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Abstract 

Treatment response is heterogeneous.   However the classical methods treat the treatment 

response as homogeneous and estimate the average treatment effects. The traditional methods are 

difficult to apply to precision oncology. The artificial intelligence (AI) is a powerful tool for 

precision oncology. It can accurately estimate the individualized treatment effects and learn 

optimal treatment choices. Therefore, the AI approach can substantially improve progress and 

treatment outcomes of patients. As one of AI approach, conditional generative adversarial nets 

for inference of individualized treatment effects (GANITE) have been developed. However, the 

GANITE can only deal with binary treatment and does not provide a tool for  optimal treatment 

selection. To overcome these limitations, we modify conditional generative adversarial networks 

(MCGANs) to allow estimation of individualized effects of any types of  treatments including 

binary, categorical and continuous treatments. We propose to use sparse techniques for selection 

of biomarkers that predict the best treatment for each patient. Simulations show that the CGANs 

outperform seven other state-of-the-art methods: linear regression (LR), Bayesian linear ridge 

regression (BLR), KNN, random forest classification (RF (C)), random forest regression (RF 

(R)), logistic regression (LogR) and support vector machine (SVM). To illustrate their 

applications,   the proposed CGANs were applied to 256 patients with newly diagnosed acute 

myeloid leukemia (AML) who were treated with high dose ara-C (HDAC), Idarubicin (IDA) and 

both of these two treatments (HDAC+IDA) at M. D. Anderson Cancer Center. Our results 

showed that the MCGAN can more accurately and robustly estimate the individualized treatment 

effects than other state-of-the art methods.  Several biomarkers such as GSK3, BILIRUBIN,  

SMAC  are identified and a total of 30 biomarkers can explain 36.8% of treatment effect 

variation. 
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Introduction 

The traditional clinical management estimates the average treatment effects from observational 

data, assuming the complex disease is homogeneous (Hansen 2024; Kennedy et al. 2017; Liu et 

al. 2018; Luo and Zhu 2017; Rosenbaum and Rubin 1983; Diamond and Sekhon 2013).  

Alternative to traditional clinical management, “precision medicine” or “precision oncology” 

attempts to match the most accurate and effective treatments with the individual patient (Ali and 

Aittokallio 2019; Shi et al. 2017), rather than using monotherapy that treats all patients. In real 

world, treatment response is heterogeneous. Therapy should be tailored with the best response 

possible and highest safety margin to ensure that the right therapy is offered to “the right patient 

at the right time”( Subbiah and Kurzrock 2018).  Precision oncology can substantially improve 

progress and treatment outcomes of patients. It plays a central role in revolutionizing cancer 

research.   Consequently, alternative to calculating the average effect of an intervention over a 

population, many recent methods attempt to estimate individualized treatment effects (ITEs) or 

conditional average treatment effects from observational data ( Makar et al. 2019). To accurately 

estimate the individualized treatment effects and learn optimal treatment choices are a key issue 

for precision oncology.  More accurate estimation of individualized treatment effects, which 

provide information to guide the individual selection of the target therapies, is essential for the 

success of precision medicine ( Kornblau   et al. 2009).  

Methods for estimation of individualized treatment effects (ITEs) using observational data 

largely differ from standard statistical estimation methods. Estimating ITEs and learning optimal 

treatment strategies raise a great challenge for the following reasons. First, a common framework 

for treatment effect estimation is the potential outcomes assumptions ( Ray and Szabo 2019) 

where every individual has two ‘potential outcomes’ covering the hypothesized  individual’s 
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outcomes with and without treatment. Estimation of ITEs requires estimation of both factual and 

counterfactual outcomes for each individual. However, only the factual outcome is actually 

observed. We never observe the counterfactual outcomes ( Rosenbaum and Rubin 1983; Chen 

and  Paschalidis 2018;  Yoon et al. 2018).   

If  the effect of each treatment in the subpopulation which is separately estimated is taken as 

an individual effect, this  can create large biases. The estimated effect of each treatment in the 

subpopulation is still the average effect of the treatment in that subpopulation and is not 

individualized treatment effect in the subpopulation. 

Second, clinical data often have many missing values. Simultaneously imputing both 

counterfactual values and missing values is not easy.  Third, the function forms of the treatment 

effects which are often nonlinear functions are unknown ( Ray and Szabo 2019). Statistical 

methods and computational algorithms that can efficiently deal with unknown forms of nonlinear 

functions are still lacking ( Lengerich et al. 2019).       

     Classical works such as random forest and hierarchical models are adapted to estimate 

heterogeneous treatment effects ( Wager and  Athey 2015). Recently, machine learning and 

neural network methods are used to move away from average treatment effect estimation to 

personalized estimation ( Alaa  et al. 2017; Johansson et al. 2016; Shalit et al. 2016). AI and 

causal inferences are becoming a driving force for innovation in precision oncology (Seyhan and 

Carini 2019). A key issue for ITE estimation is to learn unobserved (missing) counterfactuals. 

The idea of using generative adversarial networks (GANs) for handling missing data is a very 

promising approach to imputing counterfactual ( Goodfellow  et al. 2014; Yoon et al. 2018a). 

Using conditional GAN (CGAN) to estimate the individualized treatment effects (GANITE) has 

been  developed (Yoon et al. 2018a). The CGANs consist of a generator and a discriminator. The 
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generator (G) observes the factual part of real data and imputes the counterfactuals (missing part) 

conditioned on observed factual data, and outputs the complete dataset. The discriminator (D) 

inputs the real dataset and tries to determine which part was actually observed and which part 

was imputed counterfactuals.  The discriminator enforces generator to learn the desired 

distribution (hidden data distribution) (Yoon et al. 2018b).   

      However, the original GANITE was designed for estimation of the effects of binary treatment 

and cannot be applied to  continuous and categorical treatments. The treatment variable in the 

original GANITE is binary variable which only represents the presence and absence of treatment. 

Therefore, the treatment variable in the original GANITE is unable to quantify the dosage of the 

treatment, and hence the original GANITE cannot be applied to continuous treatment. To 

overcome this limitation, we introduce treatment assignment indicator variable and treatment 

quantity variable. The treatment quantity variable can represent binary treatment, categorical 

treatment and continuous treatment.  We change mathematical formulations of the generator and 

discriminator and extend GANITE from binary treatment to all types of treatments including 

binary, categorical and continuous treatments. The modified GANITE is abbreviated as 

MGANITE. 

       The GANITE or in general, CGAN  has not systematically investigated the estimation of 

ITE for  chemotherapy and other type of treatments in Cancer and compare the results from 

causal inference using observed data with the results of randomized clinical trial.  One of our 

goals in this manuscript is to examine whether  MGANITE still works well in cancer research. 
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   In MGANITE,  biomarkers that serve as conditioned variables, will be used to estimate the 

ITEs of both single and multiple treatments ( Yoon   et al. 2018a; Mirza  and Osindero 2014). 

Sparse techniques will be employed to select biomarkers for prediction of treatment effects and 

to learn optimal treatment choices of patients ( Emmert-Streib F, Dehmer 2019).  

     In summary, Novelty of the modified GANITE (MGANITE) is summarized as below. 

1. The previous conditional generative adversarial network (CGAN)-based causal inference 

methods (GANITE) only can estimate the individualized effects of binary treatment and 

cannot estimate the individualized effects of continuous treatments. The proposed 

MGANITE is the first time to use modified CGANs for estimation of  individualized 

effects of continuous treatments. 

2. This is the first time to apply CGANs to estimation of ITE in cancer research. 

3. We use randomized clinical tried data to validate the CGAN-based methods for 

estimation of ITE using observational data.  

4. We develop new network structures for generator and discriminator in the CGANs. 

5. We combined sparse techniques for selection of biomarkers with MGANITE  to predict 

the best treatment for each patient 

To evaluate its performance for estimating ITEs, simulations are conducted to estimate ITEs 

using simulated data and the MGANITE,  and to compare its estimation accuracy with seven 

other state-of-the-art methods (LR, KNN, BLR, RF, and SVM). To further evaluate its 

performance, the MGANITE is applied to 256 newly diagnosed acute myeloid leukemia (AML) 
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patients, treated with high dose ara-C (HDAC), Idarubicin (IDA) and HDAC+IDA at M. D. 

Anderson Cancer Center to estimate ITEs and identify the optimal treatment strategy for each 

patient. Preliminary results from simulations and real data analysis show that the MGANITE 

outperforms five other state-of-the-art methods. A program for implementing the proposed 

MGANITE  for ITE estimation and optimal treatment selection can be downloaded from our 

website https://sph.uth.edu/research/centers/hgc/xiong/software.htm. 

Materials and Methods 

Potential outcome framework for estimation of treatment effects 

     We assume the Rubin causal model for estimation of treatment effects (Rubin 1974) and 

modified the approach to individualized treatment effect estimation in Yoon et al (Yoon et al, 

2018a). The original GANITE only can estimate ITE of binary treatments, but cannot be applied 

to categorical and continuous treatments. We develop MGANITE which can estimate ITE of all 

types of treatments including binary, categorical and  continuous treatments by introducing 

treatment assignment indicator variable and changing formulation of generator and 

discriminator.  Consider 𝐾 treatments. Let 𝑇𝑘 be the 𝑘𝑡ℎ treatment variable that can be binary, 

categorical or continuous, and 𝑇 = [𝑇1, … , 𝑇𝐾]𝑇 be the treatment vector. We assume that there is 

precisely one non-zero component of the treatment vector 𝑇, which is denoted by 𝑇𝜂, where 𝜂 is 

the index of this component. Each sample has one and only one assigned treatment 𝑇𝜂. To extend 

the binary treatment to including categorical  and continuous treatments, we define the treatment 

assignment indicator vector 𝑀 = [𝑀1, … , 𝑀𝑘 , … , 𝑀𝐾]𝑇 as 

𝑀 = {
1 𝑘 = 𝜂
0 otherwise

, 

where  ∑ 𝑀𝑘 = 1𝐾
𝑘=1 . 
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For example, if 

 𝑇 = [
0
𝑇2

0
], 

then 𝜂 = 2 and 

𝑀 = [
0
1
0

] . 

If we consider  treated and untreated cases,  then 𝐾 = 2. Let 𝑇1 denote the treatment and 𝑇2 

denote no treatment where 𝑇2 = 1. For the sample with the treatment, we have 

𝑇 = [
𝑇1

0
]  and 𝑀 = [

1
0

]. 

For the sample with no treatment, we have 

𝑇 = [
0
𝑇2

] and 𝑀 = [
0
1

]. 

     Define the vector of potential outcome 𝑌(𝑇) = [𝑌(𝑇1), … , 𝑌(𝑇𝐾)]𝑇, where 𝑌(𝑇𝑘) is the 

potential outcome of the sample under the treatment 𝑇𝑘. When 𝐾 = 2, the potential outcome 

𝑌(𝑇1) corresponds to the widely used notation for one treatment 𝑌1, the potential outcome of the 

treated sample, while the potential outcome 𝑌(𝑇2) corresponds to 𝑌0, the potential outcome of 

the untreated sample. Only one of the potential outcomes can be observed.  The observed 

outcome that corresponds to the potential outcome of the individual receiving the treatment 𝑇𝜂 is 

denoted by 𝑌(𝑇𝜂).  The observed outcome is called the factual outcome and unobserved potential 

outcomes are called counterfactual outcomes, or simply counterfactuals. For the convenience of 

notation, the factual outcome is also denoted by 𝑌𝑓 and the counterfactuals are denoted by 𝑌𝑐𝑓.  
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The observed outcome 𝑌𝑓 can be expressed as 

𝑌𝑓 = 𝑌𝜂 = ∑ 𝑀𝑘𝑌(𝑇𝑘)𝐾
𝑘=1  . 

When 𝐾 = 2, we have 𝑀2 = 1 − 𝑀1. The above equation becomes 

𝑌𝑓 = 𝑀1𝑌(𝑇1) + (1 − 𝑀1)𝑌(𝑇2) = 𝑀1𝑌1 + (1 − 𝑀1)𝑌0, 

which coincides with the standard expression of the observed outcome for one treatment. 

     Let 𝑋 = [𝑋1, … , 𝑋𝑞]𝑇 be the 𝑞-dimensional feature vector. Assume that 𝑛 individuals are 

sampled. Let 𝑇(𝑖) = [𝑇1
(𝑖)

, … , 𝑇𝐾
(𝑖)

]𝑇 , 𝑌(𝑖) = [𝑌(𝑖)(𝑇1
(𝑖)

), … , 𝑌(𝑖)(𝑇𝐾
(𝑖)

)]𝑇 and 𝑋(𝑖) =

[𝑋1
(𝑖)

, … , 𝑋𝑞
(𝑖)

]𝑇 , 𝑖 = 1, … , 𝑛 be the treatment vector, the vector of potential outcomes, and feature 

vector of the 𝑖𝑡ℎ individual, respectively.  

     The most widely used measure of the treatment effect for the multiple treatment is the pair-

wise treatment effect. The individual effect 𝜉𝑗𝑘
(𝑖)

  between the pairwise treatments: 𝑇𝑗  and 𝑇𝑘 is 

defined as 𝜉𝑗𝑘
(𝑖)

= 𝑌(𝑖)(𝑇𝑗
(𝑖)

) − 𝑌(𝑖)(𝑇𝑘
𝑖), the average pairwise treatment effect  

 𝜏𝑗𝑘 = 𝐸[𝜉𝑗𝑘
(𝑖)

].  The average pairwise treatment effect 𝜏𝑗𝑘|𝑇𝑗
 on the patients treated with 𝑇𝑗  is 

defined as 𝜏𝑗𝑘|𝑇𝑗
= 𝐸[𝜉𝑗𝑘

(𝑖)
|𝑇𝑗].  

     The focus of this paper is on the conditional distribution of treatment effect, given the feature 

vector 𝑋. Let 𝐹𝑌|𝑋(𝑇𝑘) be the conditional distribution of the potential outcome 𝑌(𝑇𝑘) under the 

treatment 𝑇𝑘, given the feature vector 𝑋,  and 𝐹𝑌|𝑋(𝑇) be the conditional joint distribution of the 

potential outcome vector 𝑌(𝑇) under the 𝐾 treatment 𝑇, given the feature vector 𝑋.  Assume that 

𝑛 individuals are sampled. For the 𝑖𝑡ℎ individual, 𝑇𝜂 treatment  (𝑀𝜂 = 1) is assigned. Let 𝑋(𝑖) 
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and 𝑌𝜂
(𝑖)

(𝑇𝜂
(𝑖)

) = 𝑌𝑓
(𝑖)

 be the observed feature vector and the observed potential outcome of the 

𝑖𝑡ℎ individual. Therefore, the observed dataset is given by 𝐷 = (𝑋(𝑖), 𝑇(𝑖), 𝑌𝜂
(𝑖)

, 𝑖 = 1, … , 𝑛) . The 

factual and counterfactual outcomes of the𝑖𝑡ℎ individual  are denoted by 𝑦𝑓
(𝑖)

 and 𝑦𝑐𝑓
(𝑖)

, 

respectively.  

     To estimate the treatment effects, we often make the following three assumptions (Rubin 

1974; Yoon et al. 2018a): 

Assumption 1. (Ignorability Assumption).  Conditional on 𝑋, the potential outcomes, 𝑌(𝑇) and 

the treatment 𝑇 are independent, 

𝑌(𝑇) = (𝑌(𝑇1), … , 𝑌(𝑇𝐾)) ⫫ 𝑇|𝑋.        (1) 

This assumption requires no unmeasured confounding variables.  

Assumption 2. (Common Support). For the feature vector 𝑋 and all treatment,  

0 < 𝑃(𝑇𝑘 = 𝑡𝑘|𝑋) < 1.         (2) 

Assumption 3. (Stable Unit Treatment Value Assumption).  No interference (units do not 

interfere with each other).  

Conditional generative adversarial networks as a general framework for estimation of 

individualized treatment effects. 

    The key issue for the estimation of individualized treatment effects is unbiased counterfactual 

estimation. Counterfactuals will never be observed and cannot be tested by data. The true 

counterfactuals are unknown. Recently developed generative adversarial networks (GANs) 

started a revolution in deep learning (Luo  and Zhu 2017). GANs are a perfect tool for missing 
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data imputation. An incredible potential of GANs is to accurately generate the hidden (missing) 

data distribution given some of the features in the data. Therefore, we can use GANs to generate 

counterfactual outcomes.  

      GANs consist of two parts: “generative” part that is called the generator and “adversarial” 

part that is called the discriminator. Both generator and discriminator are implemented by neural 

networks. Typically, a 𝐾-dimensional noise vector is input to the generator network that converts 

the noise vector to a new fake data instance. Then the generated new data instance is input to the 

discriminator network to evaluate them for authenticity. The generator  constantly learns to 

generate better fake data instances while the discriminator constantly obtains both real data and 

fake data and improves accuracy of evaluation for authenticity.   

Architecture of conditional generative adversarial networks (CGANs) for generating potential 

outcomes 

     Features provide essential information for estimation of counterfactual outcomes. Therefore, 

we use conditional generative adversarial networks (CGANs) ( Mirza and Osindero 2014) as a 

general framework for individualized treatment effect (ITE) estimation. The CGANs for ITE 

estimation consist of two blocks. The first imputation block is to impute the counterfactual 

outcomes. The second ITE block is to estimate distribution of the treatment effects using the 

complete dataset that is generated in the imputation block. The architecture of CGANs is shown 

in Figure 1.  

        Both generator and discriminator are implemented by feedforward neural networks. The 

architectures of the neural networks are described as follows. The generator consists of seven 

layers of feedforward neural network. The first layer is the covariate input layer that input a 
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vector X of covariates. The second and third layers are hidden layers, each layer with 64 nodes. 

The fourth layer concatenated the output of the third layer, the response vector Y,  treatment 

vector T and treatment assignment indicator vector M and noise vector Z. The fifth and sixth 

layers are hidden layers, each layer with 64 nodes. Finally, the seventh layer is the output layer. 

All activation function of neurons were sigmoid function. 

The architecture of the discriminator is similar to the architecture of the generator except for 

adding one more output layer with sigmoid nonlinear activation function. 

Imputation block 

To extend the GANTITE from binary treatments to all types of treatments, we introduce the 

treatment assignment vector and change some mathematic formulation of the generator.  A 

counterfactual generator in the imputation block is a nonlinear function of the feature vector, 

treatment vector 𝑇,  treatment assignment indicator vector 𝑀, observed factual outcome 𝑦𝑓 and 𝐾 

dimensional random vector 𝑧𝐺 with uniform distribution 𝑧𝐺~𝑈((−1,1)𝐾) where 𝑌𝑓 = 𝑌𝜂 . The 

generator is denoted by 

𝑌̃ = 𝐺(𝑋, 𝑌𝑓 , 𝑇 ⊙ 𝑀, (𝟏 − 𝑀) ⊙ 𝑧𝐺 , 𝜃𝐺),      (3) 

where output  𝑌̃ represents a sample of 𝐺.  It can take binary values, categorical values or 

continuous values.  𝟏 is a vector of 1, ⊙ denotes element-wise multiplication and 𝜃𝐺  is the 

parameters in the generator.  We use 𝑌̅ to denote the complete dataset that is obtained by 

replacing 𝑌̃𝜂with 𝑌𝑓.  

     The distribution of 𝑌̃ depends on the determinant of the Jacobian matrix of the transformation 

function 𝐺(𝑋, 𝑌𝑓 , 𝑇, 𝑀, 𝑧𝐺 , 𝜃𝐺). Changing the transformation function can change the distribution 
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of the generated counterfactual outcomes. Let 𝑃𝑌|𝑥,𝑡,𝑚,𝑦𝑓
(𝑦)  be the conditional distribution of 

the potential outcomes, given 𝑋 = 𝑥, 𝑇 = 𝑡, 𝑀 = 𝑚, 𝑌𝑓 = 𝑦𝑓.   The goal of the generator is to 

learn the neural network 𝐺 such that 𝐺(𝑥, 𝑦𝑓 , 𝑡, 𝑚, 𝑧𝐺 , 𝜃𝐺)~𝑃𝑌|𝑥,𝑡,𝑚,𝑦𝑓
(𝑦).  

Unlike discriminator in the standard CGANs where the discriminator evaluates the input data 

for their authenticity (real or fake data), the counterfactual discriminator 𝐷𝐺  that maps pairs 

(𝑥, 𝑦̅) to vectors in [0,1]𝑘 attempts to distinguish the factual component from the counterfactual 

components.  The output of the counterfactual discriminator 𝐷𝐺  is a vector of probabilities that 

the component represents the factual outcome. Let 𝐷𝐺(𝑥, 𝑦̃, 𝑡, 𝑚,  𝜃𝑑)𝑖 represent the probability 

that the 𝑖𝑡ℎcomponent of 𝑦̃ is the factual outcome, i.e., 𝑖 = 𝜂, where 𝜃𝑑 denotes the parameters in 

the discriminator. The goal of the counterfactual discriminator is to maximize the probability 

𝐷𝐺(𝑥, 𝑦̃, 𝑡, 𝑚,  𝜃𝑑)𝑖 for correctly identifying the factual component 𝜂 via changing the 

parameters in the discriminator neural network 𝐷𝐺 .  

Loss function 

The imputation block in the MGANITE attempts to impute counterfactual outcomes by 

extending the loss function of  binary treatment in the GANITE  ( Yoon et al. 2018 a) to all types 

of treatments: binary, categorical or continuous treatments, we define loss function 𝑉(𝐷𝐺 , 𝐺)  as 

𝐸(𝑥,𝑡,𝑚,𝑦𝑓)~𝑃𝑑𝑎𝑡𝑎(𝑥,𝑡,𝑚,𝑦𝑓)
𝐸𝑧𝐺~𝑢((−1,1)𝐾)[𝑀𝑇 log 𝐷𝐺(𝑋, 𝑌̃, 𝑇, 𝑀) + (𝟏 − 𝑀)𝑇 log(𝟏 −

𝐷𝐺(𝑋, 𝑌̃, 𝑇, 𝑀))], 

where log is an element-wise operation. 

The goal of imputation block is to maximize the counterfactual discriminator 𝐷𝐺  and then 

minimize the counterfactual generator 𝐺: 
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min
𝐺

max
𝐷𝐺

𝑉(𝐷𝐺 , 𝐺, 𝜃𝑑).         (4) 

In other words, we train the counterfactual discriminator 𝐷𝐺  to maximize the probability of 

correctly identifying the assigned treatment 𝑀𝜂 and quantity of the treatment 𝑇𝜂 or 𝑌𝑓(𝑌𝜂), and 

then train the counterfactual generator 𝐺 to minimize the probability of correctly identifying  𝑀𝜂  

and   𝑇𝜂.  After the imputation block is performed, the counterfactual generator 𝐺 produces the 

complete dataset 𝐷̅ = {𝑥, 𝑦̅}. Next, we use the imputed complete dataset 𝐷̅ = {𝑋, 𝑌̅} to generate 

distribution of potential outcomes and to estimate the ITE via  CGANs which  is called ITE 

block.  

ITE block 

The CGANs consist  of three parts: generator, discriminator and loss function which are 

summarized as follows ( Yoon et al. 2018a).  

ITE generator  

Unlike the ITE in the GANITE where the ITE generator is a nonlinear transform function of only 

𝑋 and  𝑍𝐼 ,  the ITE generator 𝐺𝐼 in the MGANITE  is a nonlinear transform function of 𝑋, 𝑇 and 

𝑍𝐼: 

𝑌̂ = 𝐺𝐼(𝑋, 𝑇, 𝑍𝐼 , 𝜃𝑔𝐼
),          (5) 

where 𝑌̂ is the generated 𝐾-dimensional vector of potential outcomes, 𝑋 is a feature vector, 𝑇 is a 

treatment vector, and 𝑍𝐼 is a 𝐾-dimensional vector of random variables and follow the uniform 

distribution 𝑍𝐼~𝑢((−1,1)𝐾).  The ITE generator attempts to find the transformation 

𝑌̂ = 𝐺𝐼(𝑋, 𝑇, 𝑍𝐼,𝜃𝑔𝐼
) such that 𝑌̂~𝑃𝑌|𝑋,𝑇(𝑦). 
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ITE discriminator 

Following the  CGANs, we define a discriminator 𝐷𝐼 as a nonlinear classifier with  (𝑋, 𝑇, 𝑌∗ =

 𝑌̅) or (𝑋, 𝑇, 𝑌∗ = 𝑌̂) as input and a scalar that outputs the probability of 𝑌∗ being from the 

complete dataset 𝐷̅.  

Loss function 

Again, unlike  the loss function in the GANITE where decision function is  𝐷𝐼(𝑋, 𝑌∗ )  , a 

decision function in the MGANITE is defined as  𝐷(𝑋, 𝑇, 𝑌∗) . The  loss function for the ITE 

block  in the MGANITE    is then defined as 

𝑉𝐼(𝐷𝐼 , 𝐺𝐼) = 𝐸𝑋,𝑇~𝑃(𝑥,𝑇) [𝐸𝑌∗~𝑃𝑌|𝑋,𝑇
(𝑦)[log 𝐷𝐼(𝑋, 𝑇, 𝑌∗ )] + 𝐸𝑍𝐼~𝑢((−1,1)𝐾)[log(𝟏 −

𝐷𝐼(𝑋, 𝑇, 𝑌∗)]],          (6) 

where 𝐷𝐼(𝑋, 𝑇, 𝑌∗) is nonlinear classifier that determine whether 𝑌∗ is from the complete dataset 

𝐷̅ or from generator 𝐺𝐼. 

The goal of ITE block is to maximize the probability of correctly identifying that 𝑌∗ is from the 

complete dataset 𝐷̅ and to minimize the probability of a correct classification. Mathematically, 

ITE attempts  

min
𝐺𝐼

max
𝐷𝐼

𝑉𝐼(𝐷𝐼 , 𝐺𝐼).          (7) 

The algorithms for numerically solving the optimization problems (4) and (7) are summarized in 

Supplementary Note.  

    The learning parameters for the feedforward neural networks are given below. We set batch 

size equal to 16. We assumed that the learning rates for discriminator and generator  were 0.0001  
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and 0.001, respectively. We further assume that decay rate was 0.1. Learning rate  decayed 

(exponentially) to 10% of the starting learning rate during 70% of total batches , and stay 10% 

during last 30% batches. The total number of batches was 1,000,000. Adam Optimizer was used 

to perform optimization.  We assume that 20% of the nodes are dropped randomly during 

training process. 

Sparse techniques for biomarker identification 

The LASSO (least absolute shrinkage and selection operator) that performs both variable 

selection and regularization in order to enhance the prediction accuracy and interpretability of 

the results can be used to select biomarkers for optimal treatment selection (Ali et al. 2019). Let 

𝑌𝑘
𝑖  and 𝑋(𝑖)denote the estimated  effect of the 𝑘𝑡ℎ treatment and feature vector of the 𝑖𝑡ℎ 

individual, respectively. Let 

𝑌𝑇 = [
𝑌1

1 ⋯ 𝑌𝐾
1

⋮ ⋮ ⋮
𝑌1

𝑛 ⋯ 𝑌𝐾
𝑛

], 𝑋 = [

𝑥1
(1)

⋯ 𝑥𝑞
(1)

⋮ ⋮ ⋮

𝑥1
(𝑛)

⋯ 𝑥𝑞
(𝑛)

] , 𝛽 = [

𝛽11 ⋯ 𝛽1𝐾

⋮ ⋮ ⋮
𝛽𝑞1 ⋯ 𝛽𝑞𝐾

]. 

The outputs of the neural networks are in general continuous function even if the potential 

outcomes are binary. For the convenience of presentation, we assume that the treatment effects 

are continuous regardless of the potential outcomes are binary, categorical or continuous.  

     The LASSO estimators for identifying biomarkers that predict treatment effects are given by 

𝛽̂𝜆 = argmin
𝛽

||𝑌𝑇 − 𝑋𝛽||𝐹
2 + 𝜆 ∑ ∑ |𝛽𝑗𝑙

𝐾
𝑙=1 |𝑞

𝑗=1 ,     (8) 

Where ‖. ‖𝐹 is the Frobenius norm of the matrix 
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Nonzero elements 𝛽𝑗𝑙 ≠ 0 predict treatment effect variation and hence its correspondence 𝑋𝑗 =

 can be used as biomarkers for investigation of the 𝑙𝑡ℎ treatment.  

For the continuous treatment, we define the treatment matrix 𝑇 and its associated coefficient 

matrix Γ: 

𝑇 = [
𝑇1

(1
) ⋯ 𝑇𝐾

(1)

⋮ ⋮ ⋮

𝑇1
(𝑛)

⋯ 𝑇𝐾
(𝑛)

] ,    Γ = [

𝛾11 ⋯ 𝛾1𝐾

⋮ ⋮ ⋮
𝛾𝐾1 ⋯ 𝛾𝐾𝐾

] . 

Equation (8) should be changed to 

[ 𝛾𝜆1,    𝛽̂𝜆2
] = argmin

 𝛾,𝛽
||𝑌𝑇 − 𝑇Γ − 𝑋𝛽||𝐹

2 + 𝜆1 ∑ ∑ |𝛾𝑗𝑙|
𝐾
𝑙=1

𝐾
𝑗=1 +  𝜆2 ∑ ∑ |𝛽𝑗𝑙

𝐾
𝑙=1 |𝑞

𝑗=1  , (9) 

where 𝜆1, 𝜆2 are penalty parameters. 

Biomarker identification for optimal treatment selection 

Consider 𝐾 treatments. Let 𝑌̂𝑖 = [𝑌̂1
𝑖 ⋯ 𝑌̂𝐾

𝑖 ]𝑇 be the 𝐾-diemnsional vector of the estimated 

potential outcomes for the 𝑖𝑡ℎ individual  and 𝑧𝑖 = argmax
1,..,𝐾

{𝑌̂1
𝑖, … , 𝑌̂𝐾

𝑖  }   be the index of the 

optimal potential outcomes of the 𝑖𝑡ℎ individual. To select biomarkers for optimal treatment 

selection, we define the following LASSO: 

𝑌̂𝑧𝑖

𝑖 = ∑ 𝑥𝑗
(𝑖)

𝛼𝑗 + 𝜆 ∑ |𝛼𝑗|𝑞
𝑗=1

𝑞
𝑗=1 , 𝑖 = 1, … , 𝑛.      (10) 

Solving the above categorical LASSO problem, we obtain a set of non-zero coefficients that are 

denoted as 𝛼̂𝑙 ≠ 0, 𝑙 = 1, … , 𝐿. The covariates that correspond to the non-zero coefficients of the 

LASSO solution are chosen as biomarkers for optimal treatment selection.   

Again, for the continuous treatment, equation (10) needs to be changed to 
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𝑌̂𝑧𝑖

𝑖 = ∑ 𝑇𝑙
(𝑖)𝑛

𝑙=1 𝛿𝑙 + ∑ 𝑥𝑗
(𝑖)

𝛼𝑗 + 𝜆1 ∑ |𝛿𝑙| +𝐾
𝑙=1 𝜆2 ∑ |𝛼𝑗|

𝑞
𝑗=1

𝑞
𝑗=1 , 𝑖 = 1, … , 𝑛.  (11) 

Data collection 

The proposed MGANITE was applied to 256 newly diagnosed acute myeloid leukemia (AML) 

patients, treated with high dose ara-C (HDAC), Idarubicin (IDA) and HDAC+IDA at M. D. 

Anderson Cancer Center. There were 212 valid samples and 85 useable features (14 discrete and 

71 continuous), including 51 total and phosphoprotein from several biological processes such as 

apoptosis, cell-cycle and signal transduction pathways ( Kornblau  et al. 2009).  Among 212 

valid samples, 37 were treated with HDAC,  9 were treated with  IDA   and   54 were treated 

with  HDAC+IDA,  and 112 were treated by other drugs.  

    Prediction accuracy was defined as the proportions of correctly predicted potential outcomes. 

False positive rate that was defined as the proportion of individuals who were wrongly classified 

as positively treatment response. Discriminator accuracy is defined as proportion of correctly 

classified real or fake samples. Replication error is defined as cross entropy −𝑦𝑓 log 𝑦̂𝑓  where  

𝑦̂𝑓 = 𝐺(𝑥, 𝑡, 𝑡∗, 𝑦𝑓 , 𝑧𝐺 , 𝜃𝑔), 𝑡 = 𝑡∗ and separate distance is defined as 

1

𝑛
∑ |𝑦𝑖𝑓 − 𝑦̂𝑖𝑓|𝑛

𝑖=1 ,           

where 𝑦̂𝑖𝑓 = 𝐺(𝑥, 𝑡, 𝑡∗, 𝑦𝑓 , 𝑧𝐺 , 𝜃𝑔), 𝑡 ≠ 𝑡∗.  

Results 

Simulations 
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We first examine the performance of the MGANITE in estimating the ITE of binary treatment 

using simulations. A synthetic dataset was generated as follows. A total of 10,000 individuals 

with 30-dimentinal feature vectors followed the normal distributions 𝑁(0, 𝐼).  Let 

 𝑦̂𝑖
0 = 0.05 + 0.4𝑥𝑖1

2 + 0.25𝑥𝑖2 + 𝑛𝑖0, 𝑛𝑖0~𝑁(0, 0.05) 

and  

𝑦̂𝑖
1 = 0.15 + 0.5𝑥𝑖1

2 + 0.25𝑥𝑖1𝑥𝑖2 + 0.25𝑥𝑖2 + 𝑛𝑖1 ,      𝑛𝑖1~𝑁(0, 0.05). 

Then, the potential outcomes were generated as 

𝑦𝑖
0 = {

1 𝑦̂𝑖
0 ≥ 0.5

0 𝑦̂𝑖
0 < 0.5

         and       𝑦𝑖
1 = {

1 𝑦̂𝑖
1 ≥ 0.5

0 𝑦̂𝑖
1 < 0.5

. 

Treatment was assigned by the Bernoulli distribution:    

𝑀 = 𝑇|𝑋~𝐵𝑒𝑟𝑛(𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑡
𝑇𝑋 + 𝑛𝑡)),  

where 𝑊𝑡
𝑇~𝑢(−0.1,0.1)30×1, 𝑛𝑡~𝑁(0,0.1), and Bern represented the Bernoulli distribution.  

Treatment effect can take three values of 1, 0 and -1. In other words, 

 𝜉𝑖 = {

1                                   𝑦𝑖
1 = 1, 𝑦𝑖

0 = 0

0 𝑦𝑖
1 = 1, 𝑦𝑖

0 = 1 𝑜𝑟𝑦𝑖
1 = 0, 𝑦𝑖

0 = 0 

−1                                𝑦𝑖
1 = 0, 𝑦𝑖

0 = 1

 

We compared MGANITE  with linear regression (LR) (Makar  et al. 2019),   logistic 

regression (LogR) (Emmert-Streib and Dehmer 2019; Makar  et al. 2019), support vector 

machine (SVM)  (Makar  et al. 2019),  𝑘- nearest neighbor (k-NN) ( Crump et al. 2008), 

Bayesian linear regression (BLR) (Johansson  et al. 2016), causal forest (CForest) ( Wager and 

Athey 2015),  and random forest (RForest) ( Breiman 2001). We used six methods: MGANITE, 

LR, LogR, SVM, kNN and RForest to estimate the counterfactual potential outcomes and 

calculated  the mean square error (MSE) between the estimated treatment effect and the true 

treatment effect, standard deviation (STD) and prediction accuracy defined as the proportions of 

correctly predicted potential outcomes.  Table 1 presents MSE, STD and prediction accuracy of 
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six methods to fit the generated data.  We observed that the CGANs more accurately estimated 

the potential outcomes than the other five state-of-the-art methods. Figure 2 presented the true 

counterfactuals and estimated counterfactuals using MGANITE. We observed that the 

MGANITE reached remarkably high accuracy for estimating counterfactuals.  

The treatment effect estimation of eight methods were summarized in Table 2.  Table 2 

showed that the MGANITE had the highest accuracy of estimation of all treatment effects: 

average treatment effect (ATE), average treatment effects on the treated (ATT) and  average 

treatment effect on the control (ATC), followed by random forests. We observed that the 

estimation of ATE using all methods were inflated. The inflation rates of ATE using MGANITE 

and RForect were 3.9% and 7.9%, respectively. The SVM reached the inflation rate of the 

estimation of ATE as high as 29.8%. All inflation rates of estimation of ATE using LR, LogR, 

SVM, KNN and BLR were very high. The simulations also showed that  the false positive rate 

that was defined as the proportion of individuals who were wrongly classified as positively 

treatment response using CGANs, LR, LogR, SVC, KNN(5), KNN(10), BLR, causal forest and 

random forest were 3.9%, 24.7%, 28.1%, 29.8%, 28/1%, 19.7%, 25.3%, 9% and 8.4%, 

respectively. The results showed that false positive rates of LR, LogR, SVM, KNN and BLR for 

prediction of positive treatment response were too high to be applied to treatment selection. Even 

random forest reached the false positive rate as high as 8.4%. Table 2 also showed that the 

number of individuals that showed positive treatment effect increased while the number of 

individuals that showed no treatment effect decreased from ground truth. 

Next we  examine the performance of the MGANITE in estimating the ITE of continuous 

treatment using simulations. A synthetic dataset was generated as follows.  
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1. Draw the covariate variable 𝑋 from the standard normal distribution for 10,000 

individuals. 

2. The treatment 𝑇 is exponentially distributed as 𝑃(𝑡) = 𝑒−(𝑡−1), 𝑡 ≥ 1. Define 𝑔(𝑡) =

0.1𝑡2. 

3. Define a nonlinear function 𝑓(𝑥) =
1

2+exp (−20(𝑥−
1

3
))

. 

4. Define 𝑦𝑖
0 = 0.3 + 𝑓(𝑥) + 𝑛𝑖

0, 𝑖 = 1, . . , 10,000, where 𝑛𝑖
0 is a randomly sampled 

noise variable from a normal distribution 𝑁(0, 0.01). 

5. Define 𝑦𝑖
1 = 0.3 + 𝑓(𝑥) + 𝑔(𝑡) + 𝑛𝑖

1, 𝑖 = 1, … , 10,000, where 𝑛𝑖
1 is a randomly 

sampled noise variable from a normal distribution 𝑁(0, 0.01). 

6. Treatment assignment indicator variable 𝑀𝑖 is drawn from a Bernoulli distribution 

with 𝑃 = 0.5 for each subject. 

The mean  square errors (MSE) for the MGANITE, Linear Regression, KNN, Bayesian ridge 

regression,  random forest regression and support vector machine regression were 0.011004916, 

0.08500695,  0.012520364,  0.085007192, 0.014281599, 0.013962992, respectively. Figures 3 A 

and 3B plotted the true ITE and estimated ITE  for in-samples and out-of-samples data, using six 

methods: MGANITE, LR, KNN, BLR, RF (R), and SVM, respectively, where dash straight line 

indicated that the true ITE and estimated ITE were equal. We observed  from Figures 3A and 3B 

that  many green cross points for both in-sample and out-of-sample data were much closer to the 

dash straight line than other types of points. This showed that  the estimated ITE points using 

MGANITE were much closer to the true ITE point than using other five methods. In other 

words, the estimator of ITE using MGANITE  was more accurate than that using other five 
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methods. The results clearly demonstrated that the MGANITE outperformed  5 other state-of-

the-art treatment effect estimation methods.  

     To further evaluate the performance of  MGANITE, we provided Figure 4 that plotted 

receiver operating characteristic (ROC) curve for evaluation of  the ability of the  MGANITE to 

predict potential outcomes of treatment. Our calculation showed that area under the ROC curve 

(AUC) for MGANITE reached 0.98, a very high value. The ROC curve and AUC value 

demonstrated that power of the MGANITE for prediction of the potential outcomes of the 

treatments was very high.   

Real Data Analysis  

The proposed MGANITE was applied to 256 newly diagnosed acute myeloid leukemia (AML) 

patients for clinical trial dataset ( Kornblau  et al. 2009).We first presented the results of 

treatment HDAC, HDAC+IDA  (101) vs all other drugs (111). A key issue for MGANITE is 

how to train MGABITE. To tracking the training process of MGANITE, we presented Figure 5 

that showed ATE, discriminator accuracy, replication error and separate distance curves as a 

function of number of batches.  

          We observed from Figure 5 that discriminator accuracy converged to 1, replication error 

converged to zero, separation distance converged to a constant and ATE converged to a stable 

value. Figure 4 demonstrated that MGANITE was trained very well. 

      Next we compare the treatment effect estimations using nine methods: MGANITE, LR, 

LogR, SVM, KNN(5), KNN(10), BLR, Rforest (C) and Rforest (R) where 5 and 10 were the 

number of neighbors. Treatment was HDAC or  HDAC+IDA, and  85 protein expressions and 
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other geographical variables were used as covariates. The response status (response or no 

response)  was used as the outcome.  

 Table 3 summarized results of estimation of HDAC treatment effect using MGANITE and 

other eight methods where individuals with HDAC or HDAC+IDA were taken as the treated 

population, individuals with other drugs were taken as the control population. Comparison of 

treatment effect estimation algorithms on real data analysis is not easy because of the lack of 

ground truth treatment effects and small sample sizes. In general, using MGANITE, we observed 

that the majority of individuals who were treated by other drugs did not show any  response and 

that 65% of the individuals who were treated by HDAC or HDAC+IDA responded. Only 13.5% 

of individuals who were treated by other drugs responded. To illustrate the difference between 

the estimated treatment effect and treatment response,  we presented Figure 6 that showed  the 

histogram of the estimated effects of the treatments HDAC or  HDAC+IDA vs other drugs using 

MGANITE (Figure 6A), and observed the number of the response of the  individuals in the 

population who were treated with  HDAC or  HDAC+IDA vs other drugs (Figure 6B).  ITE was 

calculated based on both of factual and counterfactual. We observed that 𝐼𝑇𝐸 = 0 consisted of 

two scenarios: (1) no response of the patients to any drugs and (2) response of the patients to 

both HDAC or  HDAC+IDA, and other drugs. A proportion of the patients with response  to 

HDAC or  HDAC+IDA on the right side of  Figure 6B and the patient with response to other 

drugs on the left side of the Figure 6B had 𝐼𝑇𝐸 = 0. The observed response of the patients to one 

drug did not imply that these patients would not respond to other drugs. However, 𝐼𝑇𝐸 = 1 or 

𝐼𝑇𝐸 = 0 implied that the patients responded to only one type of drug.  

To further compare the performance of the MGANITE and other methods for evaluation of ITE, 

we  split  a given data set into an in-sample dataset (190 samples), used for the initial parameter 
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estimation and model selection, and an out-of-sample dataset (22 samples), used to evaluate  

performance of ITE estimation. The results were summarized in Table 4. We observed that 

difference in the estimated ATT, ATC, ATE and proportions of ITE between In-samples and out-

of-samples using  MGANITE were much smaller than using other methods. This showed that the 

ITE estimation using MGANITE was more robust than using other methods. We calculated the 

Kullback-Leibler  (K-L) divergence between the distributions of ITE using in-sample and out-of-

samples and nine methods.  The results were summarized in Table 5. Table 5 showed that  K-L 

divergence using MGANITE was much smaller than that using other methods, which implied 

that MGANITE was more robust than other eight methods. 

    LASSO was used to identify biomarkers for prediction of treatment effect and treatment 

selection. Table 6 listed the top 30 biomarkers identified by LASSO. All top 30 biomarkers 

explained 36.82% of variation  of HDAC or HDAC+IDA treatment effect. The top Gene GSK3 

accounted for 4.4% of the explanation of treatment effect variation. 

    Garson's algorithm (Garson 1991; Zhang et al. 2018; Siu 2017) that describes the relative 

magnitude of the importance of  input variables (biomarkers)  in its connection with outcome 

variables (ITE) of the neural network can also be used to identify biomarkers for predicting the 

ITE. Top 30 biomarkers identified by  Garson algorithm were listed in Table S1 where relative 

contribution of each biomarker to the ITE variation  and cumulative contribution of biomarkers 

to the ITE variation were also listed in Table S1. The correlation coefficient between the 

importance  ranking of the markers using Garson algorithm and LASSO was only -0.05.  

     Next, we study the joint estimation of effects of the multiple treatments. The number of 

individuals that were treated with HDAC, HDAC+IDA and other dugs was 37, 54 and 121, 

respectively. The widely used treatment estimation methods with multiple treatments are 
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simultaneous estimation of effects of pairwise treatments. We estimated the effects of the 

pairwise treatments HDAC versus HDAC+IDA, HDAC versus other drugs, and HDAC+IDA 

versus other drugs. The results were summarized in Table 7. Pairwise comparisons listed in 

Table 7 did not present the results of the treatment compared with a placebo (without using any 

drugs). We compared the effect of one treatment with another treatment. Specifically, we made 

pairwise comparisons: HDAC vs other drugs, HDAC+IDA vs other drugs, and HDAC+IDA vs 

HDAC. The average treatment effects  (ATE) of these three pairwise treatments: HDAC vs other 

drugs, HDAC+IDA vs other drugs, and HDAC+IDA vs HDAC using MGANITE, were 0.1001, 

0.2311 and 0.1310, respectively. This demonstrated that on the average, the effect of the 

HDAC+IDA was the largest among the three treatments: HDAC+IDA, HDAC and other drugs, 

followed by the treatment HDAC. In other words, the treatment HDAC was better than other 

drugs, in turn, the combination of HDAC and IDA was better than HDAC.  It was also noted that 

The effect of HDAC+IDA vs other drugs – effect of HDAC vs other drugs =0.2311-0.1001 

= 0.1310 = effect of HDAC+IDA vs HDAC.  

    However, using LR, LogR, SVM, Rforest (C) and Rforest (R), we observed that HDAC was 

the best treatment. This conclusion violated the biological interpretation. We explain the reasons 

that caused this incorrect conclusion as follows. The traditional methods for treatment estimation 

are mainly based on the population average of the treatment responses.  The number of observed 

responses and no responses of the individuals treated with other drugs was 66 and 55, 

respectively. The average response rate of the other drugs was 0.545. The number of observed 

responses and no responses of the individuals treated with HDAC was 29 and 8, respectively. 

The average response rate of HDAC was 0.784. The number of observed response and no 

response of individuals treated with HDAC + IDA was 33 and 21, respectively. The average 
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response rate of HDAC +IDA was 0.611. Therefore,  estimators of ATE of  treatment HDAC vs 

other drugs using LR, LogR, SVM, Rforest (C) and Rforest (R)  were higher than the estimators 

of ATE of treatment HDAC + IDA. However, the individuals treated with HDAC+IDA usually 

did not respond to the treatment HDAC. Therefore, the number of individuals with no response 

should be adjusted to be 62. After adjustment, the response rate of HDAC was changed to 0.319. 

Therefore, after adjustment, the ATE of HDAC vs other drugs was smaller than the ATE of 

HDAC +IDA. Then, the estimators of the pair-wise treatments using MGANITE were consistent 

with the treatment responses after the data were adjusted. This example showed that these 

traditional methods that were designed for single treatment effect estimation should be modified 

when they are applied to multiple treatment effect estimation.  

     Enrichment analysis to top ranking variables for explanation of treatment effect variation was 

performed by hypergeometric test via Reactome Pathway Database (RPD) (Jassal et al. 2020) to 

assess whether the number of identified biomarkers  associated with Reactome pathway is over-

represented than expected. Original P-value from hypergeometric test was then adjusted by FDR 

for multiple test correction. We found top ranking biomarkers for explanation of treatment effect 

variation were enriched in multiple cancer related pathways (Figure 7A) ,including intrinsic 

pathway for apoptosis (R-HSA-109606, P-value=2.86x10-14), Signaling by Interleukins (R-HSA-

449147, P-value=2.86x10-14), Programmed Cell Death (R-HSA-5357801, P-value=9.7x10-11), 

PIP3 activates AKT signaling (R-HSA-1257604, P-value=2.98x10-8), RUNX3 regulates WNT 

signaling (R-HSA-8951430, P-value=1.03x10-5) , RNA Polymerase II Transcription (R-HSA-

73857, P-value=9.4x10-5). In addition, we could find the drug target of idarubicin (TOP2A) and 

Cytarabine (POLB) form significant protein-protein interaction network (P<1.0x10-16),  
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indicating that the predictive biomarkers worked as the direct interactive proteins of cancer drug 

targets (Figure 7B).  

Discussion 

In this paper, we presented the MGANITE coupled with sparse techniques as a framework to 

estimate the ITEs and select the optimal treatments. We demonstrated that the proposed 

MGANITE had several remarkable features. 

     First, the MGANITE extended the GANITE from binary treatment to all types of treatments: 

binary, categorical and continuous treatments. We showed that the MGANITE had much higher 

accuracy for estimation of ITE than other state-of-the-art methods.  

     Second, in-sample and out-of-sample analysis  showed that the the K-L divergence between 

the distributions of ITE  in-sample and out-of-samples  for MGANITE was much smaller than 

that for other methods, which implied that MGANITE was more robust than other state--of-the 

art methods.  

    Third, unlike many popular methods that are usually used to estimate the average effect of the 

single treatment,  the MGANITE  not only  can estimate the ITE of single treatment, but also can 

accurately  and jointly estimate the ITE of multiple treatments.  We also showed that the results 

of the joint estimation of multiple treatments suing other classical methods were inconsistent and 

might violated the biological interpretation.  

     Fourth, precision oncology is the identification of the right treatment for the right patient. The 

essential aim is to discover biomarkers that can accurately predict individual treatment effect for 

each individual.  Our results showed that the MGANITE with sparse techniques can identify a 
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set of biomarkers with significant biological features.  The following identified biomarkers were 

such typical examples.  

       GSK3 is a kinase so adaptable that it has been recruited evolutionarily to phosphorylate over 

100 substrates, and can regulate numerous cellular functions ( Beurel  et al. 2015).  GSK3 

phosphorylates HDAC3 and promotes its activity, including the neurotoxic activity of HDAC3 

( Bardai and  D'Mello 2011).  GSK3 also phosphorylates HDAC6 to modify its activity and the 

link between GSK3beta and HDAC6 involved in neurodegenerative disorders (Chen et al. 2010). 

    Bilirubin is a reddish yellow pigment generated when the normal red blood cells break. 

Normal levels ranged from  0.2  to 1.2 mg/dL(Davis 2020). In adults, indirect hyperbilirubinemia 

can be due to overproduction, impaired liver uptake or abnormalities of conjugation (Gondal 

2016).  For AML patients,  enasidenib is an inhibitor of mutant IDH2 proteins used to treat newly 

diagnosed mutant-IDH2 AML patients. The most common treatment-related adverse events were 

indirect hyperbilirubinemia (31%), nausea (23%), and  fatigue ( Steinwascher et al. 2015).  

Therefore, bilirubin is an important biomarker for monitoring adverse effect in AML patients 

who receive treatment. 

     Preclinical studies have discovered that Smac mimetics can directly cause cancer cell 

death, or make tumor cells become more sensitive to various cytotoxic treatment agents, 

including conventional chemotherapy, radiotherapy, or new drugs (Gulda 2015).  There is 

synergistic interaction of Smac mimetic and HDAC inhibitors in AML cell lines, and Smac 

mimetic and HDAC inhibitors can trigger necroptosis when caspase activation is blocked (Meng 

et al. 2016).  
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AKT.p308 and Src.p527 are phosphorylated signal transduction proteins. These two proteins 

were found to have lower expression in M0, M1, M2, but they  had higher levels in the other 

AML French-American-British (FAB) types. The expression of those two proteins, together with  

22 other proteins, can be used to define distinct signatures for each FAB type ( Kornblau et al. 

2009).  

     PTEN is a tumor suppressor protein. Promising anti-cancer agents, HDAC inhibitors, 

particularly trichostatin A (TSA), can promote PTEN membrane translocation.  Meng et al 

(Meng et al. 2016) revealed that non-selective HDAC inhibitors, such as TSA or suberoylanilide 

hydroxamic acid (SAHA), induced PTEN membrane translocation through PTEN acetylation at 

K163 by inhibiting HDAC67. Similarly, treatment with an HDAC6 inhibitor alone promoted 

PTEN membrane translocation and correspondingly dephosphorylated AKT. The combination of 

celecoxib and an HDAC6 inhibitor synergistically increased PTEN membrane translocation and 

inactivated AKT ( Zhang and Gan 2017).  

    Our results showed that multiple treatments improved efficiency of drugs for curing ANL. 

This can be biologically explained.  HDAC inhibitors have emerged as a potent and promising 

strategy for the treatment of leukemia via inducing differentiation and apoptosis in tumor cells 

(Jin et al. 2016).  A phase II study with 37 refractory acute myelogenous leukemia (AML) 

patients showed only minimal activity of Vorinostat(HDACi), and Vorinostat failed to control 

the leucokyte count among most AML patients ( Schaefer  et al. 2009). A preclinical study 

revealed that the combination regimen of chidamide (a novel orally active HDAC inhibitor) and 

IDA could rapidly diminish tumor burden in patients with refractory or relapsed AML (Li et al. 

2017). A Phase II trial of Vorinostat with idarubicin (IDA) and Ara-C for patients with newly 

diagnosed AML or myelodysplastic syndrome revealed good activity with an overall response 
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rates of 85%. No excess toxicity due to Vorinostat was observed ( Garcia-Manero  et al. 2012). 

Taken together, HDACs in combination therapy with IDA or other chemotherapeutic drugs 

showed encouraging clinical activity in different haematologic maligancies. This explained that 

the combination of HDAC and IDA was the best treatment. 

Although the MGANITE showed remarkable features in ITE estimation and optimal treatment 

selection, the results in this paper were very preliminary. Training stable GANs was a 

challenging task. The training process was inherently unstable, resulting in inaccurate estimation 

of ITEs. In this study, we ignored unobserved confounders, unmeasured variables that affect both 

patients’ medical prescription and their outcome. Overlooking the presence of unobserved 

confounders may lead to biased results. The main purpose of this paper is to stimulate discussion 

about how to use AI as a powerful tool to improve the estimation of ITEs and optimal treatment 

selection. We hope that our results will greatly increase the confidence in using AI as a driving 

force to facilitate the development of precision oncology.  
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Figure Legend 

Figure 1. Scheme of CGAN for the estimation of potential outcomes. 

Figure 2A. The true potential outcomes with treatment 𝑌1  and estimated potential outcomes 𝑦̂1 

using CGANs, where 𝑥 axis denoted a value of covariate 𝑋1, 𝑦  axis denoted the potential 

outcome,  dot in blue color represented the true outcome 𝑌1 and dot in red color represented the 

estimated outcomes 𝑦̂1 . 

Figure 2B. The true potential outcomes without treatment 𝑌0and estimated potential outcomes 

𝑦̂0 using CGANs, where 𝑥 axis denoted a value of covariate 𝑋1, 𝑦  axis denoted the potential 

outcome,  dot in blue color represented the true outcome 𝑌0 and dot in red color represented the 

estimated outcomes 𝑦̂0. 

Figure 3A. True ITE and estimated ITE for in-sample data using six methods: MGANITE, LR, 

KNN, BLR, RF (R), and SVM, where MGANTE was denoted by green cross point, LR was 

denoted by orange point, KNN was denoted by green point, BLR was denoted by red point, RF 

(R) was denoted by purple point and SVM  was denoted by dark red point, 𝑥 axis denoted the 

true ITE and 𝑦 axis denoted the estimated ITE. 

Figure 3B. True ITE and estimated ITE for out-of-sample data using six methods: MGANITE, 

LR, KNN, BLR, RF (R), and SVM, where MGANTE was denoted by green cross point, LR was 

denoted by orange point, KNN was denoted by green point, BLR was denoted by red point, RF 

(R) was denoted by purple point and SVM  was denoted by dark red point, 𝑥 axis denoted the 

true ITE and 𝑦 axis denoted the estimated ITE. 
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Figure 4. ATE, discriminator accuracy, replication error and separate distance curves as a 

function of number of batches where 𝑥 axis denoted the number of batches, 𝑦 axis denoted 

values of ATE,  discriminator accuracy, replication error and separation distance for ATE, 

discriminator, replication and separation curves, respectively,  red, orange, blue and green curves 

were ATE,  discriminator, replication and separation curves.   

Figure 5. Receiver operating characteristic (ROC) curve for evaluation of performance of 

MGANITE.  

Figure 6A. Histogram of estimated drug treatment effect using CGANs, where 𝑥 axis denoted 

the value of ITE and  𝑦 axis denoted the number of patients,     𝐼𝑇𝐸 = +1 denoted the ITE of 

patients treated with HDAC or HDAC+IDA, 𝐼𝑇𝐸 = −1 denoted the ITE of patients treated with 

other drugs, and  𝐼𝑇𝐸 = 0 denoted the ITE of  two groups of patients: one group of the patients  

treated with HDAC or HDAC+IDA and another group of the patients treated with other drugs.  

Figure 6B. Histogram of observed drug treatment response where 𝑥 axis indicated three 

scenarios as described in Figure 4B and  𝑦 axis denoted the number of patients,  the right side in 

the Figure 4B  denoted the number of  the patients only responding to the HDAC or 

HDAC+IDA, the middle denoted the number of the patients that responds to both (HDAC or 

HDAC+IDA) and other drugs or did not respond to both (HDAC or HDAC+IDA) and other 

drugs, and the left side denoted the number of patients only responding to the other drugs.  

Figure 7. Reactome pathway analysis and protein-protein interaction (PPI) network analysis to 

top ranking biomarkers for explanation of treatment effect variation.  

Figure 7A. Enrichment analysis to top 44 ranking biomarkers  for explanation of treatment 

effect variation with Reactome pathway database by hypergeometric test to assess whether the 
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number of identified biomarkers associated with Reactome pathway was over-represented than 

expected. Original P-value from hypergeometric test was then adjusted by FDR for multiple test 

correction. Top 15 most significant enriched pathways had been showed.  

Figure 7B. PPI network analysis was performed by String 11.0 to show the protein-protein 

interaction among top ranking biomarkers. We found that these proteins were highly interacted 

which was consistent with pathway enrichment analysis (PPI enrichment P-value is 1.0e-16). 
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Table 1. Performance of six methods for estimating 

the potential outcomes.  

MSE STD Accuracy 

0.062 0.235 0.938 

0.104 0.305 0.896 

0.120 0.325 0.880 

0.126 0.332 0.874 

0.148 0.355 0.852 

0.098 0.297 0.902 
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Table 2.  Treatment effects estimated for simulation data using nine 

methods.  

 Methods ATT ATC ATE ITE=-1 ITE=0 ITE=1 

Ground Truth 0.391 0.321 0.356 0 322 178 

MGANITE 0.399 0.341 0.37 0 315 185 

LR 0.52 0.369 0.444 0 278 222 

LogR 0.52 0.393 0.456 0 272 228 

SVM 0.524 0.401 0.462 0 269 231 

KNN(5) 0.508 0.401 0.454 1 271 228 

KNN(10) 0.524 0.325 0.424 1 286 213 

BLR 0.524 0.369 0.446 0 277 223 

RForest (C) 0.452 0.325 0.388 0 306 194 

RForest (R) 0.431 0.337 0.384 1 306 193 
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Table 3. Treatment effects estimated for AML dataset using nine methods.  

Methods ATT ATC ATE Number of individuals with positive treatment effect 

  
      

HDAC and 

HDAC+IDA No Difference Other Drugs 

CGANs 0.011 0.356 0.208 59 138 15 

LR 0.033 0.207 0.107 62 112 38 

LogR 0.083 0.209 0.137 63 115 34 

SVM 0.112 0.165 0.135 65 130 17 

KNN(5) 0.248 -0.011 0.137 55 131 26 

KNN(10) 0.314 0.066 0.208 62 132 18 

BLR 0.129 0.139 0.133 57 136 19 

RForest (C) 0.157 0.286 0.212 70 117 25 

RForest (R) 0.052 0.099 0.072 37 155 20 
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Table 4. Treatment effects estimated for AML dataset using nine methods.    

In-Sample       Proportion 

Method ATT ATC ATE  ITE=-1  ITE=0  ITE=1  

MCGAN 0.3152 0.2733 0.2911 0.0842 0.5474 0.3684 

LR 0.1077 -0.0210 0.0339 0.2474 0.4789 0.2737 

BLR 0.0843 0.0817 0.0828 0.1158 0.6684 0.2158 

KNN(5) -0.0247 0.1743 0.0895 0.1474 0.6158 0.2368 

KNN(10) 0.0494 0.1835 0.1263 0.1211 0.6316 0.2474 

RF ( C ) 0.2099 0.0826 0.1368 0.1421 0.5789 0.2789 

RF ( R ) 0.0852 0.0459 0.0626 0.1316 0.6737 0.1947 

LogR 0.1358 0.1193 0.1263 0.1579 0.5579 0.2842 

SVM 0.1081 0.0571 0.0788 0.1158 0.6263 0.2579 

Out-of-Sample       Proportion 

Method ATT ATC ATE  ITE=-1  ITE=0  ITE=1  

MCGAN 0.2000 0.3266 0.2691 0.0455 0.6364 0.3182 

LR 0.4974 0.1222 0.2928 0.0909 0.5000 0.4091 

BLR 0.3470 0.3129 0.3284 0.0000 0.5909 0.4091 

KNN(5) 0.3000 0.5000 0.4091 0.0455 0.5000 0.4545 

KNN(10) 0.2000 0.5000 0.3636 0.0000 0.6364 0.3636 

RF ( C ) 0.0000 0.3333 0.1818 0.0455 0.7273 0.2273 

RF ( R ) 0.2600 0.3583 0.3136 0.0000 0.7273 0.2727 

LogR 0.6000 0.4167 0.5000 0.0000 0.5000 0.5000 

SVM 0.3502 0.2823 0.3132 0.0000 0.5455 0.4545 
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Table 5. K-L divergence between the distribution of ITEs using in-samples and out-of-

samples.   

Methods Kullback–Leibler divergence 

MGANITE 0.00920    

LR 0.04123   
BLR 0.08201   
KNN(5) 0.06024   
KNN(10) 0.06293   
RF ( C ) 0.02932   
RF ( R ) 0.06407   
LogR 0.09887   
SVM 0.07913    
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Table 6.  Top ranking variables for explanation of treatment effect variation. 
  

Gene Name  R-Square (Single) R-Square (Accumulated) Gene Name  R-Square (Single) R-Square (Accumulated) 

GSK3 0.0440 0.0440 CD33 0.0134 0.1984 

BILIRUBIN 0.0411 0.0790 TP53 0.0118 0.2376 

DIABLO 0.0370 0.1266 STAT3 0.0085 0.2415 

SRC 0.0333 0.1329 BIRC5 0.0071 0.2421 

MEK 0.0282 0.1373 BAX 0.0070 0.2446 

AKT.p308 0.0244 0.1405 DJI 0.0061 0.2591 

Age_at_Dx 0.0226 0.1488 CREATININE 0.0057 0.2627 

PRIOR_XRT 0.0202 0.1776 BAD 0.0052 0.2646 

PSMC4 0.0196 0.1844 ACTB 0.0052 0.2816 

PB_Blast 0.0181 0.1858 WBC 0.0045 0.2922 

BM_Blast 0.0167 0.1878 PRIOR_MAL 0.0042 0.3190 

CD20 0.0167 0.1883 FIBRINOGEN 0.0038 0.3213 

NRP1 0.0147 0.1914 STAT6 0.0033 0.3383 

TP38.p 0.0143 0.1954 CD13 0.0033 0.3409 

PSMC4 0.0135 0.1971 PTEN 0.0030 0.3682 
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Table 7. Multiple treatment effects estimated for AML dataset using nine methods.    

  ATE Number of individuals with treatment effect 

Method HDAC vs Other HDAC No Difference Other 

GANITE 0.10011 59 115 38 

LR 0.11488 58 122 32 

LogR 0.08962 54 123 35 

SVM 0.14627 59 140 13 

KNN(5) 0.18868 62 128 22 

KNN(10) 0.35377 80 127 5 

BLR 0.08599 45 138 29 

Rforest (C) 0.22642 73 114 25 

Rforest (R) 0.21274 58 145 9 

Method HDAC+IDA vs Other HDAC+IDA No Difference Other 

GANITE 0.23111 79 103 30 

LR 0.0965 59 115 38 

LogR 0.21226 56 115 41 

SVM 0.24528 52 138 22 

KNN(5) 0.10115 62 133 17 

KNN(10) 0.16038 63 138 11 

BLR 0.13066 49 137 26 

Rforest (C) 0.07075 70 106 36 

Rforest (R) 0.08349 43 155 14 

Method HDAC+IDA vs HDAC HDAC+IDA No Difference HDAC 

GANITE 0.131 52 136 24 

LR -0.01838 36 130 46 

LogR -0.01887 45 118 49 

SVM -0.06278 9 181 22 

KNN(5) 0.02358 34 149 29 

KNN(10) -0.10849 11 167 34 

BLR 0.01516 40 139 33 

Rforest (C) -0.06604 31 136 45 

Rforest (R) -0.08208 8 184 20 
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Figure 1. Scheme of MGANITE for the estimation of potential outcomes. 
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Figure 2A. The true potential outcomes with treatment 𝑌1  and estimated potential outcomes 𝑦̂1 

using MGANITE, where 𝑥 axis denoted a value of covariate 𝑋1, 𝑦  axis denoted the potential 

outcome,  dot in blue color represented the true outcome 𝑌1 and dot in red color represented the 

estimated outcomes 𝑦̂1 . 

Figure 2B. The true potential outcomes without treatment 𝑌0and estimated potential outcomes 

𝑦̂0 using MGANITE, where 𝑥 axis denoted a value of covariate 𝑋1, 𝑦  axis denoted the potential 

outcome,  dot in blue color represented the true outcome 𝑌0 and dot in red color represented the 

estimated outcomes 𝑦̂0. 
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Figure 3A. True ITE and estimated ITE for in-sample data using six methods: MGANITE, LR, 

KNN, BLR, RF (R), and SVM, where MGANTE was denoted by green cross point, LR was 

denoted by orange point, KNN was denoted by green point, BLR was denoted by red point, RF 

(R) was denoted by purple point and SVM  was denoted by dark red point, 𝑥 axis denoted the 

true ITE and 𝑦 axis denoted the estimated ITE. 
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Figure 3B. True ITE and estimated ITE for out-of-sample data using six methods: MGANITE, 

LR, KNN, BLR, RF (R), and SVM, where MGANTE was denoted by green cross point, LR was 

denoted by orange point, KNN was denoted by green point, BLR was denoted by red point, RF 

(R) was denoted by purple point and SVM  was denoted by dark red point, 𝑥 axis denoted the 

true ITE and 𝑦 axis denoted the estimated ITE. 
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Figure 4. Receiver operating characteristic (ROC) curve for evaluation of performance of 

MGANITE.  
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Figure 5. ATE, discriminator accuracy, replication error and separate distance curves as a 

function of number of batches where 𝑥 axis denoted the number of batches, 𝑦 axis denoted 

values of ATE,  discriminator accuracy, replication error and separation distance for ATE, 

discriminator, replication and separation curves, respectively,  red, orange, blue and green curves 

were ATE,  discriminator, replication and separation curves.   
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Figure 6A. Histogram of estimated drug treatment effect using CGANs, where 𝑥 axis denoted 

the value of ITE and  𝑦 axis denoted the number of patients,     𝐼𝑇𝐸 = +1 denoted the ITE of 

patients treated with HDAC or HDAC+IDA, 𝐼𝑇𝐸 = −1 denoted the ITE of patients treated with 

other drugs, and  𝐼𝑇𝐸 = 0 denoted the ITE of  two groups of patients: one group of the patients  

treated with HDAC or HDAC+IDA and another group of the patients treated with other drugs.  
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Figure 6B. Histogram of observed drug treatment response where 𝑥 axis indicated three 

scenarios as described in Figure 4B and  𝑦 axis denoted the number of patients,  the right side in 

the Figure 4B  denoted the number of  the patients only responding to the HDAC or 

HDAC+IDA, the middle denoted the number of the patients that responds to both (HDAC or 

HDAC+IDA) and other drugs or did not respond to both (HDAC or HDAC+IDA) and other 

drugs, and the left side denoted the number of patients only responding to the other drugs.  
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Figure 7. Reactome pathway analysis and protein-protein interaction (PPI) network analysis to 

top ranking biomarkers for explanation of treatment effect variation.  

Figure 7A. Enrichment analysis to top 44 ranking biomarkers  for explanation of treatment 

effect variation with Reactome pathway database by hypergeometric test to assess whether the 

number of identified biomarkers associated with Reactome pathway was over-represented than 

expected. Original P-value from hypergeometric test was then adjusted by FDR for multiple test 

correction. Top 15 most significant enriched pathways had been showed.  

Figure 7B. PPI network analysis was performed by String 11.0 to show the protein-protein 

interaction among top ranking biomarkers. We found that these proteins were highly interacted 

which was consistent with pathway enrichment analysis (PPI enrichment P-value is 1.0e-16). 
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Table S1. Top 30 biomarkers identified by  Garson algorithm. 
   

Biomarkers  Ri Sum_Ri Biomarkers  Ri Sum_Ri Biomarkers  Ri Sum_Ri 

CD20 0.0192 0.0192 ALBUMIN 0.0126 0.3766 AKT 0.0110 0.7250 

EFS 0.0187 0.0380 INFECTION 0.0124 0.3890 GSK3.p 0.0110 0.7360 

CD7 0.0168 0.0547 PB_Blast 0.0122 0.4258 MTOR 0.0109 0.7468 

SSBP3 0.0163 0.0711 S6RP.p240.244 0.0121 0.4379 BAD.p136 0.0108 0.7577 

BAD.p112 0.0161 0.0871 SURVIVIN 0.0121 0.4500 TP38.p 0.0108 0.7684 

CREATININE 0.0159 0.1031 HGB 0.0120 0.4620 TP53 0.0107 0.7791 

CD10 0.0158 0.1189 STAT3.p727 0.0120 0.4740 ERk2.p 0.0106 0.7897 

BILIRUBIN 0.0157 0.1346 SEX 0.0120 0.4859 BAD.p155 0.0105 0.8002 

CG.group 0.0157 0.1503 Source 0.0119 0.4979 STAT5.p431 0.0102 0.8104 

CD13 0.0150 0.1653 BAX 0.0119 0.5097 MCL1 0.0101 0.8205 

AHD 0.0146 0.1799 TP 0.0118 0.5215 S6.p235 0.0101 0.8306 

FAB 0.0141 0.1940 BCAT 0.0118 0.5333 MEK 0.0101 0.8407 

RACE 0.0140 0.2080 CD34 0.0118 0.5450 ERK2 0.0101 0.8508 

FIBRINOGEN 0.0136 0.2216 XIAP 0.0117 0.5567 SSBP2 0.0100 0.8608 

CD33 0.0132 0.2348 TP27 0.0117 0.5684 PTEN.p 0.0100 0.8707 

BAD 0.0131 0.2479 MEK.p 0.0116 0.5800 PTEN 0.0099 0.8807 

S6 0.0131 0.2609 STAT3 0.0115 0.5915 SRC 0.0099 0.8906 

PKCA.p 0.0130 0.2740 ZUBROD.S 0.0113 0.6028 MYC 0.0099 0.9004 

Age_at_Dx 0.0129 0.2869 DJI 0.0113 0.6140 SMAC 0.0096 0.9101 

NRP1 0.0129 0.2998 PKCA 0.0112 0.6252 ACTB 0.0095 0.9195 

PLT 0.0129 0.3127 CCND1 0.0112 0.6364 AKT.p308 0.0094 0.9290 

PRIOR_MAL 0.0129 0.3256 GSK3 0.0112 0.6476 BCL2 0.0093 0.9382 

WBC 0.0129 0.3385 STAT6.p 0.0111 0.6587 D835 0.0092 0.9475 

CD19 0.0128 0.3513 STAT3.p705 0.0111 0.6698 STAT1.p 0.0091 0.9566 

PRIOR_CHEMO 0.0127 0.3640 BM_Blast 0.0111 0.6809 ITD 0.0090 0.9656 

LDH 0.0123 0.4013 BAK 0.0111 0.6920 P70S6K.p 0.0089 0.9745 
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AKT.p473 0.0123 0.4136 PRIOR_XRT 0.0110 0.7030 P70S6K 0.0087 0.9832 

PB_Blast 0.0122 0.4258 BCLXL 0.0110 0.7140 SRC.p527 0.0086 0.9919 

            MTOR.p 0.0081 1.0000 
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