes, 207 

we believe that this SARS-CoV-2 dry LAMP method is reliable for clinical use in diagnosing 208 

COVID-19.  209 

In summary, this study demonstrated that the SARS-CoV-2 dry LAMP method is a reliable 210 

method for rapid diagnosis of COVID-19. The dry LAMP method overcomes the requirement for 211 

strict cold-chain transportation and storage of reagents. Therefore, this method is expected to be a 212 

useful POC test in developing countries where COVID-19 is spreading.   213 
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Figure Legend  223 

 224 

Figure 1. Sensitivity of the SARS-CoV-2 dry LAMP assay, determined using serially 225 

diluted in vitro transcribed RNA. (a) Naked-eye detection at the end of assay (35 min). 226 

Green indicates a positive reaction, and orange indicates a negative reaction. (b) Ultraviolet 227 

light detection at the end of the assay (35 min). Light gray indicates a positive reaction, and 228 

dark gray indicates a negative reaction. (C) Real-time turbidity assay.  229 

230 
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Table 1. Specificity of dry loop-mediated isothermal amplification assay for 

SARS-CoV-2. 

 

 

 

 

 

 

  

Virus Name of isolate Amount (copies / reaction)

Coronaviruses

SARS-CoV Frankfurt-1 4.00 × 10
7

MERS-CoV EMC 1.00 × 10
5

Human coronaviruses (HCoV)

HCoV-HKU1 Tokyo/SGH-15/2014 6.00 × 10
6

Tokyo/SGH-18/2016 1.00 × 10
6

HCoV-OC43 VR-1558 4.00 × 10
8

Tokyo/SGH-36/2014 3.00 × 10
6

Tokyo/SGH-61/2014 1.00 × 10
7

Tokyo/SGH-6/2015 4.00 × 10
6

Tokyo/SGH-65/2016 1.00 × 10
7

HCoV-NL63 Amsterdam I 8.00 × 107

Tokyo/SGH-15/2017 1.00 × 10
5

Tokyo/SGH-24/2018 4.00 × 10
4

HCoV-229E VR-740 7.00 × 10
7

Sendai-H/1121/04 1.00 × 10
6

Niigata/01/08 1.00 × 10
5

Influenza virus

A A/Texas/50/2012(H3N2) 1.18 × 10
6

A/Narita/1/2009(H1N1) 2.94 × 106

B B/Massachusetts/2/2012 4.44 × 10
6

B/Texas/2/2013 1.46 × 10
7

B/Brisbane/60/2008 2.00 × 10
5

Respiratory syncytial virus (RSV)

A2 1.00 × 10
6

B1 1.00 × 10
6
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Table 2. Comparison of real-time RT-PCR and dry loop–mediated isothermal 

amplification assay results of SARS-CoV-2 using clinical specimens. 

 

 

* Onset of disease was defined as day 1. 

** Sampling day was unknown because the patient was asymptomatic. 

Real-time RT-PCR
(copies/ reaction)

1 unknown** 212732.5 +
2 unknown** 94749.3 +
3 7 22910.9 +
4 5 3796.9 +
5 11 1544.6 +
6 10 946.9 +
7 8 413.9 +
8 8 280.8 +
9 9 146.0 +

10 unknown** 68.7 +
11 12 49.8 +
12 12 48.9 +
13 7 14.2 +
14 8 13.2 +
15 19 4.4 +
16 7 2.6 -
17 18 2.3 -
18 10 2.2 -
19 20 0.5 -
20 14 0.0 -
21 8 0.0 -
22 12 0.0 -
23 10 0.0 -
24 12 0.0 -

Case Sampling day* LAMP
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