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Abstract

The current SARS-COV-2 epidemic is associated with nearly 1 million estimated deaths and responsible
for multiple disturbances around the world, including the overload of health care systems. The timely
prediction of the medical needs of infected individuals enables a better and quicker care provision for the
necessary cases, supporting the management of available resources.

This work ascertains the predictability of medical needs (as hospitalization, respiratory support, and
admission to intensive care units) and the survivability of individuals testing SARS-CoV-2 positive consid-
ering a cohort with all infected individuals in Portugal as per June 30, 2020. Predictions are performed at
the various stages of a patient’s cycle, namely: pre-hospitalization (testing time), pos-hospitalization, and
pos-intensive care. A thorough optimization of state-of-the-art predictors is undertaken to assess the ability
to anticipate medical needs and infection outcomes using demographic and comorbidity variables, as well
as onset date of symptoms, test and hospitalization.

1 Introduction

The novel coronavirus (COVID-19) is a disease caused by the Severe Acute Respiratory Syndrome Coron-
avirus 2 (SARS-CoV-2) infection, transmissible person-to-person and associated with acute respiratory com-
plications in severe cases [5, 24]. The main symptoms of patients infected are fever, cough and tiredness,
others are asymptomatic [10]. SARS-COV-2 pandemic presents an important threat to global health and is
directly responsible for many deaths. Since the first outbreak (December 2019) in Wuhan, China, the number
of confirmed patients infected worldwide has exceeded 30 million cases and nearly 1 million people have
died from COVID-19'. Current literature has shown that most common of the infected patients with specific
comorbidities/preconditions (e.g. hypertension, respiratory problems, diabetes) and old age are expected to
develop a more severe response to the infection, and may consequently need longer hospitalizations and
intensive care [18, 16, 22]. Strict social confinement efforts to decrease the COVID-19 RO value (average
number of individuals infected by each infected person) and guarantee the optimal use of equipment and beds
at normal, continuous and intensive care units (ICU). However, although the public health responses aimed
at delaying the spread of the infection, several countries such as United States, Brazil, Italy and India have
been faced with severe healthcare crisis.

Without effective antiviral drugs and a vaccine, effective prognoses of COVID-19 disease are required.
Statistical and computational models could assist clinical staff in triaging patients at high risk for respiratory
failure to better guide the allocation of medical resources. Recently, several predictive models ranging from
statistical and score-based systems to more recent machine learning models have been proposed in response
to COVID-19. Guan et al. [11] proposed a Cox Regression Model to infer potential risk factors associated
with series adverse outcomes in patients with COVID-19. Univariate and Multivariate Logistic Regression
models have been used to determine risk factors associated with mortality [9]. Scoring systems have been
proposed to predict COVID-19 patient mortality but are limited by small sample sizes [17, 12]. Other statis-
tical approaches have also been emerging to aid prognostics [1, 8, 13]. Complementarily, machine learning
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(ML) methods offer the possibility of modeling more complex data relationships, generally yielding powerful
capabilities to predict outcomes of infectious diseases in medical practice [3, 14]. To this end, classification
and regression models have been proposed to risk stratification of patients and screen the spread of COVID-19
[20, 6, 2]. Despite the inherent potentialities of ongoing efforts, the exiting studies in the context of COVID-
19 are limited by the size of available cohorts, generally neglect the predictability of medical needs (instead
the focus is commonly placed on measurable disease factors, early detection of infection, and mortality risk
prediction [23, 4, 21]), and no one comprehensively targets the Portuguese population up to date.

This study provides a structured view on the predictability of hospitalizations, ICU internments, respira-
tory assistance needs and survivability outcomes using a retrospective cohort encompassing all individuals
having tested SARS-CoV-2 positive at Portugal as per June 30, 2020.

To this end, and considering demographic, co-morbidity and care-provision variables collected for the
infected individuals, an assessment methodology is conducted whereby state-of-the-art predictive models are
hyperparameterized and robustly evaluated in order to assess the upper bounds on the predictive performance
for each one of the targeted variables. In addition, whenever applicable, this analysis is extended towards
the various stages of a patient’s cycle: pre-hospitalization (testing time), after hospitalization, and after ICU
internment. The gathered results pinpoint the relevance of the optimized predictors as good candidates to
support care decisions for the Portuguese population.

The work is structured as follows. Section 2 presents major results and implications on the predictabil-
ity of healthcare needs and outcomes for the Portuguese case. Section 3 details the undertaken validation
methodology. Finally, Section 4 provides concluding remarks from the conducted study.

2 Results and discussion

Results on the predictability of the hospitalization needs (section 2.2), ICU internments (section 2.3), respi-
ratory assistance (section 2.4) and outcome (section 2.5) of infected individuals at Portugal — as of June 30,
2020 — are gathered and discussed below.

Data source. A retrospective cohort (from February to June 30, 2020) of confirmed COVID-19 patients in
Portugal was used for this study. The anonymized dataset was provided from Dire¢do-Geral da Saide (DGS).
The gathered data, termed covid19-DGS database, contains information pertaining to the demographic, clin-
ical patient characteristics and preexisting conditions.

Ethical considerations. The COVID-19 dataset was provided by DGS under a collaboration in the context
of the score4COVID research project. The conducted tasks along the score4COVID project were further
validated by the Ethical Committee of the FCT-NOVA University.

2.1 Cohort study

The target cohort consists of a total of 38.545 individuals with SARS-CoV-2 positive, which encompasses
until June 30, 2020: 17.046 recoveries (SARS-CoV-2 negative after positive testing) and 1.155 deaths. Within
the target population, we find 4.327 hospitalizations, and 253 internments in the ICU. Among ICU intern-
ments, thee are 82 recoveries and 61 deaths. Regarding the needs for respiratory support, we find a total
of 180 individuals that undertook assisted ventilation, 292 individuals submitted to oxygen therapy, and 9
individuals with alternative modes of respiratory support (e.g. extracorporeal membrane oxygenation).

The major classes of comorbidities monitored are neoplasm, diabetes, asthma, pulmonary, hepatic, hema-
tological, renal, neurological, neuromuscular and immunodeficiency conditions. The representatitivity of
individuals with one or more comorbidities, as well as their impact on survivability, are depicted in Figure 2.
Figure 1 further provides additional statistics, including the sex and age distributions for the target popula-
tion, and the average number of days from onset symptoms (traced by the public health line for COVID-19)
to positive testing and hospitalization.

2.2 Hospitalization

Figure 3 provides results on the ability to predict the need for an individual to be hospitalized once tested as
SARS-CoV-2 positive, when considering the: i) demographic group (age and gender), ii) co-morbidity fac-
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Figure 1: Cohort statistics: a-b) demographic distribution of infected individuals with known outcome — death and
recovery — and hospitalized (containing both cases with and without a known outcome); c) average number of days
between care stages (plotted negative bin corresponds to hospitalizations before SARS-CoV-2 testing).
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Figure 2: Cohort statistics: a) distribution of individuals with one or more comorbidities among deaths, recovered cases
and hospitalizations; b) association between individual comorbidities and survivability outcomes..

tors. Co-morbidity factors are categorized in accordance with the presence/absence of kidney, asthma, lung,
cancer, neuromuscular, diabetes, HIV, cardiac, and pregnancy conditions. Understandably, individuals with-
out SARS-CoV-2 negative testing after infection were excluded from this analysis. The data preprocessing,
classifier hyperparameterization and validation methodology are detailed in section 3.

Generally, we observe that over 75% of the hospitalization needs can be identified at the SARS-CoV-2
testing time. This level of recall/sensitivity is observed at the expense of a precision around 50%, mean-
ing that half of the predicted hospitalization needs may not be observed in practice. Multilayer percepton
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Figure 3: Predictability of hospitalizations for individuals testing SARS-CoV-2 positive. Recall, precision and F1 for
the best predictors in F1 (left) and recall (right) scores on validation set after 10CV hyperparameterization.
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networks and logistic regressors were the best performing classification models according to F1-score and re-
call, respectively. These results provide empirical evidence towards the role of these predictors in supporting
monitoring decisions.

2.3 ICU internment

Figure 4 assesses the ability to anticipate intensive care needs for infected individuals at two times: a) before
hospitalization, and b) after hospitalization. To this end, section 3 methodology was pursued considering
demographic factors, co-morbidity factors, and the time-to-hospitalization for hospitalized individuals. Indi-
viduals without SARS-CoV-2 negative testing after infection are excluded.

The predictability of ICU needs are less satisfactory for both pre- and pos-hospitalization testing scenar-
ios. We hypothesize that the difficulty of predicting ICU needs is partially related with the small number of
individuals with ICU internments in our dataset, together with the presence of missing values associated with
ICU internment needs for most individuals. Even though we can achieve a recall of 92.6% with Gradient
Boosting (XGBoost) in a Pos-Hospitalization setting, it comes with the cost of a quite low precision. Still,
this classification model is suggested to support monitoring decisions at the hospital bedside, as its specificity
is still considerably high.
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Figure 4: Predictability of ICU internment. Results for the best F1 predictor (left) and recall predictor (right).

2.4 Respiratory support

Figure 5 assesses respiratory assistance needs for hospitalized individuals with SARS-CoV-2, considering
three assistance modes: i) ventilation support, ii) oxygen therapy, and iii) combined ventilation and oxygen
therapies. To this end, section 3 methodology was pursued considering demographic, co-morbidity and time-
to-hospitalization factors. Individuals without SARS-CoV-2 negative testing after infection were excluded
from this analysis. As respiratory support is a multiclass variable, we now consider different performance
evaluation by focusing on the: i) recall for each major class (ventilation, oxygen and non-required support),
and ii) precision of individuals with oxygen or ventilation assistance.

RandomForests can attain a satisfactory identification of hospitalized individuals that may require respi-
ratory support in the future, generally providing recalls for each assistance mode above 60% at the cost of a
40% precision. According to the conducted methodology, they are pinpointed as a good candidate to support
in-hospital care decisions.
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Figure 5: Predictability of respiratory support needs — assisted ventilation, oxygen therapy and combined support — for
hospitalized individuals with SARS-CoV-2. Performance of the best F1 predictor (left) and recall predictor (right).

2.5 Survivability (outcome)

Finally, Figure 6 provides an analysis of the ability to predict the outcome (recovered versus death) for
individuals with SARS-CoV-2 infection at three different times: i) before hospitalization (testing time), ii)
after hospitalization, and iii) after ICU internment when applicable. To this end, we preserved the input
variables and validation methodology (section 3) considered in previous scenarios.

Our results show a high ability to identify death outcomes, although at a cost of wrongly classifying
two thirds of individuals susceptible to death. In the pos-Hospitalization scenario we achieve more balanced
results, with both precision and recall around 75% using Gradient Boosting. The introduction of the intensive
care variable ends up hampering results since it offers both a view on acute needs as well as continuous care
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Figure 6: Predictability of the survivability (outcome) of infected individuals before hospitalization, after hospitalization
and after ICU interment. Results for the best F1 predictor (left) and recall predictor (right).
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3 Methods

Complete subpopulations from the target cohort are produced for each target variable by guaranteeing the
presence of all individuals undertaking the target form of care (hospitalization, ICU internment, respiratory
support) as well as all remaining individuals with recovery-or-death outcomes. After this data curation step,
we proceed with the optimization of data preprocessing options and classifiers’ selection hyperparameters for
each of the target variables separately.

To this end, we applied a nested 10-fold cross-validation methodology, whereby we first create train-test
partitions (outer cross-validation) to assess the performance of an optimized classification method, and within
each training fold we further create train-test partitions (inner cross-validation) for hyperparameterizing the
classifier under assessment. This methodology guarantees that all observations are used to assess the final
performance and prevents biases as hyperparameterization takes place within each training folds.

Within each inner train-test fold, Bayesian Optimization (BO) [19] is applied to find the hyperparameters
that best fit the pipeline. The optimization measures are:

— F1-Score and recall for binary classes; and
— Cohen-Kappa and average class recall for target variables with more than 2 classes (respiratory support).

The selected views imply that each target variable has two different sets of optimized classifiers (as shown
in Figures 3 to 6): one that aims to weight recall-precision views and other optimized towards the true positive
rate irrespective of the positive predictive value (precision).

The allowed preprocessing options are: imputation of missing values using median-mode imputation,
KNNImputer or none; class balancing using subsampling, oversampling, SMOTE or none; and normalization
of real-valued variables using standardization, scaling or none. The selected classifiers are: Bernoulli Naive
Bayes, Gaussian Naive Bayes, K-Nearest Neighbors, Decision Tree, Random Forest, XGBoosting, Logistic
Regression, Multi-Layer Perceptron. We considered the implementations provided in scikit-learn [15] and
xgboost [7] packages in python.

For each classifier, all the supported parameters in scikit-learn were subjected to hyperparameterization.
Regarding the Multi-Layer Perceptron, we placed upper limits on the number of hidden layers (three) and
nodes per layer (twenty) given the low-dimensionality nature of the target dataset. The hyperparameters were
subjected to a total of 50 iterations.

4 Concluding remarks

This work offers a discussion on the predictability of hospitalization needs, ICU internments, respiratory
assistance and survivability outcome of individuals infected with SARS-CoV-2 at Portugal as of June 30,
2020. A retrospective cohort with all confirm COVID-19 cases since February, encompassing demographic
and co-morbidity variables, is considered as the target population to this end. This study has some inherent
limitations: i) the number of variables for the outcomes of interest were limited (e.g. the body mass index
is missing) and ii) further external validation is required. However, we can anticipate that as more data are
made available, we will be able to improve the performance of the models.

The gathered results for the given cohort study reveal that: 1) over 75% of hospitalization needs can be
identified at the SARS-CoV-2 testing time (with >50% precision); 2) ICU needs are generally less predictable
at both pre- and pos-hospitalization stages under the given cohort; 3) respiratory assistance needs (including
ventilation support, oxygen therapy, and combined ventilation-oxygen support) achieve recall levels above
60% (with >40% precision); 4) death risk along different stages (testing time, after hospitalization and after
ICU internment) has the highest degree of predictability.

The predictive models yielding better accuracy performance were associative classifiers, particularly XG-
Boost and RandomForests, neural networks with hyperparameterized architectures and logistic regressors;
with the optimal choice varying in accordance with the target variable and evaluation measure.

As future work, and in collaboration with DGS, our predictors are expected to be integrated within a
clinical decision support system to be provide to the National Health Service (SNS).

The conducted study pinpoint the relevance of the proposed predictive models as good candidates to
support medical decisions for the Portuguese population, including both monitoring and in-hospital care
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decisions. Knowing the most probable outcomes along the lifecycle of an SARS-CoV-2 infected individual
can guide medical teams to act quickly near more vulnerable patients.
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