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Summary  
Fecal  Microbiota  Transplantation  (FMT)  has  been  clinically  validated  as  a  treatment  for  recurrent              

Clostridioides  difficile infection  (rCDI)  and  associated  with  the  compositional  and  functional            

restoration  of  the  patient  gut  microbiota.  To  characterize  the  underlying  microbiota  dynamics  of              

patient  and  donor  strain  engraftment,  persistence  and  replacement  during  FMT,  we  combined             

new  and  existing  metagenomic  sequence  data  and  developed  the  bioinformatic  SameStr            

program  for  the  species-specific  detection  of  shared  subspecies  lineages,  including           

non-dominant  strains.  We  show  that  personal  gut  strain  profiles  are  identifiable  and  detect              

engraftment  after  successful  and  failed  FMT  in  rCDI  recipients,  specifically  of  those  donor              

strains  that  are  abundant  and  stable  in  healthy  individuals.  We  identify  microbiota  parameters  in               

statistical  models  to  predict  donor  species  and  strain  engraftment,  as  well  as  recipient  strain               

persistence  and  replacement.  Our  findings  raise  concerns  over  FMT  consequences  from            

questionable  donors  and  suggest  that  personalized  FMT  strategies  are  feasible  for  targeted             

microbiota   modulation.  

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.09.29.20203638doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:daniel.podlesny@uni-hohenheim.de
mailto:w.florian.fricke@uni-hohenheim.de
https://doi.org/10.1101/2020.09.29.20203638
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction  

Fecal  microbiota  transplantation  (FMT),  i.e.  the  transfer  of  excreted  donor  feces  into  the  small  or                

large  intestine  of  a  recipient,  has  been  validated  as  an  efficient  treatment  for  recurrent               

Clostridioides  difficile  infection  (rCDI) (van  Nood  et  al.,  2013)  with  an  estimated  success  rate  in                

observational  studies  of  92% (Quraishi  et  al.,  2017) ,  although  cure  rates  might  be  lower  for                

clinical  trials (Tariq  et  al.,  2019) .  OpenBiome,  a  large  non-profit  stool  bank,  reported  >50,000               

shipments  of  FMT  preparations  to  >1,250  healthcare  facilities  by  the  end  of  2019  within  the  U.S.                 

alone  (Quality  and  Safety  Report,  2019; https://www.openbiome.org/safety ).  Besides  rCDI,  FMT           

shows  therapeutic  potential,  at  least  in  some  patients,  to  treat  inflammatory  bowel  diseases              

(IBD),  such  as  ulcerative  colitis (Narula  et  al.,  2017) ,  metabolic  syndrome (Vrieze  et  al.,  2012)                

and  autism  spectrum  disorder (Kang  et  al.,  2017) .  Clinical  trials  for  other  inflammatory  or               

metabolic  disorders  are  underway  or  have  been  proposed (Wortelboer  et  al.,  2019) ,  reflecting              

both  the  increasing  recognition  of  involvements  of  the  human  microbiota  in  many  diseases  and               

the  need  for  therapeutic  options  to  modulate  it.  From  this  translational  research  perspective,  the               

treatment  of  rCDI  patients  with  FMT  represents  a  unique  model  to  study  the  dynamics  of                

microbiota  engraftment,  competition,  and  resilience  in  the  context  of  host  and  microbe-specific             

parameters.  

 

Previous  studies  examined  the  rCDI  patient  microbiota  before  and  after  FMT  mostly  using  16S               

rRNA-based  methods  for  taxonomic  microbiota  profiling (Seekatz  et  al.,  2014;  Song  et  al.,  2013;               

Weingarden  et  al.,  2015) .  Increased  microbial  diversity  in  rCDI  recipients  and  convergence  of              

patient  and  donor  microbiota  compositions  after  FMT  have  commonly  been  interpreted  as             

indicating  replacement  of  the  dysbiotic  rCDI  patient  microbiota  with  the  healthy  microbiota  of  the               

donor  by  FMT (Hirten  et  al.,  2019) .  However,  different  strains  of  the  same  microbial  species  can                 

be  found  in  unrelated  individuals  and  16S  rRNA-based  methods  lack  the  resolution  to  detect               

these  subspecies  variations.  Therefore,  assignment  of  specific  members  of  the  post-FMT            

microbiota  to  donors,  patients  before  FMT,  or  entirely  different  sources,  has  so  far  mostly  been                

elusive.  Yet,  in  order  to  predict  the  patient  outcome  after  FMT  and  improve  donor  selection                

criteria,  a  differentiation  of  patient  and  donor-derived  microbial  lineages  and  characterization  of             

host  and  microbe-specific  determinants  of  the  post-FMT  microbiota  organization  and  function            

are   needed.  
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Smillie  et  al.  presented  the  first  detailed  characterization  of  donor  microbiota  engraftment  in              

rCDI  patients  after  FMT  using  the  StrainFinder  tool  for  subspecies  taxonomic  microbiota             

profiling:  microbial  taxonomy  and  relative  abundance  were  the  most  important  predictive            

markers  for  species  engraftment  and  populations  of  multiple  strains  from  the  same  species              

engrafted  in  an  “all-or-nothing”  manner (Smillie  et  al.,  2018) .  However,  the  dynamics  of  microbial               

competition  between  rCDI  recipient  and  donor  strains  from  the  same  species  have  remained              

mostly  unclear,  despite  previous  reports  of  extensive  co-existence  in  FMT-treated  patients  with             

metabolic  syndrome (Li  et  al.,  2016) .  Our  FMT  microbiota  analysis  indicated  that  StrainFinder,              

which  is  based  on  phylogenetically  defined  metagenomic  operational  taxonomic  units           

(mg-OTUs)  that  only  “roughly  correspond  to  bacterial  species” (Smillie  et  al.,  2018) ,  frequently              

detects  similar  strains  in  unrelated  individuals  (see  below).  A  more  stringent  definition  of  unique               

strains  has  the  potential  to  better  describe  recipient  and  donor  strain  competition  events  in  rCDI                

patients  after  FMT.  An  improved  understanding  of  the  underlying  mechanisms  and  ability  to              

predict  competition  outcome  could  help  in  the  development  of  targeted  microbiota  modulation             

therapies.  

 

Here,  we  introduce  the  SameStr  program  for  the  conservative  detection  of  shared  strains  in               

single  and  multi-strain  species  populations  from  microbiome  samples.  We  generate           

metagenomic  shotgun  sequence  data  from  our  previously  described  cohort  of  rCDI  patients             

treated  with  combined  nasoduodenal  and  colonic  FMT (Dutta  et  al.,  2014) ,  which  we  combine               

with  other  available  data  to  generate  the  largest  metagenomic  dataset  for  FMT-treated  rCDI              

patients  to  date.  We  apply  SameStr  to  study  microbial  persistence,  engraftment  and  competition              

in  post-FMT  patients  after  allogeneic  FMT  and  demonstrate  increased  sensitivity  and  specificity             

over  previous  bioinformatic  methods.  Using  random  forest  classification,  we  identify  species            

relative  abundance,  in  particular  the  donor-to-recipient  ratio,  and  taxonomy  as  the  most             

important  predictive  variables  for  donor  strain  engraftment  in  post-FMT  patients.  The  presence             

of  distinct  strains  from  the  same  species  in  rCDI  recipients  and  donors  before  FMT  rarely                

resulted  in  co-existence  after  FMT  but  either  replacement  or  resistance  to  replacement  of              

recipient  with  donor  strains.  In  this  competition,  prevailing  recipient  or  donor  strains  retained              

their  pre-FMT  species  relative  abundance,  suggesting  that  this  trait  is  strain,  not             

host-dependent.  Comparison  of  our  FMT  dataset  with  a  reference  cohort  of  healthy  adults              

indicates  that  specifically  those  donor  species  and  strains  that  colonize  rCDI  patients  after  FMT               
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are  relatively  abundant  and  stable  in  the  healthy  gut.  FMT  treatment  failure  was  associated  with                

a  distinct  taxonomic  microbiota  composition  but  not  microbiota  diversity  in  one  donor  and  FMT               

led  to  substantial  and  lasting  microbiota  engraftment  and  adoption  of  the  aberrant  microbiota  in               

all  twelve  rCDI  patients  treated  by  FMT  from  this  donor,  irrespective  of  success  or  failure  to                 

resolve  rCDI  symptoms.  In  summary,  our  study  presents  a  new  method  for  the  sensitive  and                

species-specific  strain-level  microbiota  analysis,  demonstrates  identifiable  personal  strain-level         

microbiota  information,  improves  our  understanding  of  post-FMT  microbiota  dynamics  of  rCDI            

patients  and  raises  concerns  about  long-term  donor  microbiota  engraftment  in  rCDI  recipients             

after   failed   treatment.  
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Results  

Taxonomic  and  Functional  Species-level  Profiling  of  rCDI  Patients  and  FMT           
Donors  
Metagenomic  shotgun  sequence  data  were  generated  for  27  fecal  samples  from  our  previously              

published  cohort (Song  et  al.,  2013)  and  combined  with  those  from  a  recent  study (Smillie  et  al.,                  

2018) ,  resulting  in  a  total  of  27  rCDI  recipient  (R),  15  donor  (D)  and  51  post-FMT  patient  (P)                   

samples  (Table  S1).  Species-level  microbiota  profiling  confirmed  previous  16S  rRNA-based           

reports  of  a  dysbiotic  rCDI  microbiota,  as  rCDI  recipient  but  not  post-FMT  patient  samples               

clustered  separately  from  donors  (Figure  1A,  Aitchison  distance,  pairwise  PERMANOVA  with            

Bonferroni  adjustment,  D  vs.  P,  n.s.;  D  vs.  R,  p=0.003,  r=0.39;  R  vs.  P,  p=0.003,  r=0.29),  and                  

taxonomic  distance  across  all  samples  was  positively  correlated  with  microbial  diversity  (Figure             

1B,  Spearman  r=-0.64,  p<2.2e-16).  Using  sparse  partial  least  squares  discriminant  analysis            

(sPLS-DA)  based  on  centered  log-ratio  transformed  data  (mixOmics,  see  Methods)  we  found             

rCDI  patients  to  be  characterized  by  increased  relative  abundances  of  opportunistic  pathogen             

species,  including  of  the  genera Enterococcus , Escherichia ,  and Klebsiella ,  and  decreased            

relative  abundances  of  intestinal  commensal  species,  including  of  the  genera Dorea ,            

Eubacterium  and  Ruminococcus  (Figure  1C,  Table  S7).  Based  on  available  species  metadata             

(Table  S5)  rCDI  patients  were  predicted  to  contain  larger  fractions  and  relative  abundances  of               

oxygen-tolerant  (Figure  1D)  and  oral  species  (Figure  1E).  Metagenomic  functional  microbiota            

profiles  also  differentiated  between  rCDI  patients  and  donors  (Figure  1F,  Aitchison  distance,             

pairwise  PERMANOVA  with  Bonferroni  adjustment,  D  vs.  P,  n.s.;  D  vs.  R,  p=0.003,  r=0.50;  R  vs.                 

P,  p=0.003,  r=0.36),  with  rCDI  samples  being  enriched  for  gene  families  associated  with  the               

aerobic  electron  transport  chain  (Figure  1G)  and  microbial  response  to  antibiotics  (Figure  1H).              

Importantly,  post-FMT  patients  retained  significant  differences  from  donors  with  respect  to  most             

of  these  rCDI-associated  microbiota  features  (Figure  1D-H).  Thus,  metagenomic  analysis  of  our             

FMT  data  supports  previous  16S  rRNA-based  findings  of  FMT-induced  taxonomic  microbiota            

shifts  in  rCDI  recipients,  which  we  expand  with  functional  microbiota  markers,  including             

increased  concentrations  of  predicted  oxygen-tolerant  and  oral  species  and  aerobic  and            

antibiotic-associated   gene   functions.  
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Figure  1.  Taxonomic  and  Functional  Species-level  Profiling  of  rCDI  Patients  and  FMT             
Donors.  
(A  and  F)  Principal  Component  Analysis  (PCA)  of  centered  log-ratio  (clr)-transformed  species-level  taxonomic  (A)  and  functional  (F)                  
microbiota   compositions   demonstrates   that   pre-FMT   but   not   post-FMT   rCDI   patients   cluster   separately   from   stool   donors.  
(B)   PC1   of   the   taxonomic   PCA   is   correlated   with   microbial   alpha-diversity.  
(C)  Hierarchically  clustered  heatmap  of  genera  that  distinguish  stool  donors  from  rCDI  recipients.  Pre-FMT  patient  gut  microbiota  is                   
enriched   for   genera   that   include   predicted   oral   species   (marked   if   ≥20%   of   detected   species   are   common   oral   habitants).  
(D)  The  relative  abundance  of  predicted  oxygen-tolerant  species  is  significantly  increased  in  rCDI  patients  and  in  many  cases                   
remains   higher   in   post-FMT   patients   compared   to   healthy   donors.  
(E)  Predicted  oral  species  contribute  higher  relative  abundances  and  species  fractions  to  the  rCDI  patient  gut  microbiota  before                   
FMT.  
(G)  The  gut  microbiota  of  pre-  and  post-FMT  rCDI  patients  is  enriched  for  gene  families  involved  in  aerobic  respiration  and  response                      
to   antibiotics.  
 
 

Presence   of   rCDI   Recipient   and   Donor   Species   after   FMT   

At  the  latest  sampled  time  point  after  FMT,  which  differed  between  2  and  84  days  for  individual                  

cases,  the  largest  fraction  of  the  post-FMT  microbiota  consisted  of  species  that  were  found  both                

in  the  donor  and  the  rCDI  recipient  before  FMT  (shared  recipient  and  donor  species:  54.41%),                

followed  by  species  shared  only  with  the  donor  (donor-specific  species:  24.95%)  and  species              

shared  only  with  the  recipient  (recipient-specific  species:  7.65%)  (Figure  2A).  New  species,             

neither  detected  in  rCDI  recipients  nor  donors  before  FMT,  accounted  for  only  1.52%  of  the                

post-FMT  microbiota  (11.33%  not  fully  classified  at  species-level),  contrasting  a  previous,            

mg-OTU-based  report  on  a  subset  of  our  FMT  data,  which  found  frequent  colonization  with               

newly  detected  microbes  after  FMT (Smillie  et  al.,  2018) .  To  assess  the  potential  influence  of                

various  factors  on  post-FMT  species  presence,  we  used  a  generalized  linear  mixed  model  and               

calculated  the  odds  ratios  (OR)  for  post-FMT  patient  colonization  (Figure  2B,  see  Table  S8  for                

complete  results).  Donor-specific  species  and  shared  recipient  and  donor  species  were  more             

likely  to  be  found  in  post-FMT  patients  than  recipient-specific  species  (log  OR=1.32,  p<1e-3  and               

log  OR=1.88,  p<1e-3,  respectively,  Wald  test).  Relative  abundance  was  positively  correlated            

with  post-FMT  species  presence  for  both  recipient  and  donor-specific  species  (log  OR=1.74,             

p<1e-3  and  log  OR=1.55,  p<1e-3).  In  addition,  a  higher  ratio  of  donor  to  recipient  relative                

species  abundance  also  increased  the  likelihood  of  post-FMT  species  presence  (log  OR=1.57,             

p<1e-3).  With  increasing  time  after  FMT,  recipient-specific  and  shared  recipient  and  donor             

species,  but  not  donor-specific  species,  were  less  likely  to  be  present  in  post-FMT  patients  (log                

OR=-1.34,  p<1e-3,  log  OR=-1.26,  p<1e-3,  and  log  OR=-.03,  p=ns).  For  recipient-specific            

species,  a  predicted  oral  habitat  (log  OR=.78,  p<1e-3)  and  oxygen-tolerance  (log  OR=.42,             

p=.012)  both  increased  the  probability  of  post-FMT  presence,  whereas  these  factors  negatively             
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correlated  with  the  post-FMT  presence  of  donor-specific  species  (log  OR=-.66,  p<1e-2  and  log              

OR=-.51,  p=.03),  indicating  that  while  present  in  fecal  samples  from  healthy  donors,  oral  and               

oxygen-tolerant  species  have  a  low  probability  to  engraft  in  rCDI  patients  after  FMT.  In               

summary,  rational  donor  selection,  based  on  criteria  like  presence  and  relative  abundance  of              

specific  species,  could  present  a  viable  strategy  to  promote  their  post-FMT  colonization  in  rCDI               

patients,   at   least   for   donor   species   that   are   not   classified   as   oral   or   oxygen-tolerant.  
 

 

Figure   2.   Presence   of   rCDI   Recipient   and   Donor   Species   after   FMT.  
(A)  Cumulative  relative  abundance  of  unique  and  shared  species  between  rCDI  recipients,  donors  and  post-FMT  patients  at  the                   
latest   available   time   point   after   FMT.   
(B)  Forest  plot  visualizing  the  log  of  odds  ratios  and  95%  confidence  intervals  of  a  mixed-effects  logistic  regression  model  to                     
estimate  post-FMT  species  presence.  Predicted  oxygen-tolerant  and/or  oral  species  from  recipients,  but  not  from  donors,  are  more                  
likely   to   be   detected   after   FMT.  
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Sensitive   Species-specific   Detection   of   Shared   Strains   with   SameStr  

To  study  the  dynamics  of  strain  retention,  engraftment  and  competition  for  individual  microbial              

species,  including  multi-strain  species  populations,  we  developed  the  SameStr  tool  based  on  a              

workflow  related  to  StrainPhlAn (Truong  et  al.,  2017) .  SameStr  identifies  shared  microbial             

strains  in  distinct  metagenomic  samples  based  on  within-species  phylogenetic  sequence           

variations  (see  Methods,  Figure  S1).  In  brief,  metagenomic  input  data  are  first  quality-filtered              

and  trimmed  to  reduce  sequencing  errors  and  then  mapped  to  the  MetaPhlAn2  reference              

database  of  species-specific  marker  genes (Segata  et  al.,  2012) ,  in  order  to  limit  interference  of                

higher-level  taxonomic  sequence  variations  with  strain  detection.  Individual  alignments  for  each            

sample  and  species  are  filtered  and  merged.  Strains  that  are  shared  between  samples  are               

identified  by  comparing  alignments,  using  a  maximum  variant  profile  similarity  (MVS),  which  is              

calculated  as  the  fraction  of  identical  nucleotide  positions  in  both  alignments  divided  by  the  total                

length  of  the  shared  alignment  (Figure  3A).  In  contrast  to  StrainPhlAn,  which  calls  a  consensus                

sequence  for  each  marker  alignment  and  compares  genomes  based  on  consensus  variant             

similarity  (CVS),  SameStr  considers  all  single  nucleotide  variants  (SNVs)  to  calculate  MVS,             

including  polymorphic  positions  with  at  least  10%  allelic  frequency.  SameStr  calls  shared  strains              

in  two  metagenomic  samples,  if  the  corresponding  species  alignments  overlap  by  ≥5kb  and              

share  a  MVS  of  ≥99.9%  over  all  detected  sites.  A  similarity  threshold  of  99.9%  for  the                 

comparison  of  MetaPhlAn2  marker  genes  was  previously  shown  to  differentiate  microbial  strains             

within  the  same  species  and  subspecies (Chng  et  al.,  2020;  Johnson  et  al.,  2018;  Truong  et  al.,                  

2017) .   

 

MetaPhlAn2  has  been  extensively  validated  for  metagenome-based  taxonomic  microbiota          

analyses (Lindgreen  et  al.,  2016;  McIntyre  et  al.,  2017;  Sczyrba  et  al.,  2017) .  We  tested  the                 

phylogenetic  resolution  of  MetaPhlAn2’s  clade-specific  marker  genes  by  comparing  458           

complete  and  draft  bacterial  genomes  from  NCBI's  Genome  and  RefSeq  databases  from  20  of               

the  most  abundant  and  prevalent  species  in  our  FMT  dataset  (Table  S4)  based  on  whole                

genome  and  marker  gene  sequence  comparisons.  Whole-genome  average  nucleotide  identities           

(ANI)  were  determined  with  the  FastANI  tool (Jain  et  al.,  2018)  and  compared  to  marker                

gene-based  sequence  identities  as  determined  with  SameStr  (Figure  S2A).  Pairwise  genetic            

distances  strongly  correlated  between  both  approaches  (R=0.93,  p<2.2e-16),  demonstrating          
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comparable  phylogenetic  resolutions  of  SameStr  and  whole-genome-based  sequence         

alignments.   

 

We  next  evaluated  SameStr’s  performance  on  mock  sequence  data  from  100  individual  isolates              

from  the  same  20  bacterial  species  described  above  (Table  S4),  which  were  mixed  in  various                

combinations  to  simulate  metagenomes  from  multi-strain  species  populations  of  variable           

complexity  and  sequencing  depth  (see  Methods).  For  each  species  and  comparison,  simulated             

shotgun  sequence  data  from  one  genome  were  used  as  a  reference,  at  a  5-fold  sequencing                

depth  and  including  common  sequencing  error  profiles.  This  reference  was  compared  to  a              

simulated  metagenome,  containing  the  same  genome  (target  strain),  at  variable  sequencing            

depth  (target  strain  coverage)  and  combined  with  genome  sequence  data  from  between  1  and  4                

other  strains  of  the  same  species  at  different  combined  sequencing  depths  (noise  coverage).              

SameStr’s  MVS-based  shared  strain  predictions  were  compared  to  those  of  a            

StrainPhlAn-equivalent  CVS-based  approach  across  a  total  of  3,276  simulated  combinations           

(Figure  3B).  At  a  target  strain  coverage  of  ≥5-fold,  SameStr  detected  57%  of  shared               

subdominant  strains  (15-50%  relative  strain  abundance),  compared  to  only  2%  for  the             

consensus-based  method.  SameStr  even  detected  dominant  target  strains  (≥50%  relative  strain            

abundance  at  ≥5-fold  target  strain  coverage)  in  multi-strain  species  populations  with  85%             

accuracy,  outperforming  the  CVS-based  approach  with  59%  accuracy.  SameStr  likely           

outperforms  consensus-based  methods  even  for  the  identification  of  dominant  strains,  because            

its  MVS-based  method  is  less  sensitive  to  sequencing  errors  and  inconsistent  SNV  selection  at               

polymorphic  and  low-coverage  alignment  positions.  Importantly,  advantages  in  accuracy  did  not            

come  at  the  cost  of  specificity,  as  both  approaches  were  robust  against  false-positive  shared               

strain  calls  even  in  complex  multi-strain  species  mixtures  (Figure  3B,  see  0-fold  target  strain               

coverage).  

 

We  also  tested  SameStr  on  202  fecal  metagenomes  from  a  reference  dataset  of  67               

longitudinally  sampled  healthy  adults  (Table  S2).  On  average,  SameStr  obtained  strain-level            

resolution  for  71.4%  ±  15.9  of  the  microbiota  and  26.2%  ±  6.8  of  species  per  sample  (Figure                  

3C).  For  the  detection  of  shared  strains,  we  divided  the  reference  dataset  into  related  sample                

pairs  from  the  same  individual  and  unrelated  sample  pairs  from  distinct  individuals.  Compared              

to  the  consensus-based  method,  SameStr  detected  more  shared  strain  events  in  related  but  not               

more  shared  strain  events  in  unrelated  sample  pairs  (Figure  3D).  On  average,  SameStr  found               
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16.1  shared  strains  in  281  related  sample  pairs  (range  =  4-43,  median  =  14)  but  only  0.3  (range                   

=   0-4,   median   =   0)   in   20,020   unrelated   sample   pairs.   

 

A  subset  of  our  combined  FMT  dataset  had  previously  been  analyzed  with  the  StrainFinder  tool,                

which  used  phylogenetic  comparisons  of  31  widely  distributed,  single-copy  marker  genes  from             

the  AMPHORA  database (Wu  and  Eisen,  2008)  to  define  mg-OTUs  and  call  distinct  strains               

based  on  sequence  variations  within  these  species  equivalents (Smillie  et  al.,  2018) .  For  this               

sample  subset,  we  compared  SameStr’s  MetaPhlAn2-based  microbiota  profiles  to  those           

obtained  with  StrainFinder  (Figure  3E).  MetaPhlan2  consistently  detected  more  taxa,  both            

across  the  entire  dataset  (genera:  154  vs.  116;  species:  399  vs.  306)  and  per  sample  (genera:                 

50.54  ±  15.0  vs.  23.78  ±  16.67;  species:  97.62  ±  39.6  vs.  48.48  ±  33.88).  These  taxa  included                   

prominent  genera  of  the  gastrointestinal  tract,  such  as Bacteroides  (6.54  ±  5.35  species  vs.  3.87                

±  4.70  mg-OTUs  per  sample), Clostridium  (4.81  ±  4.05  species  vs.  2.43  ±  3.25  mg-OTUs  per                 

sample),  and Lactobacillus (5.06  ±  3.33  species  vs.  1.41  ±  2.37  mg-OTUs  per  sample).  For  the                 

detection  of  shared  strains,  we  divided  the  FMT  dataset  into  related  sample  pairs,  including               

corresponding  rCDI  recipient  and  donor  samples,  rCDI  recipient  and  post-FMT  samples  and             

separate  samples  from  the  same  donor  or  post-FMT  patient,  and  unrelated  sample  pairs  from               

distinct  patients  or  donors  (see  Methods).  SameStr  detected  on  average  14.77  (range  =  0-67,               

median  =  12)  shared  strains  in  555  related  sample  pairs  and  0.45  (range  =  0-8,  median  =  0)                   

shared  strains  in  1,525  unrelated  sample  pairs.  By  comparison,  StrainFinder  reported  on             

average  93.13  (range  =  0-384,  median  =  73)  shared  strains  in  related  but  also  35.16  ±  37.68                  

(range  =  0-238,  median  =  25)  shared  strains  in  unrelated  sample  pairs,  which  based  on                

SameStr’s  more  conservative  definition  of  shared  strains  would  be  considered  false  positive             

predictions  (Figure  3F).  As  StrainFinder  allows  for  the  detection  of  multiple  strains  per  species               

and  sample,  we  also  compared  StrainFinder’s  shared  strain  calls  based  on  different  thresholds              

of  relative  (within-species)  strain  abundance,  in  order  to  test  whether  false  positive  predictions              

were  limited  to  low-abundant  strains.  However,  the  distributions  of  shared  strain  numbers             

consistently  overlapped  between  related  and  unrelated  sample  pairs  across  all  compared            

relative  strain  abundance  thresholds  (Figure  S2B).  StrainFinder’s  shared  strains  calls  therefore            

likely  include  higher-level  subspecies  taxa  with  broader  prevalence  in  human  populations.  As             

SameStr  identified  fewer  false  positive  shared  strains  between  unrelated  samples  pairs,  these             

more  closely  reflect  the  unique  shared  subspecies  lineages  that  allow  us  to  infer  strain               

persistence   or   transfer   between   samples.  
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In  summary,  we  show  that  SameStr  can  detect  microbial  strains  from  single-  and  multi-strain               

species  populations  in  metagenomic  sequence  data,  with  improved  accuracy  compared  to            

StrainPhlAn  for  species  and  strains  at  low  relative  abundance,  and  with  a  taxonomically  more               

accurate   and   restrictive   prediction   of   shared   strains   compared   to   StrainFinder.  
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Figure   3.   Sensitive   Species-specific   Detection   of   Shared   Strains   with   SameStr.  
(A)  Shared  subspecies  lineages  (strains)  among  all  members  of  a  microbial  species  are  identified  with  SameStr  by  calculating  the                    
pairwise  Maximum  Variant  Profile  Similarity  (MVS)  between  two  metagenomic  samples,  using  all  Single  Nucleotide  Variants  (SNVs)                 
detected   in   the   alignments   of   these   samples   to   clade-specific   marker   genes.  
(B)  SameStr  detects  dominant  and  subdominant  strains  at  low  sequencing  depth  (target  strain  coverage)  and  relative  abundance                  
(i.e.   high   noise   coverage)   in   simulated   metagenomes   of   multi-strain   species   populations.  
(C)  Cumulative  relative  abundance  and  fraction  of  species  for  which  strain-level  resolution  was  achieved  with  SameStr  in  202  fecal                    
metagenomes   from   a   reference   cohort   of   67   longitudinally   sampled   healthy   adults.  
(D)  SameStr’s  method,  using  MVS-based  comparisons  of  marker  gene  alignments,  detects  shared  strains  in  a  larger  fraction  of                   
species  in  related  (from  the  same  individual)  sample  pairs  compared  to  a  consensus-based  method,  but  not  in  unrelated  (from                    
different   individuals)   sample   pairs.  
(E)  More  genera  and  species  are  detected  per  metagenomic  sample  with  SameStr,  using  MetaPhlAn2’s  clade-specific  marker  gene                  
database,  compared  to  StrainFinder,  which  uses  mg-OTUs  that  are  defined  based  on  phylogenetic  comparisons  of  universally                 
distributed   bacterial   genes   from   the   AMPHORA   database.  
(F)  Fewer  and  more  conservative  shared  strain  calls  demonstrate  the  increased  specificity  of  SameStr  compared  to  StrainFinder,                  
which   allows   for   the   differentiation   of   related   and   unrelated   sample   pairs   (see   also   Figure   4B   and   D).  
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Identification  of  Healthy  Individuals  and  FMT  Donors  using  Gut  Microbiota           

Strain   Profiles  

Using  SameStr’s  shared  strain  calls  in  the  healthy  human  reference  dataset  described  above,              

we  found  73.1%  ±  18.3  of  the  adult  gut  microbiota  (22.6%  ±  6.3  of  species)  to  consist  of                   

persisting  strains,  i.e.  strains  that  were  shared  between  consecutive  samples  collected  from  the              

same  individual  over  a  period  of  up  to  one  year  (Figure  4A).  To  test  whether  these  shared  strain                   

profiles  could  be  used  for  personal  identification,  we  trained  logistic  regression  classifiers  to              

distinguish  sample  pairs  that  originated  from  the  same  individual  from  sample  pairs  that              

originated  from  different  individuals  (Figure  4B,  Table  S9).  Based  on  a  dataset  divided  into               

training  and  hold-out  data  (60/40  split),  compositional  microbiota  profiles  were  determined  at  the              

family,  genus  and  species  level  with  MetaPhlAn2  and  at  the  strain  level  with  SameStr  and  total                 

numbers  of  detected  and  shared  taxa  were  used  as  input  variables  for  the  classifier.  Whereas                

genus  and  family  level  microbiota  profiles  were  generally  insufficient  to  reliably  identify  sample              

pairs  from  the  same  individual  (auPR<=0.18,  auROC<=0.87)  and  predictions  became  only            

slightly  more  accurate  with  species-level  data  (auPR=0.47,  auROC=0.93),  a  perfect           

classification  (auPR=1,  auROC=1)  of  8,120  hold-out  sample  pairs  was  achieved  using            

SameStr’s   microbiota   strain   profiles.   

 

In  our  FMT  dataset,  SameStr  identified  shared  strains  between  samples  from  pre-  and              

post-FMT  patients,  post-FMT  patients  and  their  corresponding  donors,  as  well  as  between             

samples  from  distinct  post-FMT  patients  that  received  FMT  from  the  same  donor  (Figure  4C,               

Table  S12).  Using  the  previously  described  logistic  regression  classifier  trained  on  the  healthy              

adult  gut  reference  data,  we  again  achieved  high  accuracy  for  the  identification  of  related               

sample  pairs  from  our  FMT  dataset  based  on  shared  strain  (auPR=0.94,  auROC=0.93)  but  not               

higher-level  taxa  profiles  (Figure  4E).  In  this  case,  not  only  corresponding  FMT  donors  and  rCDI                

recipients  could  be  identified  as  related  sample  pairs,  but  also  corresponding  rCDI  recipient  and               

post-FMT  patients,  as  well  as  distinct  post-FMT  patients  that  had  received  FMT  from  the  same                

donor.  Thus,  our  findings  demonstrate  that  the  healthy  adult  gut  microbiota  is  characterized  by               

identifiable  personal  strain  profiles,  at  least  over  periods  of  up  to  one  year,  and  rCDI  patients                 

retain   identifiable   strains   from   both   the   donor   and   the   pre-FMT   microbiota   after   FMT.  
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Figure  4.  Identification  of  Healthy  Individuals  and  FMT  Donors  using  Gut  Microbiota             
Strain   Profiles   
(A)  Healthy  adults  from  the  reference  (Control)  cohort  harbor  a  core  microbiota  of  persisting  strains  and  species  (insufficient                   
sequencing  depth  for  strain  calls)  that  are  shared  between  fecal  metagenomes  sampled  over  up  to  one  year  and  constitute  ~75%  of                      
the   microbiota   relative   abundance   and   ~50%   of   the   detected   species.  
(B)  Receiver-Operating  Characteristic  (ROC)  and  Precision-Recall  (PR)  curves  of  logistic  regression  classifiers  demonstrate              
sensitive  and  accurate  identification  of  healthy  individuals  using  shared  strain  but  not  higher-level  fecal  metagenomic  microbiota                 
profiles.  
(C)  Total  numbers  of  shared  strains  indicate  both  persistence  of  patient  strains  and  engraftment  of  donor  strains.  More  shared                    
strains  were  detected  between  distinct  rCDI  patients  who  received  stool  from  the  same  donor  than  between  samples  collected  from                    
the   same   individual   before   and   after   FMT.  
(D)  The  logistic  regression  classifier  that  was  trained  on  shared  strain  microbiota  profiles  from  the  Control  dataset  accurately                   
identified  related  sample  pairs  from  the  FMT  cohort,  including  sample  pairs  from  corresponding  donor  and  post-FMT  patients,  as                   
well   as   from   distinct   post-FMT   patients   that   received   FMT   from   the   same   donor.   

Predicting   Donor   Strain   Engraftment   in   rCDI   Recipients   after   FMT  

We  used  SameStr  to  assess  the  contributions  of  recipient  and  donor  strains  to  the  post-FMT                

microbiota  by  determining  the  fraction  and  relative  abundance  of  species  for  which  a  shared               

strain  was  detected  exclusively  with  the  donor  (donor-derived  strains)  or  the  rCDI  patient  before               

FMT  (recipient-derived  strains)  (Figure  5A,  see  Supplementary  Figure  S3B  for  individual  cases             

and  samples).  During  the  first  week  after  FMT,  both  donor  and  recipient-derived  strains              

represented  large  fractions  of  the  patient  microbiota  (days  1-7:  42.5%  ±  30.3  vs.  18.9%  ±  22.3),                 

but  donor-derived  microbiota  fractions  remained  more  stable  over  the  following  weeks  and             

months,  whereas  recipient-derived  microbiota  fractions  continuously  decreased  (days  70-84:          

26.5%  ±  21.9  vs.  4.9%  ±  9.0).  Co-existence  of  recipient  and  donor  strains  from  the  same                 

species  was  rare:  Of  408  within-species  competition  events  in  post-FMT  patients,  only  25              

(6.1%)  resulted  in  co-existence  of  recipient  and  donor  strains,  whereas  donor  strains  replaced              

recipient  strains  in  207  cases  (50.7%)  and  recipient  strains  resisted  replacement  in  119  cases               

(29.2%).  In  the  remaining  57  cases  (13.9%),  post-FMT  patients  carried  a  new,  previously              

undetected  strain  that  was  distinct  from  both  the  recipient  and  donor  strain.  Importantly,              

prevailing  strains  retained  their  previous  species  relative  abundance,  i.e.  these  were  correlated             

between  donors  and  post-FMT  patients  for  donor-derived  strains  and  between  rCDI  recipients             

and  post-FMT  patients  for  recipient-derived  strains,  but  not vice  versa  (Figure  5B).  Thus,              

donor-derived  strains  contribute  the  largest  fraction  to  the  post-FMT  microbiota  of  rCDI  patients              

and   species   relative   abundance   is   rather   strain-specific   than   species   or   host-dependent.  

 

The  rates  of  donor  strain  engraftment  and  recipient  strain  persistence  in  our  FMT  dataset,  as                

well  as  of  strain  persistence  in  our  healthy  control  dataset,  showed  taxonomy-dependent             
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patterns  (Figure  5C,  see  Figure  S4A  for  species  comparison).  These  patterns  were  correlated              

and  could  be  linked  to  functional  species  parameters.  For  example,  persistence  of  rCDI              

recipient  strains  was  more  frequent  among  predicted  oral  and/or  oxygen-tolerant  species;  and             

strains  that  frequently  engrafted  in  rCDI  recipients  after  FMT  also  frequently  persisted  over  time               

in  healthy  individuals  (Figure  5D,  R=0.72,  p<1e-8,  Spearman;  see  Figure  S4B  for  species              

comparison;  Table  S14).  The  latter  group  included  taxa  that  were  abundant  (>5%  relative              

abundance)  in  the  post-FMT  microbiota,  such  as  members  of  the  genera Bacteroides , Blautia ,              

Coprococcus  and Eubacterium  (Figures  5D  and  S5).  Thus,  rCDI  patients  appear  to  acquire              

donor  strains  specifically  from  those  species  and  genera  that  are  abundant  in  the  post-FMT               

patient   microbiota   and   represented   by   persistent   strains   in   healthy   individuals.  

 

To  test  if  we  could  predict  donor  strain  engraftment  in  rCDI  patients  after  FMT,  we  trained  a                  

random  forest  classifier  with  microbiota  composition,  available  functional  species  parameters           

and  other  metadata  from  our  combined  FMT  cohort  (Figure  5E).  The  classifier,  which  we  trained                

on  80%  of  all  detected  donor  strain  observations  (n=2,210,  including  24%  donor  strain  strain               

engraftment  events)  predicted  engraftment  with  high  accuracy  (auROC  =  0.904,  auPR  =  0.765)              

for  the  20%  hold-out  data  (n=552,  also  including  24%  donor  strain  engraftment  events).  The               

relevance  of  different  parameters  for  this  prediction  was  assessed  by  quantifying  the  mean              

decrease  in  model  accuracy  when  permuting  individual  input  variables  (Figure  5F).  Species             

relative  abundance  -  in  donors,  recipients,  and  in  donors  relative  to  recipients  -  and  taxonomy                

were  the  most  informative  predictive  variables  for  the  random  forest  model.  This  is  illustrated  by                

the  observations  that  80%  of  strains  with  at  least  10%  species  relative  abundance  in  the  donor                 

colonized  the  rCDI  patients  after  FMT  (Figure  S4C);  donor  strains  with  a  ≥100-fold  higher               

species  relative  abundance  compared  to  recipients  engrafted  in  70%  of  cases  (Figure  S4D).  By               

comparison,  information  about  the  time  after  FMT  had  little  predictive  value  for  the  random               

forest  model,  indicating  that  donor  strain  engraftment  rates  were  stable  during  the  entire              

observation  period.  Our  findings  suggest  that  the  colonization  of  rCDI  patients  with  specific              

donor  strains  by  FMT,  including  after  replacement  of  existing  recipient  strains  from  the  same               

species,  can  be  predicted  and  promoted,  using  personalized  strain-level  microbiota  analysis  and             

rational   donor   selection.  
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Figure   5.   Predicting   Donor   Strain   Engraftment   in   rCDI   Recipients   after   FMT   
(A)  Donor-derived  strains  and  species  (exclusively  shared  with  donor  but  insufficient  resolution  for  strain  prediction)  account  for                  
large  and  stable  relative  abundance  and  species  fractions  across  all  post-FMT  patient  samples,  whereas  contributions  of                 
recipient-derived   strains   and   species   decrease   over   time.  
(B)  Competition  of  recipient  and  donor  strains  from  the  same  species  rarely  results  in  coexistence  after  FMT  and  species  relative                     
abundances   before   and   after   FMT   are   correlated   only   for   prevailing   strains.   
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(C)  The  frequencies  of  species  (dark  blue)  and  strain  (light  blue)  persistence  in  healthy  individuals  and  rCDI  recipients  and  of  donor                      
species  (dark  green)  and  strain  (light  green)  engraftment  in  post-FMT  patients  differ  between  bacterial  genera  (see  Figure  S4A  for                    
species),  with  retained  recipient  species  and  strains  frequently  being  classified  as  oral  and/or  oxygen-tolerant  (see  also  Table  S5).                   
Newly  detected  species  and  strains  are  shown  in  dark  and  light  yellow,  respectively.  Species  fractions  indicate  insufficient  resolution                   
for   strain   prediction.  
(D)  The  same  genera  that  are  represented  by  frequently  persisting  strains  in  healthy  individuals  are  also  represented  by  strains  that                     
frequently  engraft  from  donors  in  rCDI  patients  after  FMT  (see  Figure  S4B  for  species)  and  include  highly  abundant  members  of  the                      
post-FMT   patient   microbiota.  
(E)   Donor   strain   engraftment   after   FMT   can   be   accurately   predicted   with   a   trained   random   forest   classifier.   
(F)  Species  relative  abundance,  in  particular  the  recipient-to-donor  ratio,  and  taxonomy  are  the  most  important  variables  for  the                   
prediction   of   donor   strain   presence   in   post-FMT   patients.  
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Donor   Microbiota   Characterization   and   Transfer   after   Failed   FMT  

Our  FMT  dataset  included  one  donor  (MGH03D)  that  was  used  to  treat  12  rCDI  recipients,  six  of                  

which  failed  to  resolve  clinical  symptoms  after  FMT  (Table  S1).  There  was  no  clear  association                

between  treatment  failure  and C.  difficile  carriage,  which  was  detected  in  three  of  the  six  failed                 

FMT  cases  (0.01%-0.49%  relative  abundance),  but  also  in  two  post-FMT  patients  reported  as              

symptom-free  (Table  S11,  0.01-0.13%  relative  abundance).  Post-FMT  patients  who  failed  to            

resolve  rCDI  symptoms  harbored  comparable  microbiota  fractions  of  recipient-derived,          

persisting  strains  as  successfully  treated  patients  during  the  first  week  after  FMT  (Figure  6A;               

25.2%  ±  19.0  vs.  20.9%  ±  24.9  in  patients  after  successful  FMT  from  MGH03D).  However,  in  the                  

first  patient  group  smaller  fractions  of  the  microbiota  were  represented  by  newly  engrafted,              

donor-derived  strains  (days  1-7:  33.1%  ±  23.5  vs.  44.8%  ±  30.1),  suggesting  that  establishment               

of  a  healthy  donor-derived  microbiota  could  be  more  important  for  the  resolution  of  rCDI               

symptoms  than  containment  of  the  dysbiotic  rCDI  patient  microbiota  after  FMT.  Notably,  during              

the  35-day  observation  period,  albeit  reduced,  donor-derived  microbiota  fractions  in  patients            

after  failed  FMT  remained  stable  (Figure  6A,  days  7-35:  24.3%  ±  8.7),  indicating  that  microbiota                

transfer  and  engraftment  from  donor  MGH03D  were  generally  successful,  even  in  post-FMT             

patients   that   failed   to   resolve   symptoms.  

 

To  investigate  compositional  and  structural  microbiota  variations  as  a  potential  cause  of  FMT              

failure,  the  three  available  samples  from  MGH03D,  as  well  as  12  associated  post-FMT  patient               

samples,  were  compared  to  the  remainder  of  our  FMT  dataset  based  on  alpha  (within-sample)               

and  beta  (between-sample)  diversity  metrics.  MGH03D  and  associated  post-FMT  patients           

exhibited  comparable  microbiota  diversity  (Figure  6B,  Shannon  index),  but  adopted  a            

taxonomically  distinct  microbiota  composition  relative  to  other  donors  and  post-FMT  patients,            

irrespective  of  treatment  success  or  failure  (Figure  6C,  Aitchison  distance,  PERMANOVA,            

p=0.002,  r=0.467).  Besides  taxonomic  changes  at  the  level  of  increased  or  decreased  species              

relative  abundances  (Figure  6C  and  Table  S10),  the  MGH03D-associated  microbiota  was            

functionally  characterized  by  the  enrichment  and  depletion  of  genes  from  several  metabolic             

pathways  (Figure  S5  and  Table  S10).  These  included  functions  involved  in  host-microbe             

interactions  (sialic  acids  biosynthesis; (Varki  and  Gagneux,  2012) )  and  pathways  that  were             

previously  associated  with  IBD,  such  as  for  the  biosynthesis  of  biotin (Das  et  al.,  2019)  and                 

ascorbate,  which  has  been  identified  as  a  microbial  metabolite  in  Crohn’s  disease  patients  with               
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inhibitory  effects  on  activated  human  CD4+  effector  T  cells (Chang  et  al.,  2019) .  Together,  these                

functions  are  suggestive  of  a  pro-inflammatory  microbiota  milieu  that  was  transferred  from             

MGH03D   via   FMT   and   prevented   resolution   of   rCDI   symptoms   in   some   post-FMT   patients.  

 

In  summary,  species  and  strain-level  microbiota  analysis  indicates  that  failure  to  treat  rCDI  by               

FMT  is  associated  with  reduced  donor-derived  microbiota  fractions  in  patients  immediately  after             

treatment;  yet  FMT  from  questionable  donors  can  result  in  the  adoption  of  atypical  donor               

microbiota  profiles  in  post-FMT  patients,  independently  of  treatment  success,  potentially           

inducing  a  pro-inflammatory  microbiota  milieu  and  failure  to  resolve  rCDI  symptoms,  at  least  in               

some   patients.  
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Figure   6.   Donor   Microbiota   Characterization   and   Transfer   after   Failed   FMT.   
(A)  Donor-derived  microbiota  fractions  are  reduced  but  stable  and  rCDI  recipient-derived  microbiota  fractions  do  not  decrease  over                  
time   in   post-FMT   patients   with   unresolved   symptoms.  
(B)  FMT  failure  is  not  associated  with  reduced  microbial  diversity  in  donor  MGH03D  or  associated  post-FMT  patients  with                   
unresolved   symptoms.  
(C)  rCDI  recipients  adopt  a  distinct  taxonomic  microbiota  composition  after  FMT  from  donor  MGH03D,  which  is  characterized  by                   
increased  relative  abundance  of Bacteroides  ( B. )  and  reduced  relative  abundance  of Ruminococcus  ( R. )  species  compared  to  other                  
donors.  
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Discussion  
Metagenomics  provides  increased  phylogenetic  resolution  for  taxonomic  microbiota  analysis,          

down  to  subspecies  levels,  compared  to  amplicon  sequencing-based  methods.  Several  tools            

have  been  introduced  for  the  identification  and  tracking  of  microbial  strains,  based  on  the               

detection  of  shared  gene  contents  [PanPhlAn (Scholz  et  al.,  2016) ],  shared  SNVs  relative  to               

reference  genomes  [metaSNV (Costea  et  al.,  2017) ,  StrainSifter (Magruder  et  al.,  2019) ]  or              

newly  detected  SNVs  in  universal  marker  genes  [ConStrains (Luo  et  al.,  2015) ,  StrainFinder              

(Smillie  et  al.,  2018) ,  mOTUs2 (Milanese  et  al.,  2019) ],  species-specific  core  genes  [DESMAN              

(Quince  et  al.,  2017) ,  StrainEst (Albanese  and  Donati,  2017) ]  multi-locus  sequence  typing  loci              

[MLST, (Zolfo  et  al.,  2017) ]  or  other  taxon-specific  marker  genes  [StrainPhlAn (Truong  et  al.,               

2017) ,  MIDAS (Nayfach  et  al.,  2016) ].  One  drawback  that  is  hindering  strain-level  microbiota              

analysis  is  the  complicated  and  inconsistent  underlying  definition  of  microbial  strains,  which  has              

traditionally  been  based  on  cultivation  and  taxonomy  and  is  not  readily  applicable  to              

phylogenetic,  sequence-based  analyses  (as  comprehensively  reviewed  by  Van  Rossum  et  al.            

(Van  Rossum  et  al.,  2020) ).  We  developed  SameStr  as  a  new  bioinformatic  tool  for  the                

identification  of  shared  microbial  strains  in  metagenomic  shotgun  sequence  data,  in  order  to              

detect  and  quantify  persistence  of  the  rCDI  patient  microbiota  and  engraftment  of  the  donor               

microbiota  after  FMT,  as  well  as  to  delineate  the  dynamics  of  within-species  competition  of               

donor  and  recipient  strains.  We  used  a  conservative  definition  of  ‘strain’  as  the  equivalent  of  a                 

unique  phylogenetic  lineage  that  is  only  shared  by  either  temporally  or  physically  related              

samples.  The  former  includes  longitudinally  collected  samples  from  the  same  patient  or  donor,              

for  which  the  identification  of  a  shared  strain  would  be  interpreted  as  microbial  persistence;  the                

latter  includes  corresponding  FMT  donor  and  patient  samples,  for  which  a  shared  strain  would               

be  interpreted  as  microbial  transfer.  These  phylogenetic  lineages  would  be  unique  in  the  sense               

that  shared  strains  should  not  be  found  in  unrelated  sample  pairs.  Methodically,  SameStr  is               

related  to  the  StrainPhlAn  tool,  as  both  use  the  taxon-specific  marker  gene  database  from               

MetaPhlAn2 (Segata  et  al.,  2012)  to  identify  and  compare  microbial  species-specific  SNV             

profiles.  Phylogenetic  comparisons  of  clade-specific  marker  genes,  the  approach  used  by            

StrainPhlAn  and  SameStr,  are  dependent  on  the  underlying  database  and  limited  to  previously              

described  and  sequenced  taxa (Segata  et  al.,  2012) ,  whereas  phylogenetic  comparisons  of             

universal  marker  genes,  the  approach  used  for  example  by  StrainFinder  and  mOTUs2,  can              
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introduce  discrepancies  from  established  taxonomic  systems (Mende  et  al.,  2013) .  However,            

both  approaches  have  not  been  comprehensively  validated  and  compared.  We  demonstrate            

that  SameStr  provides  increased  taxonomic  resolution  and  specificity  for  the  detection  of  shared              

strains  compared  to  StrainFinder,  as  strains  from  more  species  and  genera  were  identified  per               

sample  and  false  positive  shared  strain  calls  between  unrelated  samples  were  less  common.              

Compared  to  the  related  StrainPhlAn  tool,  SameStr  demonstrated  increased  sensitivity  for  the             

detection  of  shared  strains  between  multi-strain  species  populations,  especially  among           

subdominant  species  members.  These  advantages  provide  unique  opportunities  for  SameStr  in            

clinical  microbiome  research  to  detect  pathogen  transfer  and  identify  sources  of  infection,  e.g.  in               

urinary  tract  or  bloodstream  infections  with  gastrointestinal  pathogens (Magruder  et  al.,  2019;             

Tamburini  et  al.,  2018) ,  to  identify  microbial  exchange  between  body  sites,  e.g.  along  different               

locations  of  the  gastrointestinal  tract (Schmidt  et  al.,  2019) ,  or  to  track  external  contributions  to                

the   human   microbiota,   e.g.   from   food   sources   ( (Pasolli   et   al.,   2020) ].  

 

During  the  validation  of  SameStr  on  healthy  adult  gut  metagenomes  we  noticed  the  potential  for                

additional  applications  in  personal  identification  and  metagenomics  quality  control.  Forensics           

applications  of  microbiome  research  have  previously  been  proposed (Clarke  et  al.,  2017;             

Metcalf  et  al.,  2017) ,  based  on  low  intra-individual  compared  to  inter-individual  taxonomic             

compositional  microbiota  variability (Costello  et  al.,  2009) ,  but  have  so  far  been  realized  with               

limited  success:  Franzosa  et  al.  used  ‘sets  of  microbial  taxa  or  genes’  from  the  gut  microbiota  to                  

identify  >80%  of  healthy  individuals  from  the  Human  Microbiome  Project (Franzosa  et  al.,  2015) ,               

whereas  Wang  et  al.  used  rare  fecal  metagenomic  sequence  fragments  (k-mers  of  18-30bp              

length)  to  identify  a  majority  of  >300  individuals  (auROC  =  0.9470,  auPRC  =  0.8702)  from  a                 

mixed  human  cohort,  including  post-FMT  patients (Wang  et  al.,  2018) .  Using  unique  shared              

strain  profiles  as  detected  with  SameStr,  we  correctly  identified  67  individuals  across  multiple              

time  points  from  over  8,000  sample  pairs  from  a  curated  reference  database  of  healthy  adult  gut                 

metagenomes  at  100%  sensitivity  and  specificity.  Standard  practice  for  microbiota  projects,  as             

requested  by  journals  and  funding  agencies,  includes  release  of  supposedly  de-identified            

sequence  data  for  publication,  from  which  human  reads  have  been  removed.  Our  findings              

suggest  that  microbial  metagenome  sequence  data  alone  retain  personal,  identifiable           

information.  They  raise  concerns  over  the  vulnerability  of  microbiome  study  participants,  as             

individuals  could  be  retrospectively  identified  from  published  sequence  data  and  demonstrate  a             

need   for   the   implementation   of   additional   mechanisms   to   protect   study   participant   privacy.  
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Inconsistent  microbiome  project  data,  resulting  from  mislabeled  samples  and  incomplete  or            

confounded  metadata,  are  difficult  to  detect  by  standard  taxonomic  or  functional  microbiota             

analysis.  While  technical  solutions  have  been  proposed  to  check  16S  rRNA  amplicon  sequence              

data  for  mislabeling  errors (Knights  et  al.,  2011) ,  sample  assignment  consistency  checks  for              

metagenomic  sequence  data  remain  challenging  and  the  prevalence  of  mislabeled  data  in             

published  datasets  unknown.  In  the  re-analysis  of  public  metagenomic  sequence  data  from  our              

reference  and  FMT  cohorts,  we  noticed  several  inconsistencies  suggestive  of  mis-labeled  or             

mixed-up  sample  assignments  (Figure  S6,  Table  S16):  (i)  supposedly  unrelated  samples  shared             

>2-fold  more  strains  than  any  other  combination  of  >20.000  unrelated  sample  pairs;  (ii)              

suspicious  sample  pairs  had  been  submitted  as  part  of  the  same  study;  and  (iii)  inconsistencies                

could  be  resolved  by  changing  sample  assignments  within  the  original  sample  set.  For  our               

study,  these  samples  were  removed  from  further  analysis.  However,  our  findings  suggest  that              

mislabeled  microbiome  data  might  be  common.  Microbiota  strain  profiling  with  SameStr  or             

equivalent  tools  could  represent  a  viable  quality  control  strategy  for  metagenome-based            

microbiota   project   data.  

 

A  better  understanding  of  the  mechanisms  that  govern  the  engraftment,  competition  and             

replacement  of  microbial  strains  in  patients  after  FMT  could  aid  in  the  development  of  new                

methods  for  the  precise,  personalized  modulation  of  the  gut  microbiota.  We  used  logistic              

regression  analysis  and  machine  learning  to  model  the  engraftment  of  donor  strains  and              

species  in  rCDI  patients  in  order  to  outline  potential  prospects  and  boundaries  of  FMT-based               

microbiota  modulation  strategies.  Prevalence  and  relative  abundance  of  species  in  rCDI            

recipients  and  donors  most  strongly  affected  post-FMT  species  presence,  with  highly  abundant             

shared  and  donor-specific  species  being  most  likely  to  colonize  patients  after  FMT.  However,              

the  modulatory  capacities  of  FMT  to  deplete  rCDI  recipient  species  or  introduce  new  donor               

species  appear  to  be  limited  by  ecological  principles,  as  previously  suggested  by  Walter  et  al.                

(Walter  et  al.,  2018) ,  as  oral  and/or  oxygen-tolerant  species  were  less  likely  to  engraft  from                

donors  than  to  persist  from  rCDI  recipients  after  FMT.  Besides  the  introduction  of  new  species                

into  rCDI  recipients,  the  replacement  of  recipient  with  donor  strains  from  the  same  species               

represents  another  attractive  goal  for  FMT-based  microbiota  modulation.  Using  random  forest            

classifiers  to  predict  donor  microbiota  engraftment  at  the  strain  level,  we  found  taxonomy  and               

relative  species  abundance  (in  recipients  and  donors  separately  and  relative  to  each  other)  to               
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be  the  most  important,  but  occasionally  overlapping,  predictive  variables  for  donor  strain             

engraftment.  For  example,  in  all  eight  detected  cases  of Enterococcus  faecium , rCDI  recipient              

strains  resisted  replacement  with  donor  strains  from  the  same  species,  but  all  recipients  also               

harbored  a  >80-fold  higher  relative  abundance  of E.  faecium  than  their  respective  donors.              

Resistance  of E.  faecium  rCDI  recipient  strains  to  replacement  could  therefore  be  characteristic              

for  this  species  and  result  from  the  adaptation  of  strains  to  specific  human  hosts;  or  the  high                  

recipient-to-donor  species  relative  abundance  ratio  in  our  cohort  could  have  prevented            

replacement  of  recipient  strains  for  this  species.  Further,  larger  studies  will  be  needed  to  resolve                

the  contributions  of  these  factors  to  the  recipient  strain  resistance  and  donor  strain  replacement               

phenotypes   of   this   and   many   other   species.  

 

For  [ Ruminococcus]  gnavus  the  outcome  of  recipient  and  donor  strain  competition  after  FMT              

could  be  predicted  solely  based  on  species  relative  abundance:  In  seven  cases  with  a  >154-fold                

higher  species  relative  abundance  in  donors  compared  to  recipients,  recipient  strains  were             

replaced  with  donor  strains,  whereas  in  four  cases  with  a  >18-fold  higher  relative  species               

abundance  in  recipients,  recipient  strains  resisted  replacement  after  FMT.  [ R. ]  gnavus  has  been              

implicated  in  the  pathogenesis  of  IBD (Png  et  al.,  2010) ,  in  particular  one  of  two  described  major                  

subspecies  clades (Hall  et  al.,  2017) ;  and  the  production  of  a  pro-inflammatory  polysaccharide              

by  this  species  could  contribute  to  IBD  etiology (Henke  et  al.,  2019) .  Additional  [ R .] gnavus                

genotypic  and  phenotypic  variations  include  the  capacity  to  utilize  different  carbohydrate            

sources (Bell  et  al.,  2019) ,  acidify  culture  media,  or  produce  antimicrobial  bacteriocins,             

lantibiotics  or  the  above-mentioned  pro-inflammatory  polysaccharide (Sorbara  et  al.,  2020) .           

Thus,  the  heterogeneity  of  [ R. ] gnavus strains,  with  potential  far-reaching  metabolic  and/or             

inflammatory  consequences  for  the  human  host,  makes  this  species  an  attractive  target  for              

microbiota  modulation  and  an  interesting  model  to  test  the  feasibility  of  donor  selection-based              

personalized   FMT   therapy.  

 

So  far,  there  is  limited  experimental  evidence  to  support  specific  donor  selection  criteria  to  treat                

rCDI,  besides  the  exclusion  of  donors  carrying  known  pathogens  or  multidrug  resistant             

organisms  (see  U.S.  Food  &  Drug  Administration).  Contrary  to  previous  reports  of  positive              

associations  between  donor  microbiota  richness  and  response  to  FMT  in  IBD  patients (Kump  et               

al.,  2018;  Vermeire  et  al.,  2016) ,  failure  to  resolve  symptoms  after  FMT  in  our  rCDI  cohort  was                  

neither  correlated  with  reduced  microbiota  diversity  in  donor  nor  corresponding  post-FMT            
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patient  samples.  However,  distinct  taxonomic  donor  microbiota  compositions  relative  to  other            

donors  suggests  that  deviation  from  the  “normal”,  i.e.  most  commonly  observed,  healthy  adult              

gut  microbiota  composition  should  be  considered  as  an  exclusion  criterion,  although  the             

reproducibility  of  our  findings  would  have  to  be  confirmed  in  larger  studies  on  FMT  failure  for  the                  

treatment  of  rCDI.  Mechanistically,  it  would  be  relevant  whether  the  presence  of  beneficial              

bacteria,  to  reestablish  microbiota  homeostasis,  or  the  absence  of  detrimental  bacteria,  that             

could  stabilize  pre-FMT  dysbiosis,  are  more  important  to  resolve  rCDI  symptoms  after  FMT.  In               

our  cohort,  FMT  resulted  in  substantial  microbiota  engraftment  (>24%  relative  abundance  after             

failed  treatment)  and  the  adoption  of  atypical,  potentially  pro-inflammatory  microbiota           

compositions  from  one  donor,  irrespective  of  treatment  success  or  failure.  Thus,  our  findings              

would  suggest  that  FMT  from  questionable  donors  carries  the  risk  for  long-term  implementation              

of  potentially  deleterious  microbiota  components  in  patients  after  FMT,  which  should  be  further              

studied  to  assess  the  clinically  relevant  short-  and  long-term  consequences  of  FMT  in  rCDI               

patients   and   other   FMT   recipients.  

 

In  conclusion,  with  SameStr  we  present  a  new  bioinformatic  program  for  the  species-specific,              

conservative  identification  of  unique  shared  subspecies  taxa  in  metagenomic  shotgun  sequence            

data,  including  subdominant  members  of  multi-strain  species  populations.  We  demonstrate           

applications  of  SameStr  for  consistency  checks  of  metagenomic  sequence  data,  microbiota            

strain  profile-based  personal  identification,  as  well  as  to  identify  and  quantify  microbial  transfer              

between  individuals.  For  our  combined  FMT  cohort  of  new  and  previously  generated  sequence              

data,  we  show  that  FMT  leads  to  long-term  donor  microbiota  engraftment  in  rCDI  patients,               

including  those  that  failed  to  resolve  rCDI  symptoms,  and  adoption  of  atypical  taxonomic  donor               

microbiota  profiles.  Using  generalized  mixed-effects  logistic  regression  and  random  forest           

modelling,  we  identify  species  and  strain  variables  that  predict  donor  microbiota  engraftment             

after  FMT.  Our  findings  suggest  potential  personalized  FMT  applications  in  rCDI  to  target              

specific  bacterial  species  and  strains  for  engraftment  or  replacement  and  raise  concerns  over              

long-term  consequences  of  donor  microbiota  engraftment  after  FMT,  which  should  be  further             

studied.  
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Methods  

Study   Cohort  
Fecal  samples  from  rCDI  cases  of  a  previously  published  study (Song  et  al.,  2013)  were                
reanalyzed  by  metagenomic  shotgun  sequencing.  The  sample  set  included  8  rCDI  patient             
samples  collected  before  treatment,  11  patient  samples  collected  between  one  week  and  up  to               
one  year  after  FMT,  as  well  as  8 samples  from  stool  donors,  all  of  which  had  a  family  connection                    
to  their  recipients.  FMT  was  performed  at  Sinai  Hospital  of  Baltimore,  Baltimore,  MD,  USA,  by                
single  infusion  of  fecal  filtrate  from  healthy  donors  into  the  jejunum  and  colon  of  rCDI  patients.                 
Study  design,  patient  selection  criteria,  donor  screening,  infusion  protocol  and  sample  collection             
have  previously  been  published (Dutta  et  al.,  2014) .  Patients  had  a  history  of  at  least  three                 
recurrences  of  CDI  as  well  as  at  least  three  courses  of  antibiotic  treatment.  Samples  from  rCDI                 
patients   before   treatment   were   taken   1-2   days   before   the   stool   transplantation.  

DNA   Extraction   and   Sequencing   (Study   Cohort)  
Sample  processing  and  sequencing  of  in  total  27  fecal  samples  was  conducted  at  the  Institute  for                 
Genome  Sciences,  University  of  Maryland  School  of  Medicine.  DNA  was  extracted  from  0.25g  of               
stored  fecal  samples  (-80˚C),  using  the  MoBio  Microbiome  kit  automated  on  Hamilton  STAR              
robotic  platform  after  a  bead-beating  step  on  a  Qiagen  TissueLyser  II  (20  Hz  for  20  min)  in  96                   
deep  well  plates.  Metagenomic  libraries  were  constructed  using  the  KAPA  Hyper  Prep  (KAPA              
Biosystems/Roche,  San  Francisco,  CA,  USA)  library  preparation  kit  according  to  the            
manufacturer’s  protocols.  Sequencing  was  performed  on  an  Illumina  HiSeq  4000  (Illumina,  CA,             
USA)   to   generate   paired-end   reads   of   150bp   length.  

Collection   of   Validation   Datasets  
Metagenomic  shotgun  sequences  were  collected  from  publicly  available  datasets,  including  18            
cases  from  a  study  of  FMT-treated  rCDI  patients (Smillie  et  al.,  2018) .  Here,  we  obtained  65  fecal                  
metagenomes  from  patients  who  had  not  been  treated  with  FMT  before.  Longitudinal  data  was               
recruited  through  curatedMetagenomicsData (Pasolli  et  al.,  2017) ,  including  202  metagenomes  of            
67  subjects  from  four  different  studies (Asnicar  et  al.,  2017;  Human  Microbiome  Project              
Consortium,  2012;  Louis  et  al.,  2016;  Raymond  et  al.,  2016)  which  were  sampled  at  least  twice                 
within  a  year  and  had  not  reported  conditions  that  would  suggest  extensive  medication  or  strong                
microbiota  perturbations  between  time  points.  For  each  subject,  sequence  data  downloaded  from             
the   SRA   were   concatenated   in   case   of   multiple   available   accessions   (Table   S2).  

Quality  Control  and  Preprocessing  of  Metagenomic  Shotgun  Sequencing         
Data  
All  raw  paired-end  metagenomic  shotgun  sequence  reads  were  quality  processed  with  kneaddata             
(KneadData  Development  Team,  2017)  in  order  to  trim  sequence  regions  where  base  quality  fell               
below  Q20  within  a  4-nucleotide  sliding  window  and  to  remove  reads  that  were  truncated  by  more                 
than  30%  (SLIDINGWINDOW:4:20,  MINLEN:70).  To  remove  host  contamination,  trimmed  reads           
were  mapped  against  the  human  genome  (GRCh37/hg19)  with  bowtie2 (Langmead,  2010) .            
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Output  files  consisting  of  surviving  paired  and  orphan  reads  were  concatenated  and  used  for               
further   processing   (Table   S3).  
 

Taxonomic   and   Functional   Community   Composition  
Preprocessed  sequence  reads  from  each  sample  were  mapped  against  the  MetaPhlAn2            
clade-specific  marker  gene  database  using  MetaPhlAn2 (Truong  et  al.,  2015) .  Relative            
abundances  of  species-level  taxonomic  profiles  were  centered-log  ratio  (clr)  transformed  and            
used  for  principal  components  analysis  (PCA,  FactoMineR).  We  additionally  generated  taxonomic            
profiles  for  rarefied  data  which  were  subsampled  to  5M  reads  (after  QC)  per  sample  (seqtk)                
before  processing  with  MetaPhlAn2,  confirming  representativeness  of  microbial  communities  as           
indicated  by  very  strong  correlations  of  Shannon  Index  (diversity,  vegan)  between  data.  For              
taxonomic  analyses  we  further  aggregated  functional  metadata  on  bacterial  species  (Table  S5)             
from (Browne  et  al.,  2016) , (Vatanen  et  al.,  2019) ,  List  of  Prokaryotes  according  to  their                
Aerotolerant  or  Obligate  Anaerobic  Metabolism  (OXYTOL  1.3,  Mediterranean  institute  of  infection            
in  Marseille),  bacDive (Reimer  et  al.,  2019) ,  FusionDB (Zhu  et  al.,  2017) ,  The  Microbe  Directory  v                 
1.0 (Shaaban  et  al.,  2018) ,  and  the  expanded  Human  Oral  Microbiome  Database (Escapa  et  al.,                
2018) . Metadata  aggregated  at  the  genus-level  (Figure  5C)  are  shaded  based  on  the  fraction  of                
detected  species  of  each  genus,  for  which  a  specific  feature  annotation  could  be  made.               
Functional  profiles  were  generated  with  HUMAnN2 (Franzosa  et  al.,  2018) ,  performing  a             
translated  search  of  the  Uniref90  database  with  diamond  (0.8.22).  HUMAnN2  pathway            
abundances  were  normalized  to  copies  per  million  (cpm),  clr  transformed  and  used  for  PCA               
analysis.  UniRef90  gene  families  were  regrouped  before  normalization  to  cpm  and  annotated             
according  to  the  functional  gene  ontology  nomenclature  (GO,  infogo1000).  Taxa  and  functional             
pathways  distinguishing  sample  groups  were  identified  by  sparse  partial  least  squares            
discriminant  analysis  (sPLS-DA)  using  5-fold  cross-validation  and  visualized  in  heatmaps  using            
the   splsda   and   cim   functions   from   the   mixOmics   package    (Rohart   et   al.,   2017) .  

Nucleotide   Variant   Profiles   of   Sequence   Alignments  
MetaPhlAn2  marker  alignments  were  filtered  for  at  least  90%  sequence  identity,  base  call  quality               
of  Q20  and  mapping  length  of  40bp.  We  tabulated  frequencies  of  all  four  nucleotides  with                
samtools (Li,  2011;  Smillie  et  al.,  2018)  and  kpileup,  retaining  unmapped  alignment  sites  as  gap                
positions.  Marker  nucleotide  profiles  were  trimmed  by  20  positions  at  both  ends,  concatenated  for               
each  species,  and  pooled  from  all  samples.  In  order  to  address  atypical  vertical  coverage  and                
wrong  base  calls,  for  each  sample,  we  zeroed  sites  diverging  from  mean  coverage  by  more  than                 
five  standard  deviations  and  nucleotides  that  made  up  less  than  ten  percent  of  the  coverage  at  a                  
given   site.  

Maximum   Similarity   of   Nucleotide   Variant   Profiles  
Since  strain  coexistence  was  to  be  expected  following  FMT  treatment,  we  extended  existing              
methods  that  considered  only  the  major  allele  at  every  position  in  the  alignment  to  describe  what                 
is  referred  to  as  the  dominant  strain  in  each  species  alignment.  Instead  of  a  consensus  approach,                 
we  evaluated  the  co-occurrence  of  all  four  possible  nucleotide  alleles  between  overlapping             
alignment  sites  of  two  samples.  We  calculated  the  maximum  variant  profile  similarity  (MVS)              
between  all  pairs  of  species  alignment  profiles  M i  and  M j  as  the  fraction  of  the  sum  of  alignment                   
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positions  with  at  least  one  shared  allele  C allele  divided  by  the  sum  of  positions  with  coverage  in                  
both  alignments  C cov ,  where  the  vector  of  shared  alleles  C allele  was  calculated  as  the  pairwise                
boolean   product   of   4-vectors   of   nucleotide   counts   at   all   positions   between   alignments   M i    and   M j .  

Bacterial   Strain   Tracking   in   Distinct   Biological   Samples  
To  track  bacterial  strains  in  distinct  biological  samples  we  used  a  pairwise  approach  to  determine                
MVS  between  all  sample  pairs  for  each  species.  Two  samples  shared  a  bacterial  strain  if  their                 
reads  mapped  to  the  species-specific  MetaPhlAn2  marker,  presented  with  sufficient  horizontal            
coverage  and  reached  a  minimum  threshold  of  alignment  similarity.  MVS  distributions  were             
commonly  found  to  be  multimodal  with  peaks  at  97.5%,  99%,  and  above  99.9%  similarity  (Figure                
S2A).  At  99.9%,  distributions  were  clearly  distinct  and  separated  related  and  unrelated  alignment              
pairs,  which  is  consistent  with  previous  analyses (Ferretti  et  al.,  2018) .  We  therefore  classified               
alignment  pairs  of  a  species  as  carrying  the  same  strain  if  their  MVS  was  above  99.9%  or  as                   
carrying  distinct  strains  if  they  differed  in  more  than  1  per  1000  bases.  To  reduce  false-positive                 
classification  of  shared  strains  between  biologically  independent,  i.e.  unrelated,  samples,  both            
samples  were  required  to  have  coverage  of  at  least  5,000  overlapping  alignment  positions  to  be                
considered   for   strain-level   comparisons.  

Microbiota   Dynamics   during   Fecal   Microbiota   Transplantation  
For  each  post-FMT  patient  sample  we  describe  treatment-related  transmission  of  bacteria  during             
FMT  based  on  taxa  shared  with  their  pre-FMT  and  donor  stool  sample.  At  the  species-level,                
species  were  classified  as  recipient-  or  donor-specific  if  they  were  not  detected  in  the  donor  and                 
recipient  sample,  respectively.  Similarly,  we  classified  recipient-  or  donor-specificity  at  the            
strain-level,  if  pairwise  comparisons  based  on  described  strain  tracking  criteria  could  confirm             
shared  strains  between  post-FMT  and  pre-FMT  samples  but  not  the  donor  and  vice  versa.  Strain                
coexistence  was  classified,  when  both  recipient  and  donor  strains  were  found  in  the  post-FMT               
sample.  Source  assignments  over  time  were  modelled  across  cases  using  binomial  smoothing             
(glm   function   in   R)   and   visualized   in   area   plots.   

Nucleotide   Variant   Profiles   of   Reference   Genomes  
To  validate  the  resolution  of  MetaPhlAn2  markers  we  extracted  marker  regions  from  up  to  50                
reference  genomes  which  we  obtained  from  the  National  Center  for  Biotechnology  Information's             
RefSeq  and  Genome  databases  for  20  species  (total  of  458  genomes)  of  the  most  abundant  and                 
prevalent  taxa  in  our  rCDI  cohort.  For  this,  we  adopted  a  utility  implemented  in  StrainPhlAn  which                 
uses  BLASTn  to  find  the  marker  regions  within  reference  genomes  and  performs  multiple              
sequence  alignments  (MSA)  with  the  MUSCLE  algorithm (Edgar,  2004) .  After  removing  inserted             
gap-positions  from  MSAs,  marker  sequences  were  piled  up,  concatenated,  and  trimmed  for  each              
species  as  described  for  sample  sequence  alignment  variant  profiles.  Calculated  genetic  similarity             
was  then  compared  to  the  average  nucleotide  identity  (ANI)  obtained  from  full-sequence  based              
FastANI   analysis    (Jain   et   al.,   2018)    for   all   458   reference   genomes   (Table   S4).  

Mock   Multi-Strain   Species   Populations  
The  ART  read  simulator (Huang  et  al.,  2012)  was  used  to  generate  mock  shotgun  sequencing                
data  for  cohort-relevant  taxa  which  were  combined  as  multi-strain  species  populations  with             
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varying  strain  diversity.  For  each  of  the  20  species  analysed,  we  randomly  selected  5  reference                
genomes  and  simulated  metagenomic  paired-end  shotgun  reads  with  Illumina  HiSeq-20  error            
profiles.  Reads  were  combined  to  multi-strain  species  populations  and  processed  to  nucleotide             
variant  profiles  as  described  above.  While  four  genomes  were  used  to  add  noise  to  the  sequence                 
alignment,  one  genome  served  as  the  target  that  would  be  searched  for  using  a  query  alignment.                 
Queries  were  based  on  the  target  genome,  yet  were  processed  independently  and  therefore              
carried  independent  reads  and  sequencing  errors.  To  evaluate  how  coverage  and  strain  diversity              
would  affect  detection  of  the  same  strains  in  distinct  alignments,  we  varied  fold-coverage  and               
relative  abundance  of  the  target  genome  in  the  species-community,  as  well  as  coverage  and               
quantity  of  noise  genomes  in  each  species  alignment.  MVS  of  mock-communities  and  query              
alignments  was  compared  to  CVS  distances  based  on  the  majority  alleles  at  the  same  alignment                
positions.   

Modelling   Species   Presence   in   Post-FMT   rCDI   Patients  
We  used  mixed  effects  logistic  regression  (glmer  function  of  the  lme4  package)  to  model  species                
presence  in  the  patients  after  FMT  treatment.  Species  presence/absence  and  log-transformed            
relative  abundance  in  donor  and  pre-FMT  samples  were  incorporated  as  fixed  effects,  as  were               
days  since  FMT  treatment  and  functional  species  metadata  such  as  oxygen  tolerance  and  oral               
habitat,  whereas  cases  were  incorporated  as  a  random  effect  to  account  for  repeated  post-FMT               
sampling.   Log   odds   ratios   were   determined   and   visualized   with   the   package   SJplot.  

Identification   of   Related   Samples  
For  the  personal  identification  of  individuals  we  determined  the  number  of  detected  and  shared               
taxa  between  sample  pairs  at  the  family,  genus,  species  and  strain  level.  We  divided  data  into                 
training  and  hold-out  data  (60%  /  40%)  and  used  counts  and  fractions  of  shared  taxa  to  train                  
simple  logistic  regression  models  that  would  classify  whether  sample  pairs  were  related  or  not.               
While  samples  from  the  control  cohort  were  only  considered  related  when  they  were  from  the                
same  subject,  in  the  rCDI  cohort  relatedness  was  additionally  indicated  between  samples  from              
post-FMT  patients  and  their  donors,  as  well  as  post-FMT  patient  pairs  from  distinct  clinical  cases                
if  they  were  treated  with  the  same  stool  donation  or  stool  from  the  same  donor  subject.  Hold-out                  
data  was  used  to  test  the  classifiers,  including  calculation  of  the  precision-recall  (tidymodels)  and               
receiver   operating   characteristic   (ROC)   curves   (plotROC)   and   their   statistics.  

SameStr   Comparison   of   Nucleotide   Variant   Profiles  
We  implemented  SameStr  to  facilitate  the  comparison  of  nucleotide  variant  profiles  presented  in              
this  analysis.  The  program  builds  on  previously  published  tools  such  as  the  concept  of               
StrainPhlAn  but  extends  analysis  of  MetaPhlAn  markers  beyond  a  consensus-based  approach  by             
extracting  all  four  nucleotide  alleles  from  sequence  alignments.  Generated  SNV-Profiles  are  in             
numpy  format  and  can  be  used  as  input  for  strain  composition  modelling  and  other  analyses.  The                 
SameStr  program  and  further  documentation  will  be  made  available  at  github            
https://www.github.com/danielpodlesny/ SameStr .gi t.  
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Analysis   Code   and   Shotgun   Metagenomics   Sequence   Data  
R  Markdown  notebooks  and  additional  code  for  the  reproduction  of  presented  figures  will  be  made                
available  at https://www.github.com/danielpodlesny/fmt_rcdi.git . All  shotgun  metagenomic  data        
from  the  rCDI  Study  Cohort  were  deposited  and  are  available  from  the  European  Nucleotide               
Archive   under   accession   PRJEB39023.   
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Figure  S1.  Schematic  of  SameStr  workflow. SameStr  has  been  implemented  modularly,  including  optional              
wrapper  functions  for  quality  preprocessing  and  alignment  of  WGS  reads  to  species-specific  MetaPhlAn              
markers  (align),  functions  for  the  conversion  to  nucleotide  variant  profiles  (convert),  extraction  of  markers  from                
genome  isolates  (extract),  sample  and  reference  pooling  (merge),  extensive  global,  per-sample,  marker,  and              
position  filtering  (filter)  and  comparison  of  SNV-Profiles  (compare)  based  on  maximum  variant  profile  similarity               
(MVS)  or  consensus  similarity  (CVS).  SameStr  outputs,  including  (summarize)  tables  denoting  species             
alignment  similarity  and  overlap,  as  well  as  co-occurrence  of  taxa  at  distinct  taxonomic  levels  for  all  pairs  within                   
the  sample  and  reference  pool,  can  be  used  for  strain  tracking  across  biological  samples,  network  analyses,                 
WGS   quality   control,   or   as   input   for   probabilistic   strain   composition   modelling.   
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Figure  S2.  Extends  Figure  3.  Phylogenetic  resolution  of  marker  sequences  used  for  SameStr  and  Strain                
Finder. (A)  Whole-genome  average  nucleotide  identities  (fastANI)  of  458  bacterial  genomes  from  20  of  the                
most  abundant  and  prevalent  species  in  the  dataset  strongly  correlate  with  similarities  inferred  from               
marker-gene  based  sequences  (MetaPhlAn2).  Contours  from  a  two-dimensional  density  kernel  highlight            
multimodal  distribution  with  peaks  at  97.5%,  99.0%  and  above  99.9%  sequence  similarity. (B)  Strains  inferred                
with  Strain  Finder  using  AMPHORA  genes  are  widely  shared  across  unrelated  sample  populations.  To  restrict                
the  evaluation  of  shared  strains  only  to  strains  called  with  high  confidence,  Strain  Finder  abundance  tables                 
were  filtered  to  remove  strains  below  minimum  relative  abundance  thresholds  in  multi-strain  species              
populations   (0%,   0.5%,   5%,   50%).  
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Figure  S3. Extends  Figures  4  and  5.  Microbial  tracking  across  individual  metagenomic  samples  on  the                
species  (top)  and  species  +  strain  level  (bottom)  of  (A)  healthy  controls  and  (B)  FMT-treated  rCDI                 
patients.  (A) Healthy  adults  from  the  reference  (Control)  cohort  harbor  a  core  microbiota  of  persisting  strains                 
and  species  (insufficient  sequencing  depth  for  strain  calls)  that  are  shared  between  fecal  metagenomes               
sampled  up  to  one  year  apart. (B) Donor-derived  strains  and  species  (exclusively  shared  with  donor  but                 
insufficient  resolution  for  strain  prediction)  account  for  large  and  stable  relative  abundances  across  all               
post-FMT   patient   samples,   whereas   contributions   of   recipient-derived   strains   are   comparatively   smaller.  
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Figure  S4.  Extends  Figure  5. Predicting  Donor  Strain  Engraftment  in  rCDI  Recipients  after  FMT.  (A)  The                 
frequencies  of  species  (dark  blue)  and  strain  (light  blue)  persistence  in  healthy  individuals  and  rCDI  recipients,                 
and  of  donor  species  (dark  green)  and  strain  (light  green)  engraftment  in  post-FMT  patients,  differ  between                 
bacterial  species,  with  retained  recipient  species  and  strains  mostly  being  classified  as  oral  and/or               
oxygen-tolerant  species  (see  also  Table  S5).  Newly  detected  species  and  strains  are  shown  in  dark  and  light                  
yellow,  respectively.  Species  fractions  indicate  insufficient  resolution  for  strain  prediction. (B) The  same  species               
that  are  represented  by  frequently  persisting  strains  in  healthy  individuals  are  also  represented  by  strains  that                 
frequently  engraft  from  donors  in  rCDI  patients  after  FMT.  Donor  strains  from  species  that  have  a  high  relative                   
abundance  in  the  donor (C)  or  a  high  donor-to-recipient  relative  abundance  ratio (D)  are  likely  to  engraft  in                   
rCDI   patients   after   FMT.  
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Figure  S5.  Extends  Figure  6.  Metagenomes  Associated  with  Donor  MGH03D  Show  a  Distinct  Functional               
Profile. Hierarchically  clustered  heatmap  of  functional  pathways  (sPLS-DA  of  clr-transform  relative  pathway             
abundances)  that  distinguish  MGH03D  and  MGH03D-treated  post-FMT  patients  from  all  other  donor  and              
post-FMT   patient   samples.  
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Figure  S6.  SameStr-based  strain  co-occurrence  networks  identify  potentially  mislabelled  samples,           
demonstrating  applications  for  microbiome  projects  quality  control  of  metagenomic  shotgun           
sequencing  data.  (A)  Samples  from  16  cases  published  by  Louis  et  al.  from  our  control  cohort  exhibited                  
extensive  within-case  but  not  between-case  strain  sharing,  with  the  exception  of  AS64_24  and  AS66_24,               
suggesting  that  these  samples  might  have  been  mislabeled. (B)  The  MGH03D-associated  sample  network              
shows  that  post-FMT  (yellow)  but  not  rCDI  (blue)  samples  from  different  cases  (shown  as  numbers)  share                 
multiple  strains  with  three  different  samples  from  donor  MGH03D  (green),  with  the  exception  of  one                
supposedly  pre-FMT  sample  (FMT15).  This  sample  shares  15  strains  with  MGH03  donor  samples  and  exhibits                
alpha  and  beta-diversity  compositions  comparable  to  other  post-FMT  samples  (data  not  shown).  It  was               
collected  on  the  day  of  the  FMT  procedure  and  might  have  been  accidentally  mislabelled  as  a  pre-FMT  sample                   
(Smillie,   personal   communication).  
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