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Abstract

In this paper, we propose an enhanced SEIRD (Susceptible-Exposed-Infectious
-Recovered-Death) model with time varying case fatality and transmission rates for
confirmed cases and deaths from COVID-19. We show that when case fatalities and
transmission rates are represented by simple Sigmoid functions, historical cases and
fatalities can be fit with a relative-root-mean-squared-error accuracy on the order of 2%
for most American states over the period from initial cases to July 28 (2020). We find
that the model is most accurate for states that so far had not shown signs of multiple
waves of the disease (such as New York), and least accurate for states where
transmission rates increased after initially declining (such as Hawaii). For such states,
we propose an alternate multi-phase model. Both the base model and multi-phase
model provide a way to explain historical reported cases and deaths with a small set of
parameters, which in the future can enable analyses of uncertainty and variations in
disease progression across regions.

Introduction 1

COVID-19 has challenged the world to react to a new contagious virus in the absence of 2

effective medical treatment and vaccines. Over the course of nine months from the 3

outbreak in December 2019, when the first cases were confirmed in Wuhan, China, until 4

April 24th 2020, 213 countries and territories reported nearly 28 million confirmed cases 5

and a death toll exceeding 900,000 persons [1]. In the meantime, waiting for effective 6

clinical care and vaccination, countries have reacted to the pandemic by controlling 7

travel, implementing large-scale quarantine and restricting gatherings and contact 8

among people, as well as requiring hygiene measures and screening for possible cases. 9

Based on recent findings, compared to the global SARS epidemic in 2002 and MERS 10

in 2012, COVID-19 has a relatively long incubation period, with a mean time of 5 11

days [2]. COVID-19 has also been found to be transmissible while individuals are 12

asymptomatic. Meanwhile, disease severity is widely variable, depending on age, 13

comorbidities, baseline health and access to care. Even those with mild or no symptoms, 14

who are often young adults, may still transmit the disease to others. These factors, 15

combined with limited testing and inconsistency in adherence to public health measures, 16

have made the virus hard to contain. Policy makers are also facing a dilemma, 17

balancing the goal of maintaining economic activity against saving lives through strict 18
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measures, while at the same time learning about the effectiveness of interventions and 19

the nature of the disease. 20

In this paper, we seek to improve understanding of the dynamics of how COVID-19 21

is spread, utilizing a variation of the Susceptible-Exposed-Infectious-Recovered-Death 22

(SEIRD) model. Our key innovation is representation of the transmission rate and case 23

fatality rate as continuously varying functions, which are optimally fit to historical data 24

on confirmed cases and deaths. We surmise that neither parameter is static, as they are 25

influenced by the enactment and adherence to public health measures and medical care, 26

neither of which is constant over time. We have applied our model to all 50 American 27

states to derive insights into how the disease has spread in different localities, which are 28

influenced by population health, disease exposure, localized public health interventions 29

and messaging, in addition to other place specific factors. 30

Prior Research 31

Prior research on COVID-19 has estimated disease-specific parameters, such as the 32

basic reproduction number and latent period [3–5], demonstrating why the disease is 33

highly transmissible. Mathematical models have also been used to analyze different 34

transmission scenarios, to inform policy makers as to possible futures and the effects of 35

interventions. For example, according to a statistical guideline model published in 36

2005 [6], the state of New York reacted to the urgent shortage of ventilators by 37

requesting more ventilators from the federal government and implementing new 38

interventions, such as closures of schools and restaurants [7]. 39

Another use of disease transmission models has been to predict and plan for future 40

demands on the health care system, such as demands for hospital beds (ICU in 41

particular) and needs for health care resources, such as ventilators. Toward that 42

goal, [8] provides a statistical model of death data to predict future fatalities, assuming 43

that social distancing measures are maintained. From the projected fatality data, they 44

estimated hospital utilization with an individual-level microsimulation model based on 45

the historical statistics of age-specific ICU admission. [9] simulates the COVID-19 46

outbreak, parameterized with the US population demographics, with a compartmental 47

model under different scenarios of self-isolation, projecting hospital utilization and 48

recognizing the mitigation effect of self-isolation on hospital capacity. 49

Due to the limits of testing methods, the long incubation period, and cases with 50

mild or no symptoms and delayed reporting, there is potentially a huge (and unknown) 51

number of unreported cases, the extent to which could affect the future evolution of the 52

epidemic. Some researchers, therefore, have used the SIR (symptomatic-infectious 53

-recovered) model and SEIRD to estimate the number of undetected cases [10] and [11]. 54

Some approaches also incorporate transportation information (such as human migration 55

data and community mobility data) to analyze the impact of travel on disease 56

transmission and thus the effect of travel restriction [12–14]. However, most studies 57

using SEIRD or SIR assume the transmission rate and death rate to be constant over 58

time. With improvement in clinical treatment and changing intervention policies, the 59

transmission rate and fatality rate will be time variable. Therefore, SEIRD models with 60

constant parameters cannot accurately depict the spread of disease. [15] and [16] both 61

consider time dependency of transmission parameters. Godio et al modify the new 62

recovery rate to a sinusoidal function and they adjust the transmission rate according to 63

mobility trends [15]. Piccolomini et al. compare two piecewise time-dependent infection 64

rate functions and fit the infection rate function, incubation rate, and death rate for 65

each uniformly divided time interval [16]. These approaches require introduction of 66

many parameters to depict time dependency, thus risking overfitting and reducing 67

model generality. 68
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In our research we explore use of a concise formulation through which continuously 69

time varying transmission and case fatality rates are modeled with a small number of 70

parameters, which are fit to historical data. Like [7], we utilize a type of logistic 71

function (i.e., a Sigmoid function), but not simply to model reported deaths over time, 72

but to instead model transmission rate and case fatality rate within the SEIRD model. 73

Our objective is to improve the classical SEIRD model through an approach that adapts 74

to the dynamic pattern of transmission under different epidemic scenarios. Thus, we 75

provide insights into transmissibility of the disease while modeling historical data on 76

confirmed cases and confirmed deaths. 77

The Proposed Time Varying Model 78

We draw from the SEIRD compartmental model, which divides the population into five 79

groups: susceptible(S), exposed(E), infected(I), recovered(R) and dead(D). SEIRD 80

utilizes differential equations to model the evolution of the number of people in these 81

states over time. Susceptible individuals can catch the virus through contact with 82

infectious people and turn into the state of exposed. Exposed people are in a latent 83

state and then progress to the infectious state with a rate inversely related to the 84

incubation period (thus, exposed is defined as a state in which people are not yet 85

infectious). Infected people eventually progress into either the dead state, if they 86

succumb to the disease, or the recovered state, with different rates. Those who have 87

recovered are assumed to be no longer susceptible to contracting the disease. 88

We introduce death rate α (t) as a time varying function, representing the 89

proportion of infectious individuals who eventually die from the disease, by date. Those 90

who eventually die transfer from the infected to the died state at a rate of ρ, 91

representing the inverse of the time from becoming infectious until time of death. In our 92

model, ρ is assumed to be constant over time. Those who eventually recover do so at 93

the γ, representing the inverse of the time from becoming infectious until recovery. We 94

will also later derive the effective reproduction number Rep (t), representing the average 95

number of persons who are exposed to the disease by each infectious person, as a 96

function of time. 97

Taking these factors into account, the system of equations of the proposed SEIRD 98

model is given by:: 99

∂S (t)

∂t
= −β (t) • I (t) • S (t)

N
∂E (t)

∂t
= β (t) • I (t) • S (t)

N
− σ • E (t)

∂I(t)

∂t
= σ • E(t)− (1− α(t)) • γI(t)− α(t) • ρ • I(t)

∂R (t)

∂t
= (1− α (t)) • γ • I (t)

∂D (t)

∂t
= α (t) • ρ • I (t)

(1)

where: 100

S (t) = number of people in susceptible state at time t 101

E (t) = number of people in exposed, but uninfected at time t 102

I (t) = number of people in infectious state at time t 103

D (t) = number of people who have died at time t 104

September 25, 2020 3/15

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.20201905doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.25.20201905


R (t) = number of people who have recovered at time t 105

N = total number of people 106

β (t) = transmission rate at time t 107

σ = transformation rate from exposed to infectious, which is the reciprocal of the 108

incubation period 109

α (t) = likelihood of eventual death of a person who is infected at time t 110

γ = transformation rate from infectious to recovered, which is the reciprocal of 111

the recovery time 112

ρ = transformation rate from infectious to death 113

Changes in intervention policy, global events and medical care affect α (t) and β (t). 114

While, in theory, these functions may change erratically as a consequence of discrete 115

events, such as new public health measures, we hypothesize that such discrete events do 116

not suddenly alter either function. Therefore, we seek to understand whether a simple 117

continuous model, with a minimal set of parameters, might accurately represent 118

historical data. For illustration, at the enactment of a new intervention policy, the 119

public may not react immediately, and neither do the transmission parameters. The 120

public will get used to the policy after a period of adaptation, and eventually the 121

effective reproduction number will stabilize. In addition, the public responds to both 122

government policies and communication about the disease. Communication comes from 123

many, sometimes conflicting, sources. How the public at large absorbs and responds to 124

such often confusing messages may be gradual. 125

A natural function to describe this pattern of change is the Sigmoid function. 126

Equation 2 is the general form of the Sigmoid function, where k determines the slope of 127

the function and a determines the x value at the middle point (i.e., point of time when 128

y = .5). A standard Sigmoid function with k = 1 and a = 0 is shown in Figure 1. 129

S (x) =
1

1 + ek(x−a)
(2)

Fig 1. Standard Sigmoid function k = 1 and a = 0

Thus, we define the function for transmission rate and death rate as: 130

β (t) = βend +
βstart − βend
1 + em•(x−a)

(3)
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α (t) = αend +
αstart − αend

1 + en•(t−b)
(4)

where: 131

βstart is the starting reproduction number 132

βend is the ending reproduction number 133

αstart is the starting death rate, ranging from 0 to 1 134

αend is the ending death rate, ranging from 0 to 1 135

m, n, a, b are the shape parameters 136

Parameter Estimation and Model Fitting 137

Parameters in Eqs. 1 were estimated with the objective of minimizing the weighted 138

summation of squared error between cumulative predicted and measured confirmed 139

cases and the summation of squared error between cumulative predicted and cumulative 140

confirmed deaths. Our analysis is based on the period from the day of first reported 141

case in each state until 07/28/2020, across all 50 American states. For each state of the 142

USA, we chose a start date of 4 days prior to the date of the first confirmed case. Four 143

days was chosen based on a report by CDC [17], indicating the median incubation 144

period is 4 days, ranging from 2 - 7 days. 145

Two methods were used for different sets of parameters, as described below. To 146

estimate the shape parameters m, n, a, b and the starting/ending parameters 147

βstart, βend, αstart, αend , we fit Eqs. 1 to the cumulative confirmed case numbers and 148

the cumulative confirmed death numbers with the nonlinear least square method. Other 149

parameters were derived from prior research. 150

Parameters Derived from Prior Research 151

As mentioned in the CDC reports [17–19], the median incubation period is 4 days, 152

ranging from 2 - 7. Among 305 hospitalized patients and 10,647 recorded deaths, the 153

median time of hospitalization was 8.5 days and the median interval from illness onset 154

to death was 10 days (IQR = 6 - 15 days). We assume the median hospitalization time 155

is the median time for infectious people to stop being contagious. Hence, we set these 156

parameters as the reciprocal of these time values: σ = 1/4, γ = 1/8.5, ρ = 1/10. 157

Parameters Derived from Optimization 158

The remaining parameters are derived for each American state by optimizing the fit of 159

the model to historical case and death data, where the objective is to minimize a 160

weighted sum of daily squared error over the analysis period. We utilized a search 161

algorithm that required initialization and a constrained search space, as explained below. 162

We define the model function M(t; [βstart, βend,m, a, αstart, αend, n, b]) : t→ R2, 163

where M(t; [βstart, βend,m, a, αstart, αend, n, b]) = [Î (t) + R̂ (t) + D̂ (t) , D̂ (t)] and the 164

reported case number and death number at time t is [Cases(t), Deaths(t)]. 165

Because it is unlikely for transmission and death rates to change drastically in a 166

single day, we set upper bounds for m and n at 0.33 (meaning that rates do not 167

suddenly change in less than three days) and initialize the search at 0.25. We permit 168

the turning point of the sigmoid function to occur on any day in the timeline; we set 169

a, b ∈ [0, 125], where 125 is the length of the period from March 1st to July 28th, in days 170
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(as of March 1st few states had reported cases). Prior research suggests that the initial 171

effective reproduction number is around 3 [5], equivalent to a transmission rate of 0.75, 172

which we use for initialization. Because transmission rates vary significantly among 173

locations due to local conditions (such as crowding), we bound βstart ∈ [0.5, 7.5] and 174

βend ∈ [0, 2.5], thus permitting a wide range of results. 175

To summarize, the parameters set P = [βstart, βend,m, a, αstart, αend, n, b] is 176

initialized as [0.75, 0.5, 0.25, 10, 0.4, 0.1, 0.25, 10]. Then the parameter optimization 177

problem is: 178

minimize
p

||M (t;P )− [Cases (t) , Deaths (t)] ||22

subject to 0.5 ≤ βstart ≤ 7.5

0.1 ≤ βend ≤ 2.5

0 ≤ αstart ≤ 1

0 ≤ αend ≤ 1

0.01 ≤ m ≤ 0.33

0.01 ≤ n ≤ 0.33

0 ≤ a ≤ 125

0 ≤ b ≤ 125

(5)

The number of reported deaths is smaller than the number of reported cases in all 179

locations. Thus, treating errors in death estimation and case estimation the same will 180

lead to underfitting of the death data, in preference to minimizing the errors in case 181

data. Therefore, considering the accuracy of the reported death data and the fitting 182

accuracy, we optimized a weighted sum of squared death and case data, multiplying w 183

by deaths during the fitting process. The adjusted objective function is: 184

minimize
p

||
(
Î (t) + R̂ (t) + D̂ (t)− Cases (t)

)2
+ w ∗

(
D̂ (t)−Deaths (t)

)2
||22 (6)

The parameters are estimated by solving the nonlinear constrained least-squares 185

problem in Eqs. 6, utilizing the Levenberg–Marquardt algorithm (LMA). The LMA 186

algorithm adaptively varies the parameter updates between the gradient descent update 187

and the Gauss-Newton update and accelerates to a local minimum [20]. The LMA is 188

implemented to our model fitting by the lmfit package in Python. In our analysis we 189

utilized w = 20 , to yield similar error percentages for deaths and cases. 190

Data Limitations 191

We recognize that reported data are not the same as actual cases and actual deaths, 192

which are unknowable. Daily confirmed cases are influenced by widely varying testing 193

rates and policies, which change over time. At the beginning of the epidemic, the 194

limited test kits were restricted to those who suffer from severe symptoms and those 195

who are in a higher risk of exposure. Death data are likely to be more accurate, but 196

they too can suffer from reporting errors, due to how deaths are attributed to 197

COVID-19 (or not), the timing of filing reports and the general accuracy of reporting. 198

For these reasons, our model represents estimation of reported data rather than the 199

actual (but unknown) number of cases and number of deaths. 200

Reporting has also shown a consistent day-of-week variation across many locations, 201

with weekend data differing from weekday data. This variation is more likely the 202

consequence of different patterns of healthcare staffing, and differences in how patients 203

present for testing by day of week, rather than differences in disease transmission by day 204

of week. To smooth out these effects, we model the moving 7-day average data instead 205

of the daily reported data 206
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Results 207

Model Accuracy 208

The first case of COVID-19 in the United States was reported on January 20, 2020 [21]. 209

As of July 28, 2020, a total of 4,459,2869 cases and 151,711 deaths had been reported 210

across the states and territories of America [22]. We fit the model with the dataset of 211

7-day moving average cases and deaths for the 50 states, provided by the COVID-19 212

tracking project lead by The Atlantic (derived from the Center for Disease Control), for 213

the period from the date of the first reported cases to July 28th. The fitting accuracy 214

across all states is presented in Figure 2, measured by the relative root mean square 215

error (RRMSE): 216

RRMSE =

[∑N
i=1 (ŷi − yi)2 /N

]1/2
yN

(7)

where yN is the case/death number on the Nth day. The fitting accuracy of the 217

reported case number ranges from 0.54% to 7.34% and of the reported death number 218

ranges from 0.29% to 7.28%. The average and median RRMSEs for deaths are 1.61% 219

and 1.33%; for cases, the average and median values are 2.30% and 1.88%. RRMSE fell 220

below 5% by both measures for all states except Hawaii, Louisiana, Montana and 221

Wyoming. Figure 2 shows that the proposed SEIRD model with time-dependent

Fig 2. Fitting accuracy of the cases and fatality across all states

222

transmission rate and death rate captured the pattern of the transmission dynamics well 223

across most states with only 8 fitted parameters. 224
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Figure 3 and 4 show the specific fitting results for cases and deaths by day for the 225

two states with the largest number of cases (New York and California) as well as two 226

other states for which the fit is less accurate (Florida and Hawaii). For New York and 227

California, the fitting results almost coincide with the CDC data. Examining Florida 228

and Hawaii, the CDC data follows a pattern of two phases, which is not as well 229

captured by our model. Especially for Hawaii, the curve flattened for a period and then 230

rose. As discussed later, our model characterizes the transmission dynamic for a period 231

with one phase, i.e. the curve should become flat at most once.

Fig 3. Fitting results of case number for New York, California, Florida and
Hawaii

232

Fig 4. Fitting results of death number for New York, California, Florida
and Hawaii
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Effective Reproduction Number Calculation and Trends 233

Effective reproduction number at any time t, which we define as Rep (t), is the average 234

number of people in a population who are infected per infectious case, where everyone is 235

susceptible to the disease. Rep (t) measures the transmission potential of infectious 236

diseases [23]. When Rep (t) > 1, the rate of new cases will increase over time, until the 237

population loses susceptibility to the disease. When Rep (t) < 1, the rate of new cases 238

will decline over time. 239

Rep (t) can be estimated with the next generation matrix method [24]. We define X 240

as the vector of infected class (i.e. E, I) and Y as the vector of uninfected class (i.e. S, 241

R, D). Let dX
dt = F (X,Y )− V (X,Y ), where F (X,Y ) is the vector of new infection 242

rates (flows from Y to X) and V (X,Y ) is the vector of all other rates. Then for our 243

model, the next generation matrix is expressed as 244

M =

(
∂F
∂X

)
(N,0,0,0,0)

(
∂F
∂X

)−1

(N,0,0,0,0)

=

[
0 β (t)
0 0

] [
σ 0
σ (1− α (t)) • γ + α (t) •

]−1
(8)

Then the effective reproduction number is the spectral radius of M, expressed as: 245

Rep(t) =
β (t)

(1− α (t)) • γ + α (t) • ρ (9)

At the beginning of the epidemic, Rep (t) reflects the natural transmissibility of 246

COVID-19, i.e. the basic reproduction number R0 in the absence of intervention. With 247

the evolution of the epidemic, Rep (t) changes dynamically, as do the transmission rate 248

β (t) and death rate α (t), which are influenced by both the intervention policy and 249

population immunity. Figures 5 and 6 show the fitted Rep (t) at the start of the 250

epidemic across all states and fitted Rep (t) on July 28th. We see that Rep (t) ranges 251

from 1.27 to 16.49, with a median value of 2.87. It should be kept in mind that this 252

optimal fit is a reflection of the reported data on cases. Increasingly aggressive testing 253

may make it appear that Rep (t) grows faster than the actual (unknown) number of 254

cases. 255

Fig 5. Fitted Rep (t) at the start of the epidemic This figure shows the
reproduction number on the date of first reported case across all states
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Fig 6. Fitted Rep (t) on July 28This figure shows the reproduction number on July
28 across all states

For illustration, Figure 7 shows our estimated history of Rep (t) for New York, 256

California, Florida and Hawaii. Time 0 in these graphs is the day of the first reported 257

case, which varies from state to state. In these cases, the effective reproduction number 258

both stabilized and became smaller than 1 with time, with the change occurring over a 259

period of 10 to 30 days. 260

Fig 7. History of effective reproduction number for New York, California,
Florida and Hawaii

As noted, in the early stages of an epidemic, the reproduction number may seem 261

particularly large not only because the disease spreads rapidly but also because the rate 262

of testing is increasing. In this sense, the estimated reproduction number is a reflection 263

of both changes in the data collection process and the actual spread of disease. 264

Death Rate Trends 265

Death rate is another measure that shows the change in virus outcomes over time, 266

reflecting the health system’s ability to deal with the flood of infected people. Figure 8 267

provides examples. From the historical plot, we see the hardest-hit states, like New 268

York and Florida, experienced a much higher death rate in the early stage than the 269

average 3% death rate in the United States. The relatively high death rate could be 270
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caused by the lack of effective medical treatment and hospital overload. It could also 271

reflect limited testing of patients, whereby only the sickest patients were recorded as 272

cases. With improvement of medical treatment, and perhaps increased testing, the 273

death rate per confirmed case for most states decreased to a stable value. 274

Fig 8. History of death rate for New York, California, Florida and Hawaii

Multi-Phase Model 275

Our model as presented fits reported data for cases and deaths within 2% error in most 276

states. However, because it is premised on the assumption that transmission rates do 277

not at first go down, and then later go up, it needs to be modified for states that exhibit 278

multiple waves of the disease. Data for Hawaii – for which the model has the poorest fit 279

– are most indicative of this pattern. 280

For such locations, we propose an alternate multi-phase model. The Hawaii 281

Department of Health announced the first positive case on Oahu, Hawaii, on March 6th 282

and then enacted a stay at home order on March 25th. From April 19th to May 7th, the 283

case curve flattened. The state announced on May 7th that Hawaii would embark on 284

the first phase of reopening. The data reflect a second wave of coronavirus commencing 285

on or about May 7th. 286

We divide the Hawaii timeline into two periods, the first from March 6th until May 287

7th, and the second from May 7th to July 28th. We fit the first stage with the 288

initialization of only one exposed people at the start. To initialize the second phase, we 289

use the predicted number of exposed people, infectious people and recovered people 290

from the first phase, combined with the reported deaths as of May 7th. With this 291

modification, the RRMSE for cases declines below 2.5% and the RRMSE for deaths 292

declines below 2.7%. The fitting results in Figure 9 show that our two-phase model 293

captures the transmission pattern more precisely than the single-phase model. 294
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Fig 9. Fitting results for the two phases HawaiiThe first phase (left figures)
starts from March 6 to May 7; The second phase (right figures) starts from May 7 to
July 28.

The history of effective reproduction number and death rate are shown in Figure 10. 295

The first phase showed a decline in the reproduction number after the initial 296

announcement of the stay-at-home order. However, with the reopening, the 297

reproduction number increased, explaining increases in case rates. Death rates, by 298

contrast, exhibit a peculiar behavior, increasing over time in each phase, with a 299

discontinuity when transitioning from the first phase to the second. Beyond exhibiting 300

two phases, Hawaii has a small number of deaths, with no deaths occurring in the 301

transition period between phases. We surmise that the function, while representing the 302

data well, is peculiar because of the unusual pattern in deaths within Hawaii. 303

Fig 10. Historical results of the effective reproduction number and death
rate The first phase (left figures) starts from March 6 to May 7; The second phase
(right figures) starts from May 7 to July 28.
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Conclusions 304

We have developed an extension of the SEIRD model that represents changing 305

transmission and death rates over time as a continuous Sigmoid function, under the 306

hypothesis that these rates change gradually, rather than immediately upon 307

implementation of public health policies or treatments. The model fits historical data 308

for the United States well for most states. Those with poorer fits exhibit patterns of 309

multiple waves of the disease. Using Hawaii as an example, a multi-phase extension of 310

the model provides a more accurate fit, where the transition from one phase to the next 311

is defined by a change in public health policy. 312

An advantage of the model is that it is defined by a small set of parameters. Thus, it 313

provides an efficient method for quantifying differences among regions in the spread and 314

outcomes of the disease. In the future, we intend to examine the predictive value for the 315

model, taking into consideration ranges of uncertainty in model estimates. By 316

examining historical trends, we can understand how variations in simple parameters can 317

lead to fewer or more cases and deaths. In the future, we will develop multi-region 318

extensions of the model, which permit representation of spread of disease from one 319

region to another, or perhaps within sub-regional groups. 320

Our research is premised on the method of modeling case and death data as they are 321

reported. We recognize that the true number of cases may differ from reported values, 322

as might the number of deaths, both of which are unknown. The variations from state 323

to state reflect in part the actual spread and outcomes of disease, as well as the extent 324

to which cases are detected and reported, as well as how deaths have been classified. 325
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