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ABSTRACT 
Background: Sleep apnoea is characterised by periods of halted breathing during sleep. Despite its 
association with severe health conditions, the aetiology of sleep apnoea remains understudied, and 
previous genetic analyses have not identified many robustly associated genetic risk variants. 
Methods: We performed a genome-wide association study (GWAS) meta-analysis of sleep apnoea 
across five cohorts (NTotal=523,366), followed by a multi-trait analysis of GWAS (MTAG) to boost 
power, leveraging the high genetic correlation between sleep apnoea and snoring. We then adjusted 
our results for the genetic effects of body mass index (BMI) using multi-trait-based conditional & 
joint analysis (mtCOJO) and sought replication of lead hits in a large cohort of participants from 
23andMe, Inc (NTotal=1,477,352; Ncases=175,522). We also explored genetic correlations with other 
complex traits and performed a phenome-wide screen for causally associated phenotypes using the 
latent causal variable method. 
Results: Our MTAG analysis uncovered 49 significant independent loci associated with sleep 
apnoea risk. Twenty-nine variants were replicated in the 23andMe cohort. We observed genetic 
correlations with several complex traits, including multisite chronic pain, diabetes, eye disorders, 
high blood pressure, osteoarthritis, chronic obstructive pulmonary disease, and BMI-associated 
conditions. 
Conclusions: Our study uncovered multiple genetic loci associated with sleep apnoea risk, thus 
increasing our understanding of the aetiology of this condition and its relationship with other 
complex traits. 
Keywords: Sleep apnoea, snoring, genetics, GWAS.  
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INTRODUCTION 
Sleep apnoea is a disorder characterised by episodes of halted breathing during sleep, which leads 
to frequent arousal and intermittent hypoxia1. The most common type of sleep apnoea is obstructive 
sleep apnoea, which affects 9 - 55% of adults and 1 - 9.5% of children2–5. Sleep apnoea is 
predominantly caused by a reduced function of the pharyngeal dilator muscles, brought about by 
the onset of sleep, causing the collapse of the upper airways and subsequent hypopnea or apnoea6,7.  
 
The relaxation of the pharyngeal dilator muscles is influenced by several factors, including body 
mass index (BMI), male sex, older age, craniofacial or upper-airway abnormalities, smoking, 
alcohol consumption, cardiovascular disease, and family history of sleep apnea8. Furthermore, sleep 
apnoea can lead to mental and physical fatigue, which is associated with an increase in the risk of 
motor accidents9, and a decrease in mental well-being and overall quality of life10. In addition, 
sleep apnoea has also been associated with an increased risk of hypertension11, stroke12 and 
increased levels of reactive oxygen species in blood, which increase oxidative stress in the 
body13,14. 
 
Obesity (i.e., commonly determined as BMI > 30)15 is correlated with a higher sleep apnoea risk.16 
In fact, BMI is one of the most important modifiable risk factors for sleep apnoea. Obesity 
increases the risk for sleep apnoea through the aggregation of fat deposits in the upper respiratory 
tract, which narrows the throat and induces a decrease in muscle activity, potentially leading to 
hypoxic and apnoeic episodes that lead to SA16. Therefore, it is essential to consider the potential 
influences of BMI while studying SA. 
 
The heritability of sleep apnoea is estimated to be between 35 and 75%17,18,  but familial 
aggregation seems to be partially independent of bodyweight19, suggesting an independent germline 
component. Despite an estimated population prevalence of at least 5%, many sleep apnoea cases go 
undiagnosed until other related diseases appear.20,21 Therefore, an increased understanding of the 
genetic architecture of sleep apnoea could help generate risk prediction models, prompting earlier 
detection and providing an essential groundwork for developing interventions and therapies. In 
addition, having information on the effect of genetic variants on sleep apnoea risk could enable 
inference of its causal relationship with other conditions using methods such as Mendelian 
randomisation22. Although some candidate gene studies for sleep apnoea have yielded a few 
putatively associated genes23,24, genome-wide association studies (GWAS) have failed to replicate 
those associations25–27. GWAS have identified very few genome-wide significant loci robustly 
associated (i.e., with evidence of replication in an independent cohort) with sleep apnoea to date. 
 
Sleep apnoea is likely a highly polygenic trait, with many variants of small effect size contributing 
to the genetic liability of developing this condition. Thus, most studies with modest sample sizes 
will be underpowered to identify the majority of these risk variants and are susceptible to false-
positive associations. Furthermore, the number of diagnosed cases of sleep apnoea within existing 
large population cohorts is low. In a sample of 500,000 individuals, the expected number of sleep 
apnoea cases (assuming a conservative prevalence of ~5%) would be ~25,000. However, in the UK 
Biobank (~500,000 individuals), only ~8,000 sleep apnoea cases have been recorded. That is likely 
explained by the fact that sleep apnoea is recognised as an underdiagnosed condition because those 
affected are unable to gain awareness about their condition or may confuse it with habitual 
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snoring20,21. Underdiagnosis further reduces power as many real cases may be labelled as 
unaffected controls in a standard analysis. Thus, combining large samples through meta-analysis 
and replicating findings in large, independent studies are essential steps to uncovering reliable 
results.  
 
Here, we conducted a GWAS meta-analysis of sleep apnoea across five cohorts. Then, we 
employed Multi-trait Analysis of Genome-Wide Association Summary Statistics (MTAG) to 
combine our results with a snoring GWAS meta-analysis across five cohorts to boost statistical 
power by leveraging the high genetic correlation between sleep apnoea and snoring28. We also 
performed additional sensitivity analyses to control for the genetic effects of BMI and identify loci 
associated with sleep apnoea independently from BMI. We sought to replicate lead SNPs in an 
independent sample from 23andMe, Inc. and further explored the genetic underpinnings of sleep 
apnoea through gene-based tests and genetic correlation analyses. Finally, we constructed 
polygenic scores and predicted sleep apnoea using a leave-one cohort-out (LOO) cross-validation 
framework. Our analyses can be interpreted as a proxy for obstructive sleep apnoea, given its 
higher prevalence than central sleep apnoea3,29 
 

METHODS 
Sample information and phenotype ascertainment 
This study analysed GWAS data from five cohorts from the UK (UK Biobank; UKB), Canada 
(Canadian Longitudinal Study of Aging; CLSA)30,31, Australia (Australian Genetics of Depression 
Study; AGDS), the USA (Partners Healthcare Biobank), and Finland (FinnGen). The total sample 
size for each cohort and the number of cases and controls are listed in Table 1. For each cohort, 
sleep apnoea cases were defined using participant-reported diagnosis or ICD diagnostic codes 
available in electronic health records (ICD-9: 327.23 and ICD-10: G47.3). In CLSA and AGDS, 
SA was defined based on the answer to the item “Stop breathing during sleep” (See 
Supplementary Methods for individual cohort details). Self-reported snoring cases were excluded 
from the analyses for the sleep apnoea GWAS across the UKB, CLSA and AGDS cohorts. An 
overview of the analysis pipeline used for sleep apnoea discovery analysis is available in 
Supplementary Figure S1. 
 
GWAS 
All GWA studies included the following covariates: age, sex, batch (where relevant), and genetic 
ancestry principal components derived from genotype data. Standard quality control filters were 
applied at both the sample and variant levels. Variants were excluded from the analyses if they had 
a low minor allele frequency (MAF<0.01) or low imputation quality score (INFO<0.6). Individuals 
were excluded based on excess missingness, heterozygosity, or evidence of a deviation from 
European ancestry based on principal genetic components. For each cohort, a GWAS was 
performed using logistic regression models and including random effects to account for cryptic 
relatedness where relevant (Supplementary Methods). For the UKB snoring GWAS, we used the 
summary statistics from our previously published GWAS for snoring32. We obtained FinnGen 
GWAS results for sleep apnoea and snoring from the open-access FinnGen resource 
(http://r3.finngen.fi/). 
 
GWAS meta-analyses 
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Sample-size weighted (P-value-based) meta-analyses for sleep apnoea and snoring were performed 
(separately for each phenotype) across the five cohorts described above using METAL (v2020-05-
05).33 Studies were weighted according to their effective sample size as described by the equation: 
���� � 4/�1/������ � 1/����������, as recommended for studies with different 
levels of case-control imbalance (Supplementary Methods). 
 
Multi-trait GWAS analyses 
We used Multi-trait Analysis of Genome-Wide Association Summary Statistics (MTAG) to boost 
the statistical power for discovering sleep apnoea-associated loci. MTAG performs a generalised 
meta-analysis of GWAS summary statistics for different but high genetically-correlated traits while 
accounting for potential sample overlap28. For this study, we performed MTAG analyses combining 
our sleep apnoea and snoring meta-analyses. That is possible given the high genetic correlation 
between these traits (rg ~ 0.8)32 and the observation that snoring is one of the primary symptoms of 
SA, the most common type of sleep apnoea7. 
 
BMI adjustment  
Given the clear relationship between sleep apnoea, snoring, and BMI, we performed a secondary 
analysis adjusting our GWAS results (both the meta-analysis and the MTAG) for the effect of BMI. 
To adjust for BMI while avoiding biases due to collider bias (i.e., the emergence of a spurious 
association between a pair of variables when a common outcome is modelled as a covariate)34, we 
used multi-trait-based conditional and joint analysis (mtCOJO)35,36. 
 
23andMe replication GWAS 
We sought to replicate variants identified in the discovery phase in an independent sample of 
participants from the 23andMe cohort (N=1,477,352). Cases were ascertained based on the 
question “Have you ever been diagnosed with, or treated for any of the following conditions?” with 
one of the choices being “Sleep apnoea” (Yes = 175,522; No = 1,301,830). Methods and results 
from this GWAS have been presented at the 2018 American Society for Human Genetics annual 
conference37. Briefly, a logistic regression GWAS was performed using sleep apnoea as the 
dependent variable while adjusting for sex, age, BMI, genetic principal components, and genotype 
array. Participants provided informed consent and participated in the research online, under a 
protocol approved by the external AAHRPP-accredited IRB, Ethical & Independent Review 
Services (E&I Review). Only unrelated participants of European ancestry who provided consent 
were included in the analysis. We defined evidence of replication after correcting for the number of 
significant variants with data available for replication per GWAS analysis. That is p<0.01 for the 
sleep apnoea meta-analysis, p<0.0016 for the sleep apnoea plus snoring MTAG and p<0.002 for the 
sleep apnoea plus snoring MTAG adjusted for BMI. 
 
Gene-based association tests and eQTL colocalisation 
We used the "set-based association analysis for human complex traits" fastBAT method, which 
performs a set-based enrichment analysis using GWAS summary statistics while accounting for 
linkage disequilibrium (LD) between SNPs38. Statistical significance was defined using the 
Bonferroni method for multiple testing correction (p<2.07e-6). Genes identified as statistically 
significant were further assessed for expression quantitative trait loci (eQTL) colocalisation using 
the COLOC39 package in R. Briefly, we integrated our GWAS summary data with cis-eQTL data 
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from whole blood, oesophagus, adipose and lung tissue from GTEx V840 to estimate the posterior 
probability that GWAS signals co-occur with eQTL signals while accounting for LD structure. This 
method estimates the posterior probabilities (PP) for five different scenarios. The scenario of 
interest is colocalisation due to associations with both traits through the same SNPs (PP4). A 
threshold of PP4>=0.8 was considered as evidence for colocalisation of GWAS signals and eQTL 
signals at the region of interest (Supplementary Methods). 
 
S-MultiXcan-based eQTL integration 
Integration of eQTL with GWAS results interrogates whether the associations observed are 
consistent with changes in gene expression mediating the trait under study. This study integrated 
our GWAS results with eQTL data from GTEx using S-MultiXcan,41 as implemented in the 
Complex Traits Genetics Virtual Lab (CTG-VL). This method employs a multiple regression of the 
phenotype on the predicted gene expression across multiple tissues based on eQTL data. When 
using only GWAS summary statistics, single-tissue associations are performed using S-PrediXcan, 
and joint effects from the single-tissue results are estimated using an approximation similar to that 
of the conditional and joint multiple-SNP analysis42. Contrary to the eQTL colocalisation described 
above, this analysis employs the whole GWAS summary statistics and is not restricted only to 
genes identified using fastBAT or other gene-based tests.     
 
Heritability and genetic correlations 
We used LD score regression to estimate the SNP-based heritability (hSNP

2) for the sleep apnoea 
meta-analysis. Given that samples were not specifically ascertained for sleep apnoea, we assumed 
the overall sample and population prevalence for sleep apnoea to be the prevalence estimated 
across cohorts (0.05) which is consistent with reported epidemiological estimates2. Genetic 
correlations (rg) between sleep apnoea and 1,522 phenotypes (with available GWAS summary 
statistics) were estimated using bivariate LD score regression in CTG-VL43 based on a common set 
of HapMap3 variants. The Benjamini-Hochberg FDR at 5% was used to define statistical 
significance. 
 
Polygenic risk scoring 
To assess the external validity of the GWAS, we performed polygenic-based prediction on a target 
sample of 9,221 unrelated Australian adults from the Australian Genetics of Depression Study44 
(AGDS) with complete data. Briefly, the meta- and MTAG analyses were repeated, leaving out the 
AGDS cohort to avoid sample overlap. We employed the SBayesR method to obtain the 
conditional effects of the studied variants, thus avoiding inflation due to correlated SNPs in LD45. 
SBayesR estimates the SNP multivariate effect sizes using GWAS summary statistics and SNP 
correlations using an LD-matrix. Here we used the LD-matrix for 2.8M variants reported in Lloyd-
Jones and Zeng et al. 201926,45, which is publicly available (URL: 10.5281/zenodo.3350914). 
SBayesR parameters included 4 mixture components (starting values = 0.95,0.01,0.02,0.01) with 
default scaling factors (0,0.01,0.1,1), chain length of 25000 and burn-in of 5000. The SNP 
conditional effect sizes obtained from SBayesR were then used for polygenic scoring using 
HRCr1.1 imputed genotype dosage data in plink v1.9. PRS were calculated by multiplying the 
effect size of a given risk allele (obtained from the GWAS summary statistics) by the imputed 
number of risk alleles (using dosage probabilities) present in each individual. SNP scores were then 
summed across all loci. The association between PRS and sleep apnoea in AGDS was assessed 
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using a logistic regression model (python statsmodels). SAPRS was the predictive variable of 
interest, with age, sex and the first ten genetic principal components included as covariates in 
Nagelkerke’s pseudo R2. Finally, binary classifiers based on logistic regression were built, 
including age and sex (base model) or age, sex and the PRS of interest (SAPRS or 
SAmtagSnoringPRS). These classifiers were used to assess the polygenic predictive ability further. 
The sample was divided randomly into training and testing datasets of equal sizes. Then, the 
classifier’s ability to predict sleep apnoea was assessed using the area under the receiver operating 
characteristic (ROC) curve. To avoid potential biases from the random division of training and 
testing datasets, the procedure was repeated 100 times to estimate a mean area under the curve 
(Supplementary Methods). 
 
Latent Causal Variable analysis 
The latent causal variable (LCV) method leverages GWAS summary statistics to estimate whether 
a causal association can explain a genetic correlation between traits rather than horizontal 
pleiotropy (i.e., shared genetic pathways)15,46–48. LCV conceptually relies on a latent variable L, 
assumed to be the causal factor underlying the genetic correlation between both traits.15,46–48 LCV 
estimates the genetic causality proportion (GCP). A higher absolute GCP value indicates more 
evidence of a causal association among a pair of genetically correlated phenotypes. In contrast, a 
GCP value of zero would imply that horizontal pleiotropy underlies the genetic correlation between 
the phenotypes. However, the LCV method will be biased towards the null (a GCP value of 0) if a 
bi-directional association exists between traits. An absolute value for GCP < 0.60 indicates only 
partial genetic causality. Multiple testing correction was applied using Benjamini-Hochberg’s False 
Discovery Rate (FDR < 5%). We performed a phenome-wide hypothesis-free LCV analysis to 
identify traits causally associated with sleep apnoea. Given the limitations of the LCV method (see 
Discussion), we consider this a hypothesis-generating approach. These hypotheses should be tested 
in follow-up studies that include relevant Mendelian randomisation analyses and a synthesis of the 
available literature on the association between sleep apnoea and the trait of interest 
 
 

RESULTS 
GWAS meta-analysis 
The prevalence of both sleep apnoea and snoring showed some variation across the five cohorts 
included in this study (Table 1 and Supplementary Material). Nonetheless, all the genetic 
correlation estimates were high, albeit with large standard errors (Supplementary Table S1). Our 
meta-analysis identified five independent (LD r2<0.05) genome-wide significant (p<5e-8) loci 
associated with sleep apnoea (Figure 1a). The signals spanned chromosomes 5, 11, 12 and 16 near 
genes ANKRD31, STK33, BDNF, KDM2B and PRIM1 (Supplementary Figure S2). The LD-score 
regression SNP-based heritability on the observed scale was 13% (S.E.=0.087%). Using a 
transformation that is more suitable for biobank structure49, we estimate the heritability on the 
liability scale might range between 55 and 87% (based on an assumed population prevalence range 
of 9 to 55%). LD-score regression intercept suggested most inflation (�GC=1.21) was due to 
polygenic signal (intercept= 1.012, S.E.=0.009) rather than population stratification. Upon 
adjusting for BMI effects (see Methods), one new genome-wide hit on chromosome 15 was 
identified. However, the evidence of association for all other loci was reduced below genome-wide 
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significance (Figure 1a). The significant hit after adjusting for BMI was located near genes 
HDGFL3, TM6SF1 and BNC1 (Supplementary Figure S2). 
 
MTAG 
We used MTAG to boost statistical power and increase loci discovery by leveraging the genetic 
correlation between sleep apnoea and snoring. This analysis had an effective sample size of  
159,255 participants and identified 43 independent genome-wide significant loci associated with 
sleep apnoea (Figure 1b). The direction and effect sizes of the independent hits were highly 
consistent across the sleep apnoea meta-analysis and the MTAG analysis with snoring (R2>0.95 
Supplementary Figure S3). After adjusting for BMI, 25 hits were genome-wide significant; most 
overlapped with the unadjusted results (Figure 1b). We assessed whether previous genetic 
association studies of sleep apnoea or related traits25,26,50,51 align with our results and survive 
adjustment for BMI. We found some evidence of association for five of the fifteen loci assessed. 
Two of the previously reported loci showed evidence of association after adjusting for BMI 
(Supplementary Table S2)  
 
Independent sample replication 
We sought to replicate our GWAS results in an independent sample (N= 1,477,352) from 
23andMe. Notably, the 23andMe sleep apnoea replication GWAS was adjusted for BMI (see 
Methods). Overall, ten of the independent variants identified by our analyses showed evidence of 
association beyond the genome-wide significance threshold (Supplementary Table S3) in the 
replication. After multiple testing corrections, three out of the five loci for sleep apnoea meta-
analysis were replicated. Furthermore, the variant that became significant after adjusting for BMI 
was also replicated. For the sleep apnoea plus snoring MTAG, 30 out of 43 variants available in the 
23andMe dataset were replicated. Finally, 22 out of 25 variants from the sleep apnoea plus snoring 
MTAG adjusted for BMI analysis were also replicated. This higher replication rate was expected 
since the 23andMe GWAS had been adjusted for BMI (see Discussion). Overall, 29 significant 
independent loci with evidence for replication were identified (Table 2). Furthermore, there was a 
large concordance in the direction and magnitude of effect sizes between our analyses and the 
23andMe replication results (Supplementary Figure S4) and across cohorts (Supplementary 
Figures S5-S6). Due to power, replication rates, and the interest in studying the aetiology of sleep 
apnoea beyond BMI effects, we focus below on the meta-analysis, the MTAG analysis and the 
MTAG analysis adjusted for BMI. 
 
Gene-based tests and colocalisation 
The gene-based association analyses identified 22, 132 and 74 genes beyond the significance 
threshold (p<2.07e-6) for the sleep apnoea meta-analysis, the sleep apnoea plus snoring MTAG, 
and the sleep apnoea plus snoring MTAG adjusted for BMI respectively. As expected, many of 
these genes overlapped. Identified genes included DLEU1, DLEU7, MSRB3, CTSF and SCAPER 
(Supplementary Figure S7). Some of these genes were located within the same locus and in high 
LD. Thus, to identify genes linked to sleep apnoea through potential changes in gene expression, 
we performed eQTL colocalisation analyses for any of the genes mentioned above. Of the 151 
genes with available eQTL data, only 18 showed strong evidence of eQTL colocalisation with 
either sleep apnoea, sleep apnoea plus snoring or sleep apnoea plus snoring adjusted for BMI 
(Supplementary Tables S7-S9). 
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eQTL integration 
We used S-MultiXcan to integrate our GWAS summary statistics with eQTL data and identify 
genes associated with sleep apnoea through changes in predicted gene expression. These analyses 
identified 5 and 65 genes (Supplementary Table S10), for which evidence of association with 
sleep apnoea meta-analysis or sleep apnoea plus snoring MTAG reached statistical significance. 
These genes included DLEU7, PRIM1, COPZ2, SKAP1, DNAJB7, ACTBP13 and ZBTB6, among 
others. Although the results of S-MultiXcan partially overlapped those of the gene-based positional 
analysis, this approach identified four and 33 new genes which are likely associated with sleep 
apnoea through changes in gene expression. Genes with convergent evidence through gene-based 
association and S-MultiXcan include FTO, STK33, ETFA, SKAP1, MAPT, BAZ2A, DCAF16, 
MACF1, NSF, COPZ2, SP6, LACTB2, LRRC4 and HOXB3 among others (Supplementary Figure 
S7).   
 
Genetic correlations 
Bivariate LD score regression was used to assess the genetic correlation between sleep apnoea and 
other complex traits. The trait with the highest genetic correlation (rg = 0.92) with sleep apnoea was 
a sleep apnoea GWAS performed on the UK-Biobank from a public GWAS repository 
(http://www.nealelab.is/uk-biobank/); this is essentially a subset of the UK-Biobank GWAS used in 
our meta-analysis. Other genetically correlated traits (p-value < 0.05) included respiratory diseases, 
type 2 diabetes, obesity, eye disorders, stroke, depression, alcohol addiction, smoking history, and 
musculoskeletal disorders such as arthritis and spondylosis, among others (Supplementary Table 
S11-S13). The sleep apnoea meta-analysis and the sleep apnoea plus snoring analyses showed a 
highly concordant pattern of genetic correlations. While also showing overall agreement, the sleep 
apnoea plus snoring adjusted for BMI results showed lower genetic correlations with BMI-related 
traits such as obesity, diabetes and stroke (Figure 2). 
 
Polygenic risk scoring 
PRS based on either of our results were significantly associated with sleep apnoea in a leave one 
out polygenic prediction analysis. Odds ratios (OR) per standard deviation of PRS increased with 
the number of hits. For example, the meta-analysis-based PRS (SAPRS) showed an OR = 1.15 (1.08-
1.21), whereas the PRS based on the sleep apnoea plus snoring showed an OR=1.21 (1.14-1.28). A 
similar pattern was observed for variance explained and significance (Table 3). These PRS were 
significantly associated with sleep apnoea even after adjusting for BMI measures in the AGDS 
cohort (Table 3), suggesting that signals independent from BMI contribute to polygenic prediction. 
Participants in the highest PRS decile showed between 50 and 87% higher odds of reporting sleep 
apnoea than participants in the lowest decile (Figure 3a). Classifier models based on PRS showed 
prediction ability higher than a random guess for the meta-analysis. The MTAG results showed an 
even higher predictive ability than the meta-analysis alone (Figure 3b and 3c and Supplementary 
Figure S7). 
 
Predicting traits causally associated with sleep apnoea  
We used LCV to perform a hypothesis-free screening to assess whether a causal relationship can 
explain the potential genetic overlap between sleep apnoea and >400 traits and diseases. To this 
end, we employed the results of the MTAG GWAS with snoring, given its increased statistical 
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power. We did not identify any potential outcomes of sleep apnoea. Nonetheless, we identified 103 
potential causal determinants of sleep apnoea. For instance, traits that purportedly increase the risk 
for sleep apnoea, based on our analysis, included hypertension, asthma, lung cancer, obesity, 
having a period of mania, and hernia. Conversely, we found evidence for levels of vitamin D and 
sex hormone-binding globulin (SHBG) (from either a male- or female-only GWAS) to potentially 
reduce the risk for sleep apnoea (Figure 4). We repeated this approach using our BMI-adjusted 
summary statistics to test how many of these associations were explained by the large overlap with 
BMI. This identified 29 traits associated with sleep apnoea (Supplementary Table S14; see 
discussion), six of which overlapped with the BMI-unadjusted-analysis mentioned above. These 
traits were medication taken for anxiety, angina pectoris, testosterone quantile (males), taking 
ibuprofen, walking for pleasure as physical activity, and depression diagnosed by a professional.    
 
 

DISCUSSION 
This study aimed at increasing our understanding of the genetic aetiology of sleep apnoea risk, an 
area that has stagnated due to the difficulty in achieving the required sample size for GWAS 
studies. Our sleep apnoea GWAS meta-analysis combined data across five cohorts and identified 
five independent loci (Supplementary Figure S7). The evidence of association for these loci 
decreased below statistical significance upon adjustment for BMI, while a new locus on 
chromosome 15 near HDGFL3 reached significance. While this manuscript was under review, 
another study describing a GWAS for sleep apnoea (SA) in FinnGen and the UK Biobank was 
published50. That study identified five genome-wide significant loci associated with sleep apnoea 
and a clear, strong causal component of BMI. That is consistent with our observation of genome-
wide hits showing weaker evidence of association upon a statistical adjustment for BMI effects42. 
This study used MTAG to boost power and identify additional loci likely to confer sleep apnoea 
risk by combining our sleep apnoea meta-analysis with a snoring meta-analysis. We also identified 
several variants linked to sleep apnoea over and above the effect of BMI. We also sought 
replication in an independent sample from 23andMe. The 23andMe GWAS adjusted for BMI, and 
we could replicate 29 loci associated with sleep apnoea, suggesting our results are robust signals 
linked to other sleep apnoea pathways.  
 
We employed gene-based tests and identified several genes associated with sleep apnoea, including 
DLEU1, DLEU7 CTSF, MSRB3, FTO, and TRIM66. The association with FTO is likely due to this 
loci's strong effect on BMI and adiposity52. Loss-of-function of MSRB3, which encodes a 
methionine sulfoxide reductase, has been associated with human deafness. This finding is 
consistent with reported associations between hearing impairment and sleep apnoea53. CTSF has 
been linked to the airway wall area (Pi10) as measured quantitatively using CT chest images54. That 
is consistent with the fact that small airway dimensions have been linked to sleep apnoea measures 
in a COPD comorbid sample55 and that obesity is believed to increase sleep apnoea risk increasing 
the fat levels of upper airway structures and the compression of airway walls56. DLEU1 and 
DLEU7 are both located within a region associated with leukaemia. While DLEU7 is a protein-
coding gene, DLEU1 was recently discovered to be part of a bigger gene, BCMS, that has a 
potential tumour-suppressing function57. Although this locus has been linked to snoring32, its role in 
the pathogenicity for sleep apnoea remains to be clarified.  
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Genes with evidence from positional gene mapping and gene-expression integration included 
SKAP1, MAPT, STK33 and ETFA, among others. SKAP1, STK33 and MAPT are genes related to 
the MAPK signalling pathway. MAPT is genetically and neuropathologically associated with 
neurodegenerative disorders, including Alzheimer’s disease and frontotemporal dementia58. 
Furthermore, ETFA expression has been observed to change in an Alzheimer’s disease mouse 
model in response to aducanumab, an amyloid-beta antibody59. There is a known link between 
sleep apnoea and Alzheimer’s disease60. Recent studies with mouse models suggest that 
intermittent hypoxia induces cholinergic forebrain degeneration61. Furthermore, other observations 
suggest sleep apnoea severity might be linked to increased amyloid-beta plaques62. Although 
informative, these studies still lack the ability to distinguish whether a true causal association 
underlies sleep apnoea and Alzheimer’s disease in humans. Our results should enable the 
exploration of this question by enabling causal inference studies using instrumental variable 
analysis.   
 
We did not replicate previously reported candidate gene associations such as TNFA, APOE, 
PTGER3 and LPAR123. This could be explained by differences between our analysis and those 
identifying the candidate genes. For example, the LPAR1 association was observed in participants 
of African ancestry63. Nonetheless, studies assessing the support for candidate gene associations 
using GWAS have found poor consistency64. Our results suggest a similar trend for candidate gene 
studies of sleep apnoea. Our study should be powered to detect previously reported candidate-gene 
effect sizes; for instance, polymorphisms within TNFA were reported to show an odds ratio of 2.01 
for sleep apnoea65. Future studies should systematically evaluate candidate gene studies and GWAS 
concordance in sleep apnoea, an objective that was outside the scope of the current study. 
 
As a proof-of-principle of the utility of having well-powered GWAS summary statistics, we 
performed a hypothesis-free inference of causal associations between >400 traits and our sleep 
apnoea MTAG. Consistent with previous findings50, our approach inferred obesity to likely 
increase the risk for sleep apnoea. Similar results were found for asthma, lung cancer, hernia, 
hypertension, a period of mania, and stroke. Conversely, we found that SHBG levels derived from 
male-only, female-only and combined-sex GWAS decreased the risk for sleep apnoea. A similar 
finding was observed for endogenous testosterone levels derived from a male-only GWAS. This is 
consistent with observations of SHBG and testosterone levels negatively correlating with sleep 
apnoea severity66. However, continuous positive airway pressure therapy does not seem to reverse 
these abnormal changes67,68, which would be consistent with the direction of causality predicted 
through LCV (from hormone level to phenotype).  LCV also identified vitamin D levels as causal 
determinants of sleep apnoea risk. That is consistent with reports linking vitamin D with SA69. 
Nonetheless, it is also possible that this result is explained by BMI. Given that vitamin D levels 
increase with sun exposure70, and exposure increases with physical activity, the well-documented 
inverse relationship between obesity (or BMI) and vitamin D concentrations might better explain 
the observed association71,72. The extent to which hypertension, hernia, and stroke are associated 
with sleep apnoea above and beyond obesity as a shared causal component was unclear. We tested 
this by performing our causal analyses using BMI-adjusted summary statistics. Our results suggest 
most of these associations are potentially mediated through BMI, as these associations were no 
longer significant after adjusting for BMI. Interestingly, a lifetime diagnosis of depression was 
consistently associated with an increased risk for SA, even after adjusting for BMI. Overall, our 
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LCV analysis identified a set of testable hypotheses, which can be further explored through 
multivariable MR analyses contrasting the observational associations with sleep apnoea, and 
genetically derived effect sizes for sleep apnoea and BMI.   
 
This study was performed using cohorts of European ancestry. Thus, generalisations and 
comparisons with other ancestry groups should be performed with caution. In order to maximise 
sample size, we included cohorts with different definitions of sleep apnoea, including ICD codes 
and patient-reported diagnosis. The AGDS and CLSA cohorts use a single question that assesses 
whether a participant stops breathing during sleep. This item could also capture cardiopulmonary 
diseases. Furthermore, although ICD-10 codes may be considered a gold standard for ascertaining 
cases in GWAS studies, there are reports of low specificity73 when identifying cases for sleep 
disorders. To avoid contamination from potentially undiagnosed cases in the control group, we 
have strived to remove participants that report loud snoring from the control set. While combining 
multiple sources for phenotype definition is warranted to achieve the required sample sizes for 
GWAS, minimal phenotyping might introduce heterogeneity. Future studies should explore using 
novel advances in natural language processing74 of electronic health records to increase the 
accuracy of biobank-based phenotyping and compare the accuracy and genetic concordance of the 
different phenotyping approaches used here. We found the combined effect of the SNPs in our 
meta-analysis to explain ~13% of the variance of sleep apnoea on the observed scale. Estimating 
heritability on the liability scale is challenging given (i) the wide range of reported prevalence in 
the population (9-55%) and (ii) the fact that the current adjustments for transforming between the 
observed and liability scale assume an overrepresentation rather than an underrepresentation of 
cases. To avoid this issue, we have used a recently developed model to estimate liability scale 
heritability on samples with these characteristics49. 
 
Our results for cross-cohort pairwise genetic correlations suggested that despite using different 
phenotype ascertainment methods, the underlying genetics represent a common trait. Nonetheless, 
this analysis suffered from reduced power, and the large standard errors do not allow us to rule out 
heterogeneity across cohorts. Ideally, any sleep apnoea study would ascertain cases employing a 
robust measure such as the apnoea-hypopnea index or oxygen saturation; GWAS of complex traits 
require enormous sample sizes, making such an approach challenging. Although MTAG has proven 
successful in boosting the discovery of loci associations, even in the presence of known or 
unknown sample overlap28, combining traits with extreme power differences might inflate signals 
related to the most powered phenotype28. In our study, adjusting for BMI seemed to affect the 
pattern of genetic correlations, particularly increasing the correlations with BMI and related traits 
such as stroke and obesity. Replication of the sleep apnoea plus snoring adjusted for BMI results 
was higher than in the other analyses. This result is expected for two reasons: First, it benefited 
from the increased power of combining GWAS for apnoea and snoring through MTAG and 
adjusted for BMI using mtCOJO. Second, the GWAS performed by 23andMe included BMI as a 
covariate. As such, it resembles a phenotype in line with those for which the sleep apnoea plus 
snoring adjusted for BMI is boosting power. Finally, some limitations of the approach used for 
causal inference need to be acknowledged. LCV is still dependent on the power of the original 
GWAS for both traits. Traits with a potential causal association with sleep apnoea might not have 
been included in the tested traits. Finally, this method assumes no bi-directional causality and will 
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likely be biased towards the null in such cases. Thus, a null finding in our study does not reflect a 
lack of association, especially if bidirectional relationships are suspected.  
 
In summary, we performed a GWAS meta-analysis of sleep apnoea across five European-ancestry 
cohorts and identified five independent genome-wide significant loci. Conditional analyses 
suggested a large contribution of BMI to sleep apnoea; most of the discovered genome-wide hits in 
the meta-analysis were explained by BMI. After adjusting for BMI, the meta-analysis identified one 
genome-wide significant locus. MTAG of sleep apnoea with snoring identified 43 independent hits 
and 23 after conditioning on BMI. Overall, 29 independent significant hits were replicated in an 
independent sleep apnoea GWAS from 23andMe. All analyses showed a significant polygenic 
prediction of sleep apnoea in a leave-one-out PRS analysis. Our results largely confirm the 
previously observed overlap with BMI and highlight genetic overlap with traits such as stroke, 
asthma, hypertension, glaucoma and cataracts. We further found evidence of a potential causal role 
of SHBG and vitamin D levels in decreasing the risk for sleep apnoea. If confirmed by 
multivariable MR and interventional studies, new treatments based on modifying these risk factors 
might be used for sleep apnoea treatment or early intervention. This general hypothesis-free 
framework can be used to generate testable hypotheses of risk factors for complex traits48. Also, the 
associations identified here can be used as instrumental variables in targeted MR studies aiming at 
understanding the relationship between sleep apnoea and hypothesised causally related traits. 
Identifying robust loci associated with sleep apnoea is an important step towards a deeper 
biological understanding, which can translate into novel treatments and risk assessment strategies. 
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TABLES 
 

Table 1 Cohort and prevalence overview 

Cohort 
Total sample 
size Apnoea cases Snoring cases 

UK-Biobank 408,317 7,902 152,303 

Finngen 66,216 9,096 4,270 

Partners Biobank 20,047 3,102 4,175 

CLSA 18,427 3,391 6,852 

AGDS 10,359 1,517 4,450 

Total 523,366 25,008 172,050 
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Table 2. Independent hits associated with sleep apnoea and replicated in 23andMe 

SNP CHR BP A1 A2 P_23&me BETA* SE* P_META Signal Source 

rs1537818 1 39647038 G A 2.76E-05 -0.01755 0.004182 1.31E-09 MTAG 

rs633715 1 177852580 T C 4.60E-07 -0.02466 0.004898 3.49E-08 MTAG_BMIadj 

rs72902175 2 157013035 T C 9.30E-10 0.035999 0.005866 3.67E-14 MTAG 

rs1403848 3 77609655 C A 7.51E-05 -0.01569 0.003962 9.30E-09 MTAG 

rs4076077 5 170863509 T C 3.70E-06 -0.01797 0.003882 4.26E-09 MTAG 

rs1428381 5 122693901 G A 0.000369 0.015265 0.004283 4.83E-09 MTAG 

rs2715039 7 84094964 C A 4.61E-05 -0.01611 0.003952 2.04E-08 MTAG 

rs7005777 8 78233600 T G 5.18E-05 0.017513 0.00433 1.12E-08 MTAG 

rs8176749 9 136131188 T C 1.47E-05 -0.03212 0.007433 3.78E-09 MTAG 

rs10756798 9 16739763 T C 3.70E-09 -0.02425 0.004115 3.28E-08 MTAG_BMIadj 

rs1444789 10 9064361 T C 2.40E-13 -0.03701 0.005042 1.10E-09 MTAG 

rs6265 11 27679916 T C 1.12E-05 -0.02198 0.00501 1.79E-14 MTAG 

rs1815739 11 66328095 T C 1.19E-06 0.018979 0.003906 2.10E-08 MTAG 

rs4923536 11 28422496 G A 1.52E-10 0.025071 0.003915 7.51E-11 MTAG_BMIadj 

rs28758996 12 121960480 G A 0.00122 -0.01282 0.003963 1.21E-08 META 

rs1389799 12 65824846 G A 3.57E-25 0.04184 0.004032 1.38E-18 MTAG_BMIadj 

rs4554968 12 4372609 G A 0.000854 0.013381 0.004011 4.47E-08 MTAG_BMIadj 

rs592333 13 51340315 G A 9.04E-23 -0.03997 0.004068 1.69E-14 MTAG 

rs11852496 15 83817559 T C 3.17E-05 -0.01918 0.004605 1.71E-06 META 

rs11634019 15 76634680 T C 4.44E-10 0.027288 0.00438 1.84E-09 MTAG 

rs11075985 16 53805207 C A 1.13E-05 0.017161 0.003907 5.41E-20 META 

rs8045335 16 60607116 G A 1.41E-09 -0.02374 0.003922 1.24E-08 MTAG 

rs9933881 16 1740691 T C 3.68E-07 -0.03664 0.007183 2.54E-08 MTAG 

rs12603115 17 46248994 T C 3.95E-06 -0.01812 0.003926 8.14E-10 MTAG 

rs227731 17 54773238 T G 2.40E-11 -0.02603 0.003896 3.96E-09 MTAG 

rs4987719 18 60960310 T C 1.28E-08 0.061095 0.01068 4.72E-09 MTAG 

rs35445111 19 32172047 G A 2.62E-12 0.04751 0.006817 1.62E-11 MTAG 

rs6113592 20 22229505 G A 6.42E-07 0.019892 0.003998 7.82E-11 MTAG 

rs6038517 20 6458205 G A 0.000217 -0.01703 0.0046 2.19E-08 MTAG 

GWAS and replication significant SNPs. Results are shown for variants with genome-wide evidence of 
association (p<5e-8) in at least one of the main analyses, and evidence of replication in 23andMe. *Information 
based on the 23andMe GWAS. META - sleep apnoea meta-analysis; MTAG - sleep apnoea plus snoring MTAG. 
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MTAG_BMIadj - sleep apnoea plus snoring MTAG adjusting for BMI using mtCOJO 
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Table 3. Sleep apnoea polygenic prediction 

Model OR (95%C.I.) P Nagelkerke R2 (%) Variance explained (%) 

SAprs 
1.15 (1.08-

1.21) 5.6e-06 0.4 0.45 

SAprs 
(adjusting for BMI) 

1.09 (1.03-
1.16) 4.2e-03 0.17 0.45 

SAmtagSnoringprs 
1.21 (1.14-

1.28) 3.9e-10 0.77 0.87 

SAmtagSnoringprs 
(adjusting for BMI) 

1.14 (1.07-
1.21) 2.4e-05 0.37 0.87 

Results of PRS derived using our GWAS (leaving out the AGDS cohort) predicting sleep apnoea in 
the AGDS sample with and without accounting for BMI measures in AGDS. Note significant prediction 
even after adjusting for BMI measures. SAprs - sleep apnoea meta-analysis; SAmtagSnoring - sleep 
apnoea plus snoring MTAG. 
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Figures 

 
Figure 1. Discovery of genetic associations with sleep apnoea risk 
Miami plots depict the meta-analysis results for sleep apnoea before and after adjusting for BMI (a) or MTAG 
apnoea plus snoring before and after adjusting for BMI (b). Each dot represents a genetic variant. The x-axis re
the variant’s genomic position, and the y-axis depicts the significance of the association with sleep apnoea. In t
adjusted analyses, highlighted variants show the genome-wide hits of the unadjusted GWAS. 
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Figure 2. Sleep apnoea is genetically correlated with psychiatric, behavioural and 
cardiorespiratory traits 
Forest plots showing genetic correlations calculated using CTG-VL43 between sleep apnoea meta-
analysis, MTAG between sleep apnoea and snoring (SAmtagSnoring) and MTAG between sleep 
apnoea and snoring adjusted for BMI (SAmtagSnoringBMIadj). Markers depict the genetic 
correlation estimate (rg), whereas lines represent 95% confidence intervals derived from the rg

standard error. Not all traits with a significant association (FDR < 0.05) are shown. See the 
Supplementary Data for other traits.  
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Figure 3. Sleep Apnoea polygenic prediction 
a) Plot showing the odds ratio (OR) per change in polygenic risk score (PRS) decile. Error bars 
depict the 95% confidence intervals b) Example of a receiver operating characteristic (ROC) curve 
derived from assessing the ability of logistic regression to predict sleep apnoea using either a base 
model (covariates only) or the base model plus the PRS of interest. The higher the area under the 
curve, the higher the model's predictive power. c) Average area under ROC curve after 100 
iterations of leave out validation randomly assigning training and testing subsamples. Error bars 
depict the standard deviation of the mean. Full results (100 ROC curves per model) are available in 
Supplementary Figure 9. SA - sleep apnoea meta-analysis; SAmtagSnoring - sleep apnoea plus 
snoring MTAG.  
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Figure 4. Predicting traits causally associated with sleep apnoea 
Volcano plot showing the results of a hypothesis-free latent causal variable analysis for traits 
causally associated with sleep apnoea. Each point represents a trait of interest from a dataset of 413 
GWAS for traits and diseases. The x-axis represents the genetic causal proportion which ranges 
from -1 (a trait that likely causes sleep apnoea) to 1 (a trait that is likely caused by sleep apnoea). 
The y-axis is the absolute Z-score of the GCP, which is a measure of the statistical strength of the 
GCP estimation. Points are coloured by their genetic correlation, which indicates if causality exists 
and whether the association is of increased or decreased risk. As a reference, hypertension would be 
predicted to increase the risk for sleep apnoea, whereas SHBG levels would be predicted to reduce 
the risk for sleep apnoea.    
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