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INTRODUCTORY PARAGRAPH (189 words)  1 

As in many other settings, peak excess mortality preceded the officially reported ‘first wave’ 2 

peak of the COVID-19 epidemic in Manaus, Brazil, reflecting delayed case recognition and 3 

limited initial access to diagnostic testing. To avoid early information bias, we used detailed 4 

age and gender stratified death certificate and hospitalisation data to evaluate the epidemic’s 5 

trajectory and infer the cause of its decline using a stochastic model. Our results are consistent 6 

with heterogenous transmission reducing over time due to the development of herd immunity. 7 

Relative to a baseline model that assumed homogenous mixing across Manaus, a model that 8 

permitted a small, self-isolated population fraction raised the estimated herd-immunity 9 

threshold from 28% to 30% and reduced the final attack rate from 86% to 65%. In the latter 10 

scenario, a substantial proportion of vulnerable, older individuals remained susceptible to 11 

infection. Given uncertainties regarding the distancing behaviours of population subgroups 12 

with different social and economic characteristics, and the duration of sterilising or 13 

transmission-modifying immunity in exposed individuals, we conclude that the potential for 14 

epidemic outbreaks remains, but that future waves of infection are likely to be much less 15 

pronounced than that already experienced. 16 

LETTER TEXT (1,495 words) 17 

Background/Rationale (420 words) 18 

Globally, marked differences have been observed in morbidity and mortality due to SARS-19 

CoV-2 infection. This variability mostly reflects the extent and timeliness of spontaneous and 20 

imposed changes in social mixing and the sensitivity of surveillance systems to detect cases 21 

and deaths1. Many countries that successfully constrained the initial epidemic through 22 

distancing measures are now experiencing second waves in still-susceptible populations2. 23 

Estimates of R0 for SARS-CoV-2 in the range 2 to 63,4 suggest that population immunity of 24 

approximately 50-80% is required to achieve herd protection. However, heterogeneous 25 

behaviour, infectivity and immunity within subpopulations could plausibly decrease this 26 

threshold to 10-20%5. Controversy remains regarding the extent of population exposure 27 

required to achieve such constraint6. 28 
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Comparison of population attack rates to inform this question is made challenging by 29 

imperfect case ascertainment, compounded by limited diagnostics and overwhelmed health 30 

systems, particularly in high incidence settings. Assessment of epidemic activity therefore 31 

requires the use of less biased metrics than confirmed case reports. Excess mortality is an 32 

objective measure which, with cause-of-death certification, can be used as an indicator of 33 

direct and indirect COVID-19 associated mortality7. With hospitalisations data, it can inform 34 

retrospective estimation of cumulative cases and deaths8. 35 

Brazil experienced a severe first wave of COVID-19 disease, with mass mortality reported in 36 

many states, mainly in the north where seasonality of respiratory infections contributed to 37 

higher vulnerability. A socialized health system provided free and global access to tertiary care 38 

hospitals, but inequalities might explain different mortality rates in the population9. In Manaus, 39 

the highly urbanised capital of Amazonas state, the first case of COVID-19 was reported on 13 40 

March 202010. By 11 August 2020, 37,597 cases and 2,051 deaths were reported11. 41 

However, burial and death records indicate far higher mortality than official reports, suggesting 42 

late recognition of importation and underreporting. Previous studies have assumed that the first 43 

wave in Manaus was significantly mitigated by non-pharmaceutical interventions (NPIs)12. 44 

While these restrictions may have partly constrained early transmission, local reports indicate 45 

that implementation was highly variable13. Moreover, a possible role for immunity is suggested 46 

by the observation of declining cases and deaths over a period in which restrictions were 47 

officially eased. 48 

We use death certificate and hospitalisation records to parameterise an epidemiological model 49 

of the COVID-19 epidemic in Manaus. The model allows inference of age- and gender-50 

stratified infection-fatality ratios to explore evidence for development of herd immunity as a 51 

driver of local epidemic resolution, with implications for the ongoing risk posed by SARS-52 

CoV-2 to this population. 53 

Main results (388 words) 54 

We calculated 3,457 excess deaths in Manaus, Brazil, between 19 March and 24 June 2020 55 

(Supplementary Table 1) representing 0.16% of the city’s population. Males 30 years and over 56 

experienced greater excess mortality than females; individuals aged 75 years or more 57 

accounted for 39% of the excess (Figure 1a). During this period, 7% of the 75+ male population 58 
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in Manaus died (Figure 1b). COVID-19 deaths were first reported from 26 March and increased 59 

weekly thereafter in keeping with improved access to diagnostics and/or increasing prevalence 60 

(Figure 2), comprising 53% of the total excess. Other reported causes of death included 61 

respiratory diseases, unattended and unknown causes of mortality, cardiovascular, endocrine 62 

and cancer-related mortality, the majority of which were compatible14 with a clinical diagnosis 63 

of COVID-19 or are known comorbidities associated with severe outcomes (Figure 2). 64 

Stochastic transmission models captured the observed peak in excess deaths in late April, 65 

including age and gender variation (Figure 3, Supplementary Figures S1, S3). The models also 66 

captured synchronous peaks in hospitalisations (Figure 3, Supplementary Figures S2, S4), 67 

although model fit to these data was poorer, potentially reflecting delayed recognition of 68 

COVID-19 cases and/or capacity exceedance during the epidemic peak. 69 

Despite their different assumptions about the proportion of the Manaus population at risk, the 70 

two model scenarios yielded equivalent fits to the data (Figure 3A, B). The baseline model 71 

estimated heterogenous transmission (k=0.065 [0.047, 0.093], mean [95 % credible intervals]), 72 

a mean time-to-death of 13 days (Supplementary Figures S5), and inferred a population-wide 73 

attack rate of 85.7 [84.6, 86.7]% by 20 July. Attack rates were lowest in younger age classes 74 

(Figure 3A(i)), reflecting lower susceptibility assumed for people under 15 years.  75 

Infection fatality rate (IFR) estimates for the baseline model ranged from almost zero for both 76 

genders aged 30-35 years, to 3.0 [2.8, 3.3]% and 7.4 [6.8, 8.0]% for females and males over 75 77 

years, respectively (Figure 4). At a population level, reduced mobility resulted in variable Rt, 78 

while estimates of Reff fell below 1 after 10 April (Supplementary Figure S6), when the 79 

estimated attack rate was 52.6 [51.1, 54.1]%.  80 

Outcomes were similar for the second model which estimated 24.5 [23.0, 25.1]% of the Manaus 81 

population was effectively removed from the susceptible pool. Relative to the baseline model, 82 

this second model raised the calculated herd-immunity threshold from 28% to 30% and reduced 83 

the final attack rate to 65.0 [63.7, 65.6]%.  84 
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Implications (687 words) 85 

Early time-series modelling of the COVID-19 epidemic in Brazilian states up to 6 May 2020 86 

used an unstructured model informed by state-level mobility indicators and reported deaths12. 87 

The model inferred population attack rates ranging from 0.13% to 10.6%, for Minas Gerais 88 

and Amazonas, respectively, and predicted ongoing epidemic growth throughout May. Other 89 

modelled R0 estimates based on reported COVID-19 cases from Amazonas state have similarly 90 

anticipated continued growth in cases through the month of June13. These models could neither 91 

explain nor accurately forecast observations of epidemic decline in Manaus.  92 

Our analysis of excess deaths and hospitalisations in Manaus identifies rapid epidemic growth 93 

from late March, peaking in late April, with a return to baseline mortality in early June. These 94 

age- and gender-stratified models inferred heterogeneous transmission consistent with previous 95 

studies of SARS-CoV-115 and SARS-CoV-216, and a herd-immunity threshold of around 30%. 96 

However, we estimated that this threshold was substantially overshot in Manaus, with resulting 97 

attack rates inferred to be 86% and 65% for models that assumed the risk of infection applied 98 

to 100% or c. 75% of the population, respectively. 99 

Although both models estimated declining SARS-CoV-2 transmission over time due to herd 100 

immunity, their implications for the possibility of subsequent waves are qualitatively different. 101 

Although there are currently no data to support the assertion that some fraction of the Manaus 102 

population self-isolated, we consider the second model is likely more realistic because: (1) the 103 

estimated infection-fatality ratios are higher than reported from high-income countries17 which 104 

we anticipate to be plausible; and (2) a population attack rate of 65% is more consistent with 105 

recent estimates based on a Manaus blood bank serosurvey18 which reported the largest 106 

increase in seropositivity over the month of April. 107 

We focus on Manaus as the epicentre of the COVID-19 epidemic in Amazonas, avoiding 108 

conflation of case numbers in this dense city of more than 2 million people with slower 109 

growing rural outbreaks across the state6. Given known information bias associated with 110 

limited early testing capacity, we used excess deaths and hospitalisations as the most 111 

objective indicators of epidemic activity presently available. Detailed cause-of-death data 112 

support the hypothesis that the majority of excess mortality over this time was COVID-19 113 

related. 114 
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An important caveat is that estimated attack rates accumulate all infections and are agnostic to 115 

the presence or degree of symptoms. Severity of the clinical course of COVID-19 is associated 116 

with magnitude and persistence of the host immune response19. In consequence, our estimates 117 

of ‘exposure’ cannot be directly related to predicted antibody seroprevalence at the end of the 118 

first wave20. It is reasonably anticipated that population immunity will wane over time, 119 

requiring robust memory responses21 to prevent reinfection or modify the clinical course22.  120 

Our findings support emerging evidence that population heterogeneity of SARS-CoV-2 121 

transmission, attributable to a range of biological and sociological factors, reduces the herd 122 

immunity threshold16,23,24. Reduction of superspreading events through constraints on mixing 123 

group sizes is concordant with genomic studies showing successive extinction of imported 124 

strains under the influence of social and mobility restrictions25. 125 

While future infection clusters and outbreaks remain possible in Manaus due to unexposed 126 

subgroups, population-level immunity will likely constrain widespread transmission unless 127 

immunity wanes. As in other settings, underlying vulnerability of older age groups may be 128 

further exacerbated over time by reduced health seeking behaviours of individuals with pre-129 

existing and new medical conditions26. Social measures should be informed by understanding 130 

of key enablers of superspreading and amplification, awareness of at-risk populations and 131 

tailored to context depending on population experience of the first wave.  132 

Excess mortality data are not sufficiently timely to support real-time decision making, but in 133 

areas with limited testing may be a more reliable indicator of past epidemic activity than 134 

confirmed cases. To accurately support response to and assess the impact of the COVID-19 135 

and other public health emergencies, improved access to diagnostics, and strengthening of 136 

reporting systems are needed in low- and middle-income settings. Cross-sectional and 137 

longitudinal seroprevalence studies are essential to understand markers and maintenance of 138 

immunity to inform prediction of long-term epidemiologic trends and bridging to likely vaccine 139 

impacts18,27. 140 

Acknowledgements 141 

TAAP is supported by the NHMRC Centre for Research Excellence in Policy Relevant 142 

Infectious Disease Simulation and Mathematical Modelling. JM is supported by an NHMRC 143 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.20201939doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.25.20201939
http://creativecommons.org/licenses/by-nd/4.0/


 7 

Principal Research Fellowship GNT1117140. IM is supported by an NHMRC Principal 144 

Research Fellowship GNT1155075.  145 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.20201939doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.25.20201939
http://creativecommons.org/licenses/by-nd/4.0/


 8 

METHODS (ONLINE ONLY) 146 

Excess mortality and reported causes 147 

Death certificate data from January 2015 to June 2020 were sourced from the Brazilian 148 

Ministry of Health Mortality Information System (SIM). Information on age, gender, and 149 

cause and date-of-death was recorded. Cause of death was reported using the World Health 150 

Organization’s (WHO) International Classification of Diseases 10th revision (ICD-10). The 151 

2010 population census and the 2019 municipal population estimates were accessed from the 152 

Brazilian Institute of Geography and Statistics (IBGE). This project was approved by the 153 

Fundação de Medicina Tropical Dr Heitor Vieira Dourado Ethics Review Board (Approval 154 

4.033.218).  155 

Background mortality was calculated by averaging the number of deaths observed per week, 156 

commencing on January 1 each year, for the previous 5 years (2015-2019). Background 157 

mortality was further stratified by gender and into 5-year age bands, culminating at 75+. For 158 

each subgroup, we subtracted this five-year average from deaths observed for the period 159 

between March 19 and June 24 of 2020 to determine excess deaths. This period was selected 160 

as excess mortality was first observed in the week beginning on March 19 and the data returned 161 

to baseline background mortality in the week beginning on June 25. 162 

The age and gender structure reported in the 2010 population census was used to estimate the 163 

2019 population size for each age and gender class. Population estimates were aggregated into 164 

5-year age bands. The 5-year population estimates for 2019 were used to determine excess 165 

mortality, as a proportion of the population. 166 

The ICD-10 codes assigned to each death certificate were aggregated into 7 categories: diseases 167 

of the respiratory system (J00-J99), circulatory system (I00-I99), endocrine system (E00-E99), 168 

unattended (R98) and unknown cause of death (R99), coronavirus infection (B34.2) and all 169 

remaining codes were categorised as ‘other’. All analyses were performed using R software. 170 

Hospitalisation data 171 

Hospitalisation data for patients admitted to all hospitals (private and public) in Manaus from 172 

January 2020 to July 2020 was accessed from the Influenza Surveillance Information System 173 

(SIVEP-Gripe). Data entry in this system is compulsory by law. A deidentified line list 174 
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included patient demographics, comorbidities, clinical symptoms, investigations, clinical 175 

management and outcome data. 176 

Daily admissions to both hospital and intensive care units (ICU) were aggregated each week 177 

in 2020 and stratified into 3 age bands (0-29, 30-64 and 65+). For each week, the proportion 178 

of hospital and ICU admissions within each age group was determined. Between April and 179 

July, the proportional distribution of hospital and ICU admissions across the three categories 180 

remained fairly stable, with no evidence of rationing of service access on the basis of age. 181 

Epidemiological model 182 

We developed a stochastic, discrete-time, susceptible-infected-recovered epidemiological 183 

model for Manaus which we calibrated using daily time-series data from the death-certificate 184 

and hospitalisation records. The model assumed an initial population size equal to that of 185 

Manaus in 2019 (2,182,761), which was split into N=36 age/gender groups based on 186 

proportions reported in the 2010 census (i.e., 5-year age classes up to an age of 75 years, and 187 

then a pooled age class for all individuals aged 75 years and over). To allow inference on the 188 

background mortality rate in each age/gender group, the model was initiated on January 1, 189 

2020, approximately two months prior to the introduction of COVID-19. The model was 190 

terminated after n=202 days on July 20, 2020, to ensure complete reporting of both death 191 

certificates and hospitalisations over the modelled period. The model detailed below was fitted 192 

within a Bayesian framework using JAGS (v. 4.3.0) software28 and a mixture of informative 193 

and uninformative priors (for full details of the model code, including details of all prior 194 

distributions, see Supplementary Appendix S1). 195 

COVID-19 introduction and virus transmission. We initialised the model by allowing 196 

importation of COVID-19 cases into Manaus over the week beginning March 5, 2020 (one 197 

week before the first reported case), and inferred an importation model such that the number 198 

of introduced cases into each group in each day of this first week arose from a Poisson process 199 

with a common mean inferred from the data. To model community transmission, we inferred 200 

a reproduction number on day t that was modified by an index of human mobility 201 

𝑅! = 𝑒(#$%(&!)	)		*+") 202 
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where 𝑅, is the basic reproduction number, 𝑋! is the mobility covariate and a is the inferred 203 

coefficient. We derived the time-series 𝑋! by first averaging daily data for five separate indices 204 

of community mobility (available as the mobility change relative to baseline for 205 

retail/recreation, grocery/pharmacy, parks, transit stations and workplaces, accessed from 206 

www.google.com/covid19/mobility), and then smoothed the series with a 7-day moving-207 

average smoother. We then assumed the effective reproduction number 𝑅-..($,&,") in group i due 208 

to mixing with group j on day t is 209 

𝑅-..($,&,") =	𝑅!	𝑄/ 	𝑀/,1 	𝑆/,!	 210 

where 𝑄/ is the susceptibility of group i to infection, 𝑀/,1 is the rate of mixing between the two 211 

groups, and 𝑆/,! is the time-varying proportion of susceptible (previously uninfected) 212 

individuals remaining in the focal group. Based on previous studies29,30, we used prior means 213 

for the susceptibilities of 0-15, 15-60, and 60+ year old age classes of 0.5, 1.0, and 1.3, 214 

respectively. 215 

Mixing between groups was governed by an age-structured mixing matrix reported previously 216 

for Brazil 31, which we corrected to be symmetrical (by averaging the upper and lower 217 

triangles), scaled to a mean of 1/𝑁, and applied equally to both genders. The expected number 218 

of new cases in each group each day was then calculated as 219 

𝐶/,! =	-𝑅-..($,&,")

2

134

.𝑐1,4:(!64) ∙ 𝑔(!64):42 220 

where 𝑐1,4:(!64) is the case-history vector for group j and 𝑔(!64):4 is the portion of the generation 221 

interval distribution relevant to those cases. We used the same generation interval distribution 222 

as Mellan et al.12 which concentrated >99% of an individual’s infectivity within the first 3 223 

weeks of infection (median generation interval=5 days). 224 

To account for heterogeneity in transmission, we assumed the offspring distribution in group i 225 

due to mixing with infectious individuals from group j on day t was governed by a negative 226 

binomial distribution with mean equal to 𝐶/,! and variance equal to 𝐶/,!.1 +	𝐶/,!/∅/,!2, where 227 

∅/,! = 𝑘𝐶/,!/𝑅! 228 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.20201939doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.25.20201939
http://creativecommons.org/licenses/by-nd/4.0/


 11 

and 𝑘 is the overdispersion parameter, such that smaller values of k represent greater 229 

transmission heterogeneity (i.e., the more transmission is due to a small number of people, 230 

including by so-called “superspreaders”). Given no previous study has documented strong 231 

evidence of different susceptibility between genders, we first generated the expected number 232 

of new cases in each age class (regardless of gender), and then assumed gender-specific cases 233 

arose from a binomial distribution with probability equal to the proportion of the total 234 

susceptible individuals for that age class attributable to each gender. 235 

Background and COVID-induced mortality. We developed a model for the expected number 236 

of deaths per day which was comprised of three components. First, we modelled the 237 

background (pre-COVID-19) death rate 𝑑/ estimated separately for each group. Second, 238 

available data on the time from symptom onset to death for confirmed COVID-19 cases (from 239 

the Manaus hospitalisation records) were used to infer a 4-parameter (𝑦,, 𝑢789, 𝑢,, 𝑏)	 mortality 240 

distribution (𝑚) as a function of the time x since symptom onset (𝑥 ∈ {-5, …, N-5}) of the form 241 

𝑚:)* =
𝑦,𝑒;()*(:)*)		)	((;!6;()*) <)⁄ >46-+,(-./)?	

∑ 𝑚1
2
134

 242 

where 𝑎 is the average time from infection to symptoms, which was fixed at 5 days3,32,33. 243 

Finally, we modelled the infection-fatality ratio in each group 𝑖 (𝐼𝐹𝑅/) as a log-linear function 244 

of age and gender, with prior distributions on this components’ parameters based on a recent 245 

meta-analysis of COVID-19-induced mortality34. Together, these components yielded the 246 

following model for the expected number of deaths 247 

𝐷/,! =	𝑑/ +	𝐼𝐹𝑅/-.𝑐1,4:(!64) ∙ 𝑚(!64):42
2

134

		 248 

and the observed number of deaths each day was assumed to arise from a Poisson distribution 249 

with mean equal to 𝐷/,! . 250 

Hospitalisations due to COVID-19. Hospitalisations were modelled in a similar way to 251 

COVID-induced deaths, in that available data on the time from symptom onset to 252 

hospitalisation were used to infer a 4-parameter hospitalisation distribution (ℎ) of the same 253 

functional form as that used for the mortality distribution above. We modelled the infection-254 
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hospitalisation ratio in each group 𝑖 (𝐼𝐻𝑅/) as a logistic function of age and gender. Daily 255 

hospitalisations were assumed to arise from a Poisson distribution with mean equal to 256 

𝐻/,! =	 𝐼𝐻𝑅/-.𝑐1,4:(!64) ∙ ℎ(!64):42
2

134

		. 257 

Model scenarios. Given no data were available on whether some portion of the Manaus 258 

population has been self-isolating since March 2020, we initially fitted a ‘baseline’ model to 259 

death-certificate and hospitalisation data which assumed homogeneous age-structured mixing 260 

across the entire Manaus population. We compared these model outcomes to those from a 261 

second model that permitted a self-quarantined proportion of the population which could not 262 

be exposed to the SARS-CoV-2 virus. Communication with local experts including authors on 263 

this paper suggested that more wealthy residents of Manaus had been able to greatly reduce 264 

social interactions during the first epidemic wave and avoid exposure to the virus. We reviewed 265 

detailed socio-demographic data on Manaus35, but were not able to source quantitative 266 

estimates of the relevant population fraction. However, we considered that this would not 267 

exceed the upper 2 income quintiles (40%) of the population but was likely to be greater than 268 

the wealthiest 10%, and accordingly, chose a non-informative uniform (0.1,0.4) prior on this 269 

population fraction. 270 

  271 
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 363 

Figure 1. (a) Total excess mortality by age and gender for the period between March 19 and 364 

June 24 of 2020. Excess mortality is the 2020 weekly observed mortality less the expected 365 

mortality summed for the period between March 19 and June 24 of 2020 for each subgroup. 366 

(b) Excess mortality for the period between March 19 and June 24 of 2020 divided by the 367 

estimated 2019 subgroup populations to obtain population proportions.  368 
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 369 

Figure 2. Observed weekly mortality for the period between January 01 and July 22 of 2020 370 

aggregated by major ICD-10 categories of attributed causes of death.  371 
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 372 

Figure 3. Integrated model fits by gender and model, pooled at the level of three aggregated 373 

age classes: (A) 0-30 years; (B) 30-60 years; and (C) 60+ years. For each age class, panels (i) 374 

and (ii) show the fit of the model (lines) to the reported number of deaths and hospitalisations 375 

per day (points), while panel (iii) shows inferred attack rates. Note that lines showing the 376 

model fits overlap in panels (i) and (ii), and attack rates for males and females overlap in 377 

panel (iii).   378 
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 379 

Figure 4. Model-based estimates (mean ± 95 % credible intervals) of age- and gender-380 

structured (A) infection-fatality ratios (IFRs) and (B) infection-hospitalisation ratios (IHRs). 381 

Note that in panel (A), IFRs were fixed at zero for all age classes below 30 years.  382 
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 383 
Figure S1. Baseline model fits to daily deaths data for all 32 age and gender classes. Shown 384 

are the model-inferred expected death rate from all causes (lines) ± 95% credible intervals 385 

(ribbons), and the mortality data used for model fitting (points).  386 
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 387 
Figure S2. Baseline model fits to hospitalisations data for all 32 age and gender classes. 388 

Shown are the model-inferred expected hospitalisation rate (lines) ± 95% credible intervals 389 

(ribbons) and the hospitalisations data used for model fitting (points).  390 
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 391 
Figure S3. The fit of Model 2 to daily deaths data for all 32 age and gender classes. Shown 392 

are the model-inferred expected death rate from all causes (lines) ± 95% credible intervals 393 

(ribbons), and the mortality data used for model fitting (points).  394 
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 395 
Figure S4. The fit of Model 2 to hospitalisations data for all 32 age and gender classes. 396 

Shown are the model-inferred expected hospitalisation rate (lines) ± 95% credible intervals 397 

(ribbons) and the hospitalisations data used for model fitting (points).  398 
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 399 

Figure S5. Estimates from the baseline model (mean ± 95 % credible intervals) of the shape 400 

of the (A) mortality distribution and (B) hospitalisation distribution, as a function of time 401 

since infection. Vertical bars indicate empirical frequencies derived from hospitalisation 402 

records for Manaus. In (A), the dashed line indicates the mortality distribution used by a 403 

previous COVID-19 modelling study for the State of Amazonas, Brazil12.  404 
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 405 

Figure S6. Estimates from the baseline model (mean ± 95 % credible intervals) of: (A) the 406 

impact of personal mobility on the time-varying reproduction number (Rt); and (B) the 407 

population-level effective reproduction number (Reff) over time. In the latter, Reff < 1 indicates 408 

the switch to negative epidemic growth due to the development of herd immunity.  409 
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Table S1. Excess mortality in Manaus, Amazonas, during the COVID-19 epidemic (here 410 

defined as the period between March 19 and June 24, 2020). 411 

Age 

Females Males Total 

Expected 
mortality 

Observed 
mortality 

Excess 
mortality 

Expected 
mortality 

Observed 
mortality 

Excess 
mortality 

Total 
Excess 

mortality 

Excess 
mortality 

(%) 
0-5 84.5 65 -19.5 109.6 83 -26.6 -46.1 -23.7 

5-10. 13.2 3 -10.2 19.3 10 -9.3 -19.5 -60 
10-15. 13.5 6 -7.5 19.3 11 -8.3 -15.8 -48.2 
15-20 26.1 14 -12.1 64.3 45 -19.3 -31.4 -34.7 
20-25 24.1 22 -2.1 116.4 78 -38.4 -40.5 -28.8 
25-30 26.7 30 3.3 92.2 81 -11.2 -7.9 -6.6 
30-35 30 35 5 81.2 88 6.8 11.8 10.6 
35-40 38.3 53 14.7 79 118 39 53.7 45.8 
40-45 44.6 88 43.5 72.4 154 81.7 125.1 107 
45-50 53.3 110 56.7 79.8 184 104.2 160.9 120.8 
50-55 59.2 114 54.8 99 225 126 180.8 114.3 
55-60 73.2 180 106.8 121.2 310 188.8 295.6 152.1 
60-65 95.6 215 119.4 139.2 436 296.8 416.2 177.3 
65-70 101.6 283 181.4 148.6 510 361.4 542.8 216.9 
70-75 110.2 276 165.8 143.6 456 312.4 478.2 188.4 
75+ 468.4 996 527.6 382.4 1208 825.6 1353.2 159.1 

Total 1262.4 2490 1227.6 1767.5 3997 2229.5 3457.2 114.1 

 412 
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