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COVID-19 cases have peaked and declined rapidly in many low- and middle-income countries in recent 

months, in some cases after control measures were relaxed. For 11 such countries, the hypothesis that 

these countries have reached herd immunity warrants serious consideration. The Reed-Frost model, 

perhaps the simplest description for the evolution of cases in an epidemic, with only a few constant 

parameters, fits the observed case data remarkably well, and yields parameter values that are 

reasonable. The model results give infection rates of 45% and 79%, above the herd immunity thresholds 

for each country (under current social distancing conditions). Reproduction numbers range between 1.4 

and 2.0, indicating that epidemic curves were “flattened” but not “suppressed”. Between 0.05% and 

2.86% of cases have been detected according to the estimates – values which are consistent with 

findings from serological and T-cell immunity studies. Overall infection fatality ratios for two of three 

countries studied are lower than expected from reported infection fatality ratios by age (which are based 

on studies of several high-income countries). COVID-19 may have lower age-specific fatality risks in 

some countries, due to differences in immune-response, prior exposure to coronaviruses, disease 

characteristics or other factors. We find that the herd immunity hypothesis would not have fit the 

evolution of reported cases in several European countries, even just after the initial peaks – and 

subsequent resurgences of cases obviously prove that those countries have infection rates well below 

herd immunity levels. Our hypothesis that the 11 countries we studied have reached herd immunity 

should now be tested further, through serological and T-cell-immunity studies. 
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Introduction 

 

Figure 1, based on a similar one produced by researchers at Imperial College London1, illustrates how 

case numbers are expected to evolve during an epidemic under different conditions. The green curve 

shows expected cases for an uncontrolled outbreak. This curve has three main features: initial 

exponential growth in new cases, followed by a single peak as the cumulative cases reach a herd 

immunity threshold, and an exponential decline in new cases. The herd immunity threshold is 

determined by the effective basic reproduction number (R0_e)2 through the formula 1–1/R0_e. The red 

curve shows expected cases when governments and people take measures to control disease spread, 

but those measures are not sufficient to reduce the effective basic reproduction number (R0_e)2 below 

1. The red curve displays largely the same features as the red – disease spread is only halted by herd 

immunity – but the curve is “flattened”, with cases spread out more over time and fewer cases at the 

peak. The blue curve shows the evolution of cases when containment measures are sufficient to bring 

R0_e below 1. The curve is “crushed”; the initial exponential growth in case numbers is halted and cases 

decline (at a slower rate than for the green or red curves). In this case, because most people are not 

immune to the disease, it is possible for the disease to return if containment measures later allow R0_e 

to increase above 1, as shown in the dashed part of the blue curve in Figure 1. 

 

 

Figure 1. Typical disease outbreak curves in different scenarios.1 

 

 
 

 

 

Patterns in reported cases 

 

Reported cases in several low- and middle-income countries (LMICs) have evolved in a manner that is 

very similar to the red and green curves of Figure 1. We show the 7-day rolling average of reported new 

cases for 11 such countries in Figure 2. Other countries show similar patterns; we have chosen to study 

a subset with the clearest similarities to expected outbreak curves for which R0_e remains above 1. In 

all these countries, the reported cases have (1) grown exponentially, (2) reached a single clear peak 
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and (3) declined exponentially. Regulations were most stringent, and compliance was greatest, in most 

of these countries, after the designation of the global pandemic in March and have relaxed to varying 

degrees in recent months – but cases continued to decline. None of these countries has reported a 

significant increase in new cases after the peak that would indicate a second wave (although cases in 

some countries have only recently passed the peak). Together, these observations point to a hypothesis 

that the outbreaks in these countries have reached herd immunity, and that the recently observed 

declines in new cases are because many people have already been infected and are immune – at least 

temporarily. 

 

 

Figure 2. COVID-19 reported cases in 11 selected low- and middle-income countries, together 

with best-fit curves from simple disease spread model. Blue circles show daily reported new 

cases of COVID-19 (based on a 7-day rolling average). Red squares (joined by straight lines) show 

best-fit outputs from linearized Reed-Frost model. 
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However, the numbers of cases in other countries – including most high-income countries (HICs) but 

also some LMICs – show patterns that are much different. Figure 3 shows 7-day rolling averages of 

reported cases for 6 such comparison countries. In these countries, cases have evolved in a manner 

that is similar to the first part of the blue curve of Figure 1. There have been peaks in numbers of 

reported cases, yet the decline is often longer and slower than the red or green curves would suggest. 

In some countries, there have been resurgences in cases, indicating that the initial suppression was 

not due to high levels of immunity. 

 

 

 

Figure 3. COVID-19 reported cases in 6 selected comparison countries, together with best-fit 

curves from test of simple disease outbreak model. Blue and brown circles show daily reported 

new cases of COVID-19 (based on a 7-day rolling average). Red squares (joined by straight lines) 

show best-fit outputs from linearized Reed-Frost model, fit only to the blue circles in the first peaks in 

cases. 
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Fit with disease outbreak model and estimation of outbreak parameters 

 

We test our hypothesis of herd immunity in these 11 countries by using a simple disease outbreak 

model and fitting to the reported cases. The outbreak case curves are those described by a linearised 

Reed-Frost model3, the textbook deterministic mathematical model for an epidemic. The curves 

produced by this model depend on just two parameters, namely the effective basic reproduction number 

(R0_e) and the mean generation time (tg), which is the average time from infection of one person and 

when that person infects other people. Expected reported cases are calculated by scaling the Reed-

Frost model’s results by a detection rate (p)4. The parameters that produce the best-fit curve for reported 

cases in each country are determined partly analytically from the observed data and partly from least 

squares regression. Our model parameters (R0_e, tg and p) are constant over time – a beneficial 
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assumption in that it avoids having too many free parameters, which might lead to good fits even if the 

model incorrectly describes the disease dynamics. Furthermore, in most of the countries studied, 

reported cases and reported deaths have followed similar trends (with changes in deaths lagging the 

corresponding changes in cases), even for countries with very low absolute numbers of reported cases 

and deaths – which suggests that the shapes of the curves likely reflect trends in actual cases and 

deaths, and that detection rates for both do not vary wildly over time. 

 

The best-fit curves are shown with red lines in Figure 2, for each of the 11 LMICs studied, and the 

corresponding parameters are presented in Table 1 (overleaf). For South Africa, R0_e and tg are 

calculated from the slopes and width of the observed data, and p is calculated from the total population, 

the expected infection rate at the peak (i.e., the herd immunity threshold), and the sum of observed 

cases up to the peak. For the other 10 countries, we use the value of tg calculated for South Africa, and 

determine R0_e and p from fitting to the observed case data. The fits are close, with R-squared 

goodness-of-fit measures between 0.94 and 1.00. (The fits are somewhat  less good for Central African 

Republic and Malawi, due to very low numbers of reported cases, and for Pakistan, due to undulations 

in reported cases which may signal variations in R0_e or p which the model assumes are constant.) 

These results demonstrate that the observed case patterns can indeed very accurately be described 

by an exponential outbreak halted by herd immunity. 

 

Table 1 presents best estimates for R0_e, p and the infection rate (on 7 September), together with ranges 

of possible values (in parentheses). There are fairly wide ranges of reasonably possible values because 

the effects of R0_e and tg on the observed case curves are hard to distinguish – especially when the 

observed data has more “noise” or when the observed data does not include many points after the 

peak, and when values of R0_e are close to 17. For South Africa, R0_e has a best-estimate value of 1.74 

(and a range of possible values between 1.45 and 1.90);  the corresponding value of tg is 7.8 days (4.8 

days – 9.1 days) and of p is 1.41% (1.93% – 1.27%). For the other 10 countries, we determine best 

estimates of R0_e and p by assuming that tg = 7.8 days and fitting model outputs to reported cases data. 

The value of tg = 7.8 days is consistent with studies of serial intervals – the time between illness onset 

in successive cases in a transmission chain, whose mean value should equal the mean generation time 

tg – by Ali et al. and others8, and close to the values used in other COVID-19 models9. We also conduct 

sensitivity analyses, determining ranges of possible values of R0_e and p if tg varies between 3 days and 

11 days (wider that the range of possible values suggested in the literature8,9), and finding the values 

of R0_e and p that produce the best fits to the reported cases for the extreme values of tg. For all of the 

possible values of tg, and corresponding values of R0_e and p, the reported case curves generated do 

not change much, for each of the countries, and lead to the same implication that total infections in the 

countries are above herd immunity threshold levels (which vary depending on the value of R0_e). 
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Table 1. Outbreak parameters for selected countries – effective basic reproduction number 

(R0_e), mean generation time (tg) and case detection rate (p) – and implied share of 

population infected as of 7 September. The best estimates for the parameters correspond to the 

best-fit curves shown in Figure 2, and ranges of possible values for each parameter are given in 

parentheses (and as discussed in the text, are generated by letting tg vary from 3 days to 11 days). 

The share of population infected up to 7 September is determined from the model outputs. The table 

also shows the values of the goodness-of-fit measure R-squared for the best-fit curves in Figure 2. 

 

Country Effective basic 
reproduction 

number 
(R0_e) 

Mean 
generation 

time 
(tg) 

Detection rate 
(p) 

Share of 
population 

infected  
up to 7 Sept  

R-squared for 
best-fit curve 

in Fig. 2 
[perfect fit = 1] 

Afghanistan 
1.7 

(1.2–2.1) 

7.8 days 
(3 days – 11 

days) 
 

[central 
estimate taken 
from calculated 
value for South 

Africa and 
supported by 

other research; 
range based in 
part on other 
research; see 
text for further 

discussion] 

0.13%  
(0.26%–0.12%) 

71% 
(37%–82%) 

0.97 

Bolivia 
1.4 

(1.1–1.6) 
2.35%  

(5.20%–1.90%) 
45% 

(20%–57%) 
0.99 

Central African 
Republic 

1.8 
(1.3–2.2) 

0.13% 
(0.25%–0.12%) 

74%  
(39%–86%) 

0.94 

Colombia 
1.5 

(1.2–1.7) 
2.86%  

(6.24%–2.35%) 
46%  

(21%–58%) 
1.00 

Egypt 
1.6 

(1.2–1.9) 
0.15%  

(0.30%–0.13%) 
64%  

(32%–77%) 
0.98 

Kenya 
1.7 

(1.2–2.0) 
0.09%  

(0.19%–0.08%) 
66%  

(33%–77%) 
0.98 

Madagascar 
2.0 

(1.3–2.4) 
0.07% 

(0.12%–0.06%) 
79%  

(44%–89%) 
0.96 

Malawi 
1.6 

(1.2–1.9) 
0.05%  

(0.09%–0.04%) 
64%  

(32%–77%) 
0.94 

Namibia 
1.7 

(1.2–2.1) 
2.04%  

(3.89%–1.75%) 
71%  

(37%–83%) 
0.97 

Pakistan 
1.6 

(1.2–2.0) 
0.20% 

(0.38%–0.16%) 
66%  

(34%–80%) 
0.95 

South Africa 
1.7 

(1.5–1.9) 
7.8 days 

(4.8 –9.1 days) 
1.41%  

(1.93%–1.27%) 
71%  

(55%–77%) 
0.98 

 

 

 

 

The effective basic reproduction numbers, R0_e, in Table 1 range between 1.4 (in Bolivia) and 2.0 (in 

Madagascar). Estimates for the basic reproduction number, R0, the “natural” rate in the absence of 

social distancing, for SAR-CoV-2 (the virus that causes COVID-19) in Wuhan at the outset of the global 

epidemic, range from 1.45 up to 5.76. R0 might be expected to be higher in low-income countries due to 

factors such as dense living conditions, lack of access to clean water and sanitation facilities, and 

inability of most people to work from home. Thus, our findings suggest that, for the 11 LMICs studied, 

social distancing measures and practices likely reduced the effective basic reproduction number and 

slowed the spread of the disease – but with R0_e above 1, they did not “crush the curve”.  

 

Detection rates are estimated to be very low, ranging from 2.86% in Colombia to 0.05% in Malawi. 

These low detection rates explain how herd immunity could be reached despite low numbers of reported 

cases, relative to total population, in all the countries studied. These low detection rates are not 

surprising. Serological testing results in Kenya, Pakistan and South Africa suggest that the number of 
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people with coronavirus antibodies substantially exceeds the reported cases – by factors of up to 500 

in Kenya (based on data in mid-May)10, of up to 370 in Pakistan (based on data from May to July)11 and 

of 20-40 in South Africa (based on data in August)12, which would correspond to detection rates of 0.2% 

for Kenya, 0.27% for Pakistan and 2.5-5.0% for South Africa. Furthermore, there is evidence that 

serological tests might underestimate infection rates and immunity by up to a factor of 2, because more 

people develop T-cell-mediated immunity than show antibodies13. 

 

In all these countries, the analysis indicates that significant percentages of population has been infected 

and has become immune – at least temporarily. The best estimates of total infection rates on 7 

September derived from the fitted curves range from 45% in Bolivia to 79% in Madagascar14. Note that 

the infection rates required for herd immunity normally quote the percentage of population infected at 

the peak of the curve, but significant numbers of people continue to be infected after this point, even as 

the numbers of new cases decline. 

  

The infection fatality ratio (IFR), or the percentage of deaths from COVID-19 among those infected with 

the SARS-CoV-2 virus, can be estimated for countries with reliable estimates of deaths. For Bolivia, 

Colombia and South Africa15, the IFRs calculated from reported deaths divided by the total number of 

infections derived from our analysis, are 0.15%, 0.10% and 0.04%, respectively. In these three 

countries, estimates have been made of excess deaths due to natural causes, and, if all of these excess 

deaths are due to COVID-19, the IFRs for the three countries could be up to 0.57%, 0.13% and 0.11%, 

respectively16. All three countries are expected to have a lower overall IFR, compared to European 

countries, because their populations have a higher share of young people, who are significantly less 

likely to die from COVID-19 if they contract the virus. Differences in population age profiles explain the 

estimated IFR for Bolivia, but not for Colombia or South Africa. If reported infection fatality ratios by 

age, based on data from several HICs17, are valid for these countries, the expected overall IFRs for 

Bolivia, Colombia and South Africa would be 0.57%, 0.63% and 0.33%, respectively. Possible 

explanations for why mortality risk for COVID-19 might be lower in Colombia or South Africa, compared 

to the (mainly) European countries from which IFRs by age are derived, could include differences in 

immune-system response (already observed, for example, between men and women in some HICs), 

partial immunity to COVID-19 due to prior exposure to other coronaviruses, differences in lethality and 

prevalence of different virus strains, and different infection rates for different age groups. 

 

To test the robustness of our approach, we applied the same methodology to fit curves to the first peaks 

in the comparison countries shown in Figure 3 (represented as red lines in this figure). Researchers at 

Imperial College London and others argued convincingly in June that European countries have not 

reached herd immunity18, and subsequent increases in cases have proven their point. Applying our 

model to fit curves just to the first peaks (shown with blue circles in Figure 3)19, and hence assuming 

that the peaks were due to herd immunity, we find that the best-fit curves match the observed data for 

the first peaks fairly well in all cases, but with values for the disease parameters that are implausible. 

For example, for France, the best-fitting curve yields R0_e = 1.4, tg = 3 days (the lowest permitted value) 

and p = 0.39%. The detection rate well below the detection rates of between 7% and 20% suggested 

by serological studies in European countries20. New Zealand is well-known for “crushing” the curve – 

and the parameters associated with the best-fit “herd immunity curve” to its reported cases would be 

R0_e = 1.9, tg = 3 days and a highly improbable p = 0.03%. Thus, our approach leads to a conclusion for 

the comparison countries that the evolution of reported cases was not due to herd immunity (but instead 

must have been due to control measures). With this check, we increase our confidence in the 

hypothesis that the outbreaks in the 11 LMICs studied are declining due to herd immunity, which 

generates well-fitting curves with plausible parameters. 
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Discussion 

 

Prominent models of the epidemic from teams at Imperial College London (ICL)21 and the University of 

Washington Institute for Health Metrics and Evaluation (IHME)22 use SEIR simulations and determine 

key parameters – especially the effective reproduction number, which can vary over time – by fitting the 

models’ results for deaths to the reported numbers of deaths from COVID-19 and utilising age-specific 

IFRs from recent studies (in HICs). These models estimate that total infections to date for the 11 LMICs 

we studied are much greater than reported, but much smaller than our analysis suggests. For example, 

the models estimate total infection rates for South Africa of 7.7% (ICL) and 9.5% (IHME)23 – significantly 

lower than the rates of between 20% and 40% suggested by the recently announced serological study 

findings24 – and detection rates of 13.9% and 11.2% respectively. It has previously been observed, by 

the IHME COVID-19 Model Comparison Team, that the predictive performance of seven COVID-19 

models, including those of ICL and IHME, shows significantly higher errors for Sub-Saharan Africa, 

South Asia and Latin America and the Caribbean, compared to their performance for HICs25. Our 

research suggests why this might be the case. The ICL, IHME and other models are well-suited to HICs: 

reported deaths for such countries are likely to be reasonably close to actual deaths; the IFRs used in 

the models are based mainly on studies conducted in HICs; and it is clear from the evolution of reported 

cases that these countries have not reached herd immunity26 and that their effective basic reproduction 

numbers have varied significantly over time as disease control measures have been introduced and 

adjusted (necessitating the additional granularity of SEIR modelling). However, for some LMICs: 

reported deaths from COVID-19 are likely to understate actual deaths by large factors; age-specific 

IFRs might differ substantially from those in Europe and North America; and a simple model, using the 

approximation that effective basic reproduction numbers and detection rates remain constant over time, 

may be sufficient to describe the evolution of reported cases well (at least for the 11 countries we 

studied). 

 

Systematic studies of representative population samples should be conducted in each of the 11 LMICs 

discussed here, to determine the percentages of people who have been infected and are immune – 

and consequently test directly the primary conclusion that the overall infection rates are very high and 

exceed estimated herd immunity thresholds. Serological studies are ongoing in some counties, such as 

South Africa. However, these studies may still underestimate infection and immunity levels, because 

people may have immunity driven by T-cells without detectable antibodies27. However, it is unclear 

whether the presence of T-cells provides complete immunity and T-cell immunity is harder to determine 

than antibodies in blood. 

 

Herd immunity means that the virus can no longer spread uncontrollably, but not that it is gone 

completely. Individuals may still contract the virus if they are not immune. Isolated communities, such 

as rural areas far from urban centers, may have much lower infection rates than the overall population, 

and may still experience localised outbreaks. New general outbreaks might happen as control measures 

are relaxed, and such outbreaks could be large for countries where R0_e is currently close to 1 and/or 

for which cases have not mostly declined from the (current) herd immunity peak – because relaxing 

disease control measures will increase R0_e and could shift the herd immunity threshold (which is 1–

1/R0_e) to new values that are substantially greater than the current share of the population with 

immunity. 

 

It is not yet known how long immunity from SARS-CoV-2 lasts. Even if a population has herd immunity 

today, it is possible that this could be lost over time, which might lead to future outbreaks – the severity 

of which would depend on the share of people losing immunity, the amount of variation in timing of 

when people lose immunity, and whether susceptibility to reinfection is equal to the susceptibility to first 

infection. New strains of SARS-CoV-2 have emerged, and it is conceivable that future mutations could 

allow the virus to evade immune systems, and thus render previously immune populations susceptible 

again to the disease – but there is no evidence yet of any such immunity-evading strains. 
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