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COVID-19 cases have peaked and declined rapidly in many low- and middle-income countries in recent 

months, in some cases after control measures were relaxed. For 11 such countries, the hypothesis that 

COVID-19 cases have declined mainly through low susceptibility levels, stemming largely from high 

levels of infection leading to (at least temporary) immunity, warrants serious consideration. The Reed-

Frost model, perhaps the simplest description for the evolution of cases in an epidemic, with only a few 

constant parameters, fits the observed case data remarkably well, and yields parameter values that are 

reasonable. The model results give infection levels of 45% and 79%, above the herd immunity threshold 

for each country under their current social distancing conditions. Reproduction numbers range between 

1.4 and 2.0, indicating that epidemic curves were “flattened” but not “suppressed”. Between 0.05% and 

2.86% of cases have been detected according to the estimates – values which are consistent with 

findings from serological studies. Overall infection fatality ratios for two of three countries studied are 

lower than expected from reported infection fatality ratios by age (which are based on studies of several 

high-income countries). COVID-19 may have lower age-specific fatality risks in some countries, due to 

differences in immune-response, prior exposure to coronaviruses, disease characteristics or other 

factors. We find that the hypothesis of control through low susceptibility would not have fit the evolution 

of reported cases in several European countries, even just after the initial peaks; instead, these 

countries reduced COVID-19 cases initially through disease control measures – and subsequent 

resurgences of cases obviously prove that those countries have infection levels well below those 

required for herd immunity. Our hypothesis that the 11 countries we studied have low susceptibility 

levels should now be tested further through immunity studies, and efforts should continue to determine 

the duration and extent of immunity to SARS-CoV-2 after infection. 
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Introduction 

 

Figure 1, based on a similar one produced by researchers at Imperial College London [1], illustrates 

how case numbers are expected to evolve during an epidemic under different conditions. The green 

curve shows expected cases for an uncontrolled outbreak. This curve has three main features: initial 

exponential growth in new cases, followed by a single peak as the cumulative cases reach a level at 

which the remaining susceptible population is not large enough to sustain further growth, and an 

exponential decline in new cases. The curve shape is characterised by two numbers. First, the basic 

reproduction number, R0, the average number of new infections caused by each current infected 

individual, at the outset of the disease outbreak when few people have been infected yet. Second, the 

mean generation time, tg, the average time between infection of one person and when that person 

infects other people. The peak of the curve is reached as the proportion of the population that remains 

susceptible drops below 1/R0. 

 

The red curve shows expected cases when governments and people take measures to control disease 

spread. The red curve displays largely the same features as the green – disease spread is only halted 

by high infection levels – but the curve is “flattened”, with cases spread out more over time and fewer 

cases at the peak. In this case, disease control measures reduce the reproduction number to an 

effective basic reproduction number, R0_e [2]. However, this number remains above 1, and the curve 

peaks when the proportion of the population that is susceptible reduces to 1/R0_e. Note that the “effective 

herd immunity threshold” (which is 1–1/R0_e) is not a fixed quantity: it depends on disease control 

measures and will increase when control measures are lifted; and only when the “full” or “natural” herd 

immunity threshold, 1–1/R0, is reached, through infection and/or vaccination, will the disease be 

constrained even in the absence of control measures. 

 

The blue curve shows the evolution of cases when disease control measures are sufficient to bring R0_e 

below 1. The curve is “crushed” or “suppressed”; the initial exponential growth in case numbers is halted 

and cases decline (almost always at a slower rate than for the green or red curves). In this case, 

because most people are still susceptible to the disease, it is possible for the disease to return if 

containment measures later allow R0_e to increase above 1, as shown in the dashed part of the blue 

curve in Figure 1. 

 

 

 

Figure 1. Typical disease outbreak curves in different scenarios [1]. 
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Patterns in reported cases 

 

Reported cases in several low- and middle-income countries (LMICs) have evolved in a manner that is 

very similar to the red and green curves of Figure 1. We show the 7-day rolling average of reported new 

cases for 11 such countries in Figure 2.  

 

 

 

 

Figure 2. COVID-19 reported cases in 11 selected low- and middle-income countries,  

together with best-fit curves from simple disease spread model.  

Blue circles show daily reported new cases of COVID-19 (based on a 7-day rolling average).  

Red squares (joined by straight lines) show best-fit outputs from linearized Reed-Frost model. 
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Other countries show similar patterns; we have chosen to study a subset with the clearest similarities 

to expected outbreak curves like the red and green curves of Figure 1. In all these countries, the 

reported cases have (1) grown exponentially, (2) reached a single clear peak and (3) declined 

exponentially. Regulations were most stringent, and compliance was greatest, in most of these 

countries, after the designation of the global pandemic in March and have relaxed to varying degrees 

in recent months – but cases continued to decline. None of these countries has reported a significant 

increase in new cases after the peak that would indicate a second wave (although cases in some 

countries have only recently passed the peak). Together, these observations point to a hypothesis that 

the outbreaks in these countries have reached sufficiently low levels of remaining susceptibility, and 

that the recently observed declines in new cases are because many people are not susceptible– at 

least temporarily. 

 

However, the numbers of cases in other countries – including most high-income countries (HICs) but 

also some LMICs – show patterns that are much different. Figure 3 shows 7-day rolling averages of 

reported cases for 6 such comparison countries. In these countries, cases have evolved in a manner 

that is similar to the first part of the blue curve of Figure 1. There have been peaks in numbers of 

reported cases, yet the decline is often longer and slower than the red or green curves would suggest. 

In some countries, there have been resurgences in cases, indicating that the initial suppression was 

not due to low levels of susceptibility. 

 

 

 

 

Figure 3. COVID-19 reported cases in 6 selected comparison countries,  

together with best-fit curves from test of simple disease outbreak model.  

Blue and brown circles show daily reported new cases of COVID-19 (based on a 7-day rolling 

average). Red squares (joined by straight lines) show best-fit outputs from linearized Reed-Frost 

model, fit only to the blue circles in the first peaks in cases. 
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Fit with disease outbreak model and estimation of outbreak parameters 

 

We test our hypothesis that the disease dynamics in these 11 countries has been driven primarily by 

susceptibility levels, by using a simple disease outbreak model and fitting to the reported cases. The 

outbreak model is a linearised Reed-Frost model [3], the textbook deterministic mathematical model for 

an epidemic. The curves produced by this model depend on just two parameters, namely the effective 

basic reproduction number (R0_e) and the mean generation time (tg). Expected reported cases are 

calculated by scaling the Reed-Frost model’s results by a detection rate (p) [4]. The parameters that 

produce the best-fit curve for reported cases in each country are determined partly analytically from the 

observed data and partly from least squares regression. Our model parameters (R0_e, tg and p) are 

constant over time – a beneficial assumption in that it avoids having too many free parameters, which 

might lead to good fits even if the model incorrectly describes the disease dynamics. Furthermore, in 

most of the countries studied, reported cases and reported deaths have followed similar trends (with 

changes in deaths lagging the corresponding changes in cases), even for countries with very low 

absolute numbers of reported cases and deaths – which suggests that the shapes of the curves likely 

reflect trends in actual cases and deaths, and that detection rates for both do not vary wildly over time 

[5]. 

 

The best-fit curves are shown with red squares in Figure 2, for each of the 11 LMICs studied, and the 

corresponding parameters are presented in Table 1. For South Africa, R0_e and tg are calculated from 

the slopes and width of the observed data, and p is calculated from the sum of reported cases up to the 

peak divided by the total population times the expected proportion of population infected at the peak. 

For the other 10 countries, we use the value of tg calculated for South Africa, and determine R0_e and p 

from fitting to the observed case data. The fits are close, with R-squared goodness-of-fit measures 

between 0.94 and 1.00. (The fits are somewhat less good for Central African Republic and Malawi, due 

to very low numbers of reported cases, and for Pakistan, due to undulations in reported cases which 

may signal variations in R0_e or p which the model assumes are constant.) These results demonstrate 

that the observed case patterns can indeed very accurately be described by an exponential outbreak 

halted by declining numbers of people still susceptible to infection. 

 

Table 1 presents best estimates for R0_e, p and the infection level (on 7 September), together with 

ranges of possible values (in parentheses). There are fairly wide ranges of reasonably possible values 

because the effects of R0_e and tg on the observed case curves are hard to distinguish – especially 

when the observed data has more “noise” or when the observed data does not include many points 

after the peak, and when values of R0_e are close to 1 [6]. For South Africa, R0_e has a best-estimate 

value of 1.74 (and a range of possible values between 1.45 and 1.90); the corresponding value of tg is 

7.8 days (4.8 days – 9.1 days) and of p is 1.41% (1.93% – 1.27%). For the other 10 countries, we 

determine best estimates of R0_e and p by assuming that tg = 7.8 days and fitting model outputs to data 

on reported cases. The value of tg = 7.8 days is consistent with studies of serial intervals – the time 

between illness onset in successive cases in a transmission chain, whose mean value should equal the 

mean generation time tg – by Ali et al. and others [7], and close to the values used in other COVID-19 

models [8]. We also conduct sensitivity analyses, determining ranges of possible values of R0_e and p 

if tg varies between 3 days and 11 days (wider than the range of possible values suggested in the 

literature [7,8]), and finding the values of R0_e and p that produce the best fits to the reported cases for 

the extreme values of tg. For all of the possible values of tg, and corresponding values of R0_e and p, the 

reported case curves generated do not change much, for each of the countries, and lead to the same 

implication that total infection levels in the countries have grown to the point where new cases are 

declining due to insufficient numbers of susceptible people (for the current value of R0_e, i.e., under 

current disease control conditions). 

 

The effective basic reproduction numbers, R0_e, in Table 1 range between 1.4 (in Bolivia) and 2.0 (in 

Madagascar). Estimates for the basic reproduction number, R0, the “natural” value in the absence of 

social distancing, for SAR-CoV-2 (the virus that causes COVID-19) in Wuhan at the outset of the global 

epidemic, range from 1.4 [9] up to 5.7 [10]. R0 might be expected to be higher in low-income countries  
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Table 1. Outbreak parameters for selected countries – effective basic reproduction  

number (R0_e), mean generation time (tg) and case detection rate (p) – and implied  

share of population infected as of 7 September.  

The best estimates for the parameters correspond to the best-fit curves shown in Figure 2,  

and ranges of possible values for each parameter are given in parentheses (and as discussed  

in the text, are generated by letting tg vary from 3 days to 11 days). The share of population  

infected up to 7 September is determined from the model outputs. The table also shows the  

values of the goodness-of-fit measure R-squared for the best-fit curves in Figure 2. 

 

Country Effective basic 
reproduction 

number 
(R0_e) 

Mean 
generation 

time 
(tg) 

Detection rate 
(p) 

Share of 
population 

infected  
up to 7 Sept  

R-squared for 
best-fit curve 

in Fig. 2 
[perfect fit = 1] 

Afghanistan 
1.7 

(1.2–2.1) 

7.8 days 
(3 days – 11 

days) 
 

[central 
estimate taken 
from calculated 
value for South 

Africa and 
supported by 

other research; 
range based in 
part on other 
research; see 
text for further 

discussion] 

0.13%  
(0.26%–0.12%) 

71% 
(37%–82%) 

0.97 

Bolivia 
1.4 

(1.1–1.6) 
2.35%  

(5.20%–1.90%) 
45% 

(20%–57%) 
0.99 

Central African 
Republic 

1.8 
(1.3–2.2) 

0.13% 
(0.25%–0.12%) 

74%  
(39%–86%) 

0.94 

Colombia 
1.5 

(1.2–1.7) 
2.86%  

(6.24%–2.35%) 
46%  

(21%–58%) 
1.00 

Egypt 
1.6 

(1.2–1.9) 
0.15%  

(0.30%–0.13%) 
64%  

(32%–77%) 
0.98 

Kenya 
1.7 

(1.2–2.0) 
0.09%  

(0.19%–0.08%) 
66%  

(33%–77%) 
0.98 

Madagascar 
2.0 

(1.3–2.4) 
0.07% 

(0.12%–0.06%) 
79%  

(44%–89%) 
0.96 

Malawi 
1.6 

(1.2–1.9) 
0.05%  

(0.09%–0.04%) 
64%  

(32%–77%) 
0.94 

Namibia 
1.7 

(1.2–2.1) 
2.04%  

(3.89%–1.75%) 
71%  

(37%–83%) 
0.97 

Pakistan 
1.6 

(1.2–2.0) 
0.20% 

(0.38%–0.16%) 
66%  

(34%–80%) 
0.95 

South Africa 
1.7 

(1.5–1.9) 
7.8 days 

(4.8 –9.1 days) 
1.41%  

(1.93%–1.27%) 
71%  

(55%–77%) 
0.98 

 

 

 

 

due to factors such as dense living conditions, lack of access to clean water and sanitation facilities, 

and inability of most people to work from home. Thus, our findings suggest that, for the 11 LMICs 

studied, social distancing measures and practices, perhaps in combination with higher levels of partial 

immunity from prior exposure to coronaviruses [11,12], likely reduced the effective basic reproduction 

number and slowed the spread of the disease – but with R0_e above 1, they did not “crush the curve”. 

 

Detection rates are estimated to be very low, ranging from 2.86% in Colombia to 0.05% in Malawi. 

These low detection rates explain how high levels of actual infections could be reached despite low 

numbers of reported cases, relative to total population, in all the countries studied. These low detection 

rates are not surprising. Serological testing results in Kenya, Pakistan and South Africa suggest that 

the number of people with coronavirus antibodies substantially exceeds the reported cases – by factors 

of up to 3,800 in Kenya (based on data in mid-May) [13], of up to 540 in Pakistan (based on data from 

May to July) [14] and of up to 65 in South Africa (based on data from July to early August) [15], which 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 11, 2020. ; https://doi.org/10.1101/2020.09.26.20201814doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.26.20201814
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7 

would correspond to detection rates of 0.03% for Kenya, 0.18% for Pakistan and 1.5% for South Africa. 

Furthermore, there is evidence that serological tests might underestimate effective immunity levels, 

because people may have partial immunity due to T-cell responses even if infection by SARS-CoV-2 

did not produce antibodies or if those antibodies subsequently waned [11,12]. 

 

In all these countries, the analysis indicates that significant percentages of their populations have been 

infected and have become immune – at least temporarily. The best estimates of total infection levels 

on 7 September derived from the fitted curves range from 45% in Bolivia to 79% in Madagascar [16]. 

Note that the infection levels required to curb the outbreak (the herd immunity threshold) normally quote 

the percentage of population infected at the peak of the curve, but significant numbers of people 

continue to be infected after this point, even as the numbers of new cases decline. 

  

The infection fatality ratio (IFR), or the percentage of deaths from COVID-19 among those infected with 

the SARS-CoV-2 virus, can be estimated for countries with reliable estimates of deaths. For Bolivia, 

Colombia and South Africa [17], the IFRs calculated from reported deaths divided by the total number 

of infections derived from our analysis, are 0.15%, 0.10% and 0.04%, respectively. In these three 

countries, estimates have been made of excess deaths due to natural causes, and, if all of these excess 

deaths are due to COVID-19, the IFRs for the three countries could be up to 0.57%, 0.13% and 0.11%, 

respectively [18]. All three countries are expected to have a lower overall IFR, compared to European 

countries, because their populations have a higher share of young people, who are significantly less 

likely to die from COVID-19 if they contract the virus. Differences in population age profiles explain the 

estimated IFR for Bolivia, but not for Colombia or South Africa. If reported infection fatality ratios by 

age, based on data from several HICs [19], were valid for these countries, the expected overall IFRs 

for Bolivia, Colombia and South Africa would be 0.57%, 0.63% and 0.33%, respectively. Possible 

explanations for why mortality risk for COVID-19 might be lower in Colombia or South Africa, compared 

to the (mainly) European countries from which IFRs by age are derived, could include differences in 

immune-system response (already observed, for example, between men and women in some HICs), 

partial immunity to COVID-19 due to prior exposure to other coronaviruses, differences in lethality and 

prevalence of different virus strains, and different infection levels for different age groups. 

 

To test the robustness of our approach, we applied the same methodology to fit curves to the first peaks 

in the comparison countries shown in Figure 3 (represented as red squares in this figure). Researchers 

at Imperial College London and others argued convincingly in June that European countries have not 

reached herd immunity [20], and subsequent increases in cases have proven their point. Applying our 

model to fit curves just to the first peaks (shown with blue circles in Figure 3) [21], and hence assuming 

that the peaks were due to herd immunity, we find that the best-fit curves match the observed data for 

the first peaks fairly well in all cases, but with values for the disease parameters that are implausible. 

For example, for France, the best-fitting curve yields R0_e = 1.4, tg = 3 days (the lowest permitted value) 

and p = 0.39%. The detection rate is well below the detection rates of between 7% and 18% suggested 

by serological studies in European countries [22]. New Zealand is well-known for “crushing” the curve 

– and the parameters associated with the best-fit “herd immunity curve” to its reported cases would be 

R0_e = 1.9, tg = 3 days and a highly improbable p = 0.03%. Thus, our approach leads to a conclusion for 

the comparison countries that the evolution of reported cases was not due to herd immunity (but instead 

must have been due to control measures). With this check, we increase our confidence in the 

hypothesis that the outbreaks in the 11 LMICs studied are declining due to herd immunity, which 

generates well-fitting curves with plausible parameters. 

 

 

Discussion 

 

Prominent models of the epidemic from teams at Imperial College London (ICL) [23] and the University 

of Washington Institute for Health Metrics and Evaluation (IHME) [24] use SEIR simulations and 

determine key parameters – especially the effective reproduction number, which can vary over time – 
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by fitting the models’ results for deaths to the reported numbers of deaths from COVID-19 and utilising 

age-specific IFRs from recent studies (in HICs). These models estimate that total infections to date for 

the 11 LMICs we studied are much greater than reported, but much smaller than our analysis suggests. 

For example, the models estimated total infection levels for South Africa of 7.7% (ICL) and 9.5% (IHME), 

and corresponding case detection rates of 13.9% and 11.2%, as of early September [25] – implying 

infection levels significantly below the levels of up to 40% suggested by serological study findings in 

Cape Town from July to early August [15]. It has previously been observed, by the IHME COVID-19 

Model Comparison Team, that the predictive performance of seven COVID-19 models, including those 

of ICL and IHME, shows significantly higher errors for Sub-Saharan Africa, South Asia and Latin 

America and the Caribbean, compared to their performance for HICs [26]. Our research suggests why 

this might be the case. The ICL, IHME and other models are well-suited to HICs: reported deaths for 

such countries are likely to be reasonably close to actual deaths; the IFRs used in the models are based 

mainly on studies conducted in HICs; and it is clear from the evolution of reported cases that these 

countries have not reached herd immunity [20] and that their effective basic reproduction numbers have 

varied significantly over time as disease control measures have been introduced and adjusted 

(necessitating the additional granularity of SEIR modelling). However, for some LMICs: reported deaths 

from COVID-19 are likely to understate actual deaths by large factors [18,26]; age-specific IFRs might 

differ substantially from those in Europe and North America; and a simple model, using the 

approximation that effective basic reproduction numbers and detection rates remain constant over time, 

may be sufficient to describe the evolution of reported cases well (at least for the 11 countries we 

studied). 

 

Systematic studies of representative population samples should be conducted in the 11 LMICs 

discussed here (and perhaps other countries as well) to determine the percentages of people who have 

been infected and are immune – and consequently test directly the primary conclusion that the overall 

infection levels are high and likely exceed effective herd immunity thresholds. 

 

Even when susceptibility levels are sufficiently low that the virus can no longer spread exponentially, it 

will not be gone completely. Individuals may still contract the virus if they are not immune. Isolated 

communities, such as rural areas far from urban centres, may have much lower infection levels than 

the overall population, and may still experience localised outbreaks. New general outbreaks might 

happen as control measures are relaxed, and such outbreaks could be large for countries where R0_e 

is currently close to 1 and/or for which cases have not mostly declined from the current peak – because 

relaxing disease control measures will increase R0_e and could shift the effective herd immunity 

threshold to new values that are substantially greater than the current share of the population with 

immunity. 

 

It is not yet known how long immunity from SARS-CoV-2 lasts. Even if a population is protected due to 

a high immunity level today, it is possible that this could be lost over time, which might lead to future 

outbreaks – the severity of which would depend on the share of people losing immunity, the amount of 

variation in timing of when people lose immunity, and whether susceptibility to reinfection is equal to 

the susceptibility to first infection. New strains of SARS-CoV-2 have emerged, and it is conceivable that 

future mutations could allow the virus to evade immune systems, and thus render previously immune 

populations susceptible again to the disease – but there is no evidence yet of any such immunity-

evading strains. 
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