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ABSTRACT 

Background: Current precision medicine (CPM) matches patients to therapies, utilizing 

traditional biomarker classifiers. Dynamic precision medicine (DPM) is an evolutionary 

guided precision medicine (EGPM) approach that specifically accounts for intratumoral 

genetic heterogeneity and evolutionary dynamics. DPM adapts as frequently as every 

six weeks, plans proactively for future resistance development, and incorporates 

multiple therapeutic agents.  Simulations indicate that DPM can double mean and 

median survival and significantly improve long-term survival in a cohort of 3 million 

virtual patients representing a pan-oncology spectrum. Given the cost and invasiveness 

of monitoring subclones frequently in the DPM paradigm, we sought to determine the 

value of a DPM window study of only two six-week adaptations (“moves”). Methods: 3 

million virtual patients, differing in DPM input parameters of initial subclonal 

compositions, drug sensitivities, and growth and mutational kinetics, were simulated as 

previously described. Each virtual patient was treated with CPM, DPM, and DPM for two 

moves followed by CPM.  Results: The first two DPM moves provide similar benefit to a 

five-year, 40-move sequence in the full virtual population. In simulations, if the first two 

moves are identical for DPM and CPM, patients will not benefit from DPM (89% 

negative predictive value). The patient subset (20%) in which two-move and 40-move 

DPM sequences are closely similar in outcome has extraordinary predicted benefit (HR-

DPM/CPM 0.04). Conclusions: The first two DPM moves provide most of the clinical 

benefit of DPM, reducing the duration of required subclonal monitoring. This leads to an 

evolutionary classifier (EC) that selects patients who will benefit, i.e. those in whom 

DPM and CPM recommendations differ early. This EC development paradigm may 

apply to other EGPM approaches despite different underlying assumptions.  
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CONTEXT SUMMARY 

• Key objective: Current precision medicine (CPM) performs static matching of 

biomarker classifiers to therapies. We asked, using computer simulation, whether 

dynamic precision medicine (DPM), a highly adaptive and proactive evolutionary 

guided precision medicine (EGPM) paradigm, could benefit patients with only two 

six-week adaptive treatment periods (“moves”), and still enhance long term 

survival by preventing late term relapses. 

• Knowledge generated: Two moves of DPM were highly effective, nearly as 

effective as 40 moves in the full population. Patients for whom DPM and CPM 

recommend the same treatment sequence for the first two moves will likely not 

benefit from DPM. 

• Relevance: A 2-move DPM paradigm is far more cost-effective and less invasive 

than a 40-move paradigm, and opens up the neoadjuvant period for studying 

DPM. The findings establish an evolutionary classifier (EC) for selecting patients 

who will benefit from DPM. This general approach to developing an EC may work 

for other EGPM.  
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INTRODUCTION 

 

Current precision cancer medicine matches therapies to static, consensus molecular 

patterns. Patients are treated with a therapy for as long as they are benefiting, and upon 

progression and relapse the process is repeated with a different therapy. This approach 

has resulted in substantial patient benefits and is a major current direction in oncology. 

However, despite the benefits of this approach, duration of response is variable, and 

long-term remissions and cures remain elusive. 

Cancers are constantly evolving subclonal heterogeneity. Ultradeep sequencing 

(20,000X) of colorectal cancers at diagnosis and a novel approach to modeling the 

evolution of very rare subclones indicate that any cancer containing enough cells to be 

detectable will have at least one cell with a resistance mutation to any single therapy, 

and that as the cancer burden increases during a clinical course, cells may evolve that 

are simultaneously resistant to multiple elements of a therapeutic cocktail, at a rate 

substantially faster than previously anticipated1, 2. Rare resistant cells may grow out 

relatively free of competition from other cancer cells in numerous micrometastases that 

are small enough to allow ready diffusion of oxygen and nutrients. Infiltration of major 

organs with metastatic disease, rather than growth of large primary lesions, generally 

leads to cancer mortality1, 3.  

Explicit consideration of subclonal heterogeneity and evolutionary dynamics may 

improve clinical results by preventing the evolution of resistance. Several strategies 

have been proposed for incorporating evolutionary dynamics in a personalized manner4-

7. We term these evolutionary guided precision medicine (EGPM) strategies. A 

strategy is defined not as a particular therapy or regimen, but rather as an algorithm for 

determining optimal therapy sequences on an individual basis. 

Our work has been focused on dynamic precision medicine (DPM), a specialized 

EGPM that explicitly considers subclonal heterogeneity and dynamics, adapts very 

frequently, and proactively plans ahead based on estimated risks of future events6. 

DPM, unlike earlier EGPMs, considers optimal sequencing of multiple non-cross 

resistant therapies, rather than focusing on optimal scheduling of a single therapy. 

Extensive simulation has shown significant improvements in relapse prevention and a 

doubling of median survival6. Primary resistance may be due to non-genetic plasticity 

including gene regulation or to pre-existing mutations, whereas later relapses will 

increasingly be due to epigenetic and genetic sub-clonal evolution, the latter including 

not only mutations but also copy number changes and other rearrangements.  

DPM explicitly considers minority subclones and heritable genetic and epigenetic 

evolutionary dynamics, with the goal of maximizing survival by balancing treating 

current disease and preventing refractory disease relapse, the latter accomplished by 

eliminating small singly-resistant subclones before they can evolve sub-subclonal 

variants simultaneously resistant to multiple non-cross resistant agents. DPM predicts 
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that “hypermutator subclones” with a higher mutation rate will arise due to random 

mutations in proteins responsible for genome integrity, such as replication and repair 

proteins6, 8. These hypermutator subclones can rapidly evolve cells that are 

simultaneously resistant to all the agents in a therapeutic cocktail, and are a particular 

priority for early elimination. The DPM prediction that hypermutator subclones will be 

enriched in resistant samples is being verified using a fluorescent reporter assay for 

hypermutators as well as ultradeep DNA sequencing9. As a result, DPM will often 

recommend brief periods of prioritizing elimination of rare hypermutator subclones vs. 

debulking the tumor.  

DPM changes therapy very frequently and plans ahead for potential future evolution of 

rare hypermutator subclones and others using an adaptive evolutionary model to predict 

the optimal treatment regimen within a short time window - e.g. two 3-week therapy 

cycles, although the length of this window can be adjusted.  We term each therapy 

adaptation a ”move” in analogy to chess. Frequent changes in therapy are a hallmark of 

DPM because this minimizes the constant, predictable selection pressure from 

treatment with a constant single or combination therapy until progression or relapse. 

Instead, frequent adaptation complicates evolutionary pathways to multiple resistance10. 

DPM considers the probabilities of distant outcomes up to 5 years in the future when 

determining each move, and may be superior at prioritizing these longer timescales of 

interest vs. other algorithms that focus on short term outcomes such as tumor 

shrinkage11.  

In an extensive simulation of 3 million virtual patients, where each patient represented a 

unique starting state of prevalence of sensitive and resistant subclones, and a unique 

set of parameters including net growth rates, phenotypic transition rates of each 

subclone between sensitivity and resistance to two non-cross resistant therapies, and 

sensitivity and resistance values, DPM doubled median survival compared to current 

precision medicine (CPM; targeted therapy  directed against the largest subclone), 

over a wide range of scenarios encompassing literature and clinical experience across 

oncology6.  

DPM in principle requires high resolution data on subclonal composition at multiple 

timepoints, potentially leading to a high-cost paradigm, as well as one that is invasive, 

given that sensitivity for rare subclones in liquid biopsies might be limited. Hence, we 

asked whether 2 moves of DPM provided patient benefit, and how this might compare 

to the benefit from 40 moves over a 5-year period.  

Moreover, the average benefit of DPM was driven by 31% of the virtual patients who 

experienced significant benefit while the other 69% of patients had equivalent outcomes 

on CPM and DPM. Hence it is important to identify the subset of patients who will 

benefit from DPM.  

This manuscript also concerns the development of an evolutionary classifier (EC) to 

select this important patient subset.  In principle this could be accomplished by direct 
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calculation using the DPM equations over an entire clinical course, but that approach 

may not be as robust in clinical situations in which the available data may be incomplete 

compared to ideal DPM input data, particularly if data are available only at a small 

number of early timepoints. The approach we have discovered for identifying patients 

who will benefit may be readily generalizable to other EGPM approaches that might 

ideally require detailed molecular data at multiple timepoints. This would greatly 

facilitate clinical testing of EGPM approaches.  

In the results section, we will describe the development and performance of the 

evolutionary classifier, as well as surprising results for a 2-move DPM window vs. the 

original 40-move paradigm. In the discussion, we will address the impact and innovative 

aspects of these findings and their possible generality. We will also discuss limitations 

of the work and future plans. 

 

METHODS 

 

Clinical evaluation of DPM: Clinical testing of EGPM faces several hurdles that may 

affect the ability to get complete input datasets6. Highly sensitive and specific non-

invasive assays to detect rare subclones and predict their drug sensitivity and 

resistance properties and evolutionary dynamics are ideally required. However, these 

concerns are out of the scope of this manuscript, which instead focuses on selecting 

patients assuming the relevant input parameters are (to some degree) available, and 

thus enhancing the efficiency of clinical studies to evaluate the merit of EGPM. The EC 

developed in this work may be more robust in settings where data are available at early 

timepoints only, compared to direct computation using the DPM equations.  

Clinical studies of highly adaptive EGPM algorithms that consider multiple therapies 

face a challenge. Highly adaptive EGPM presents a very large decision tree of therapy 

sequences which will be assigned to patients individually based on their initial state and 

evolutionary dynamic parameters11, and will in real applications need periodic 

reassignment if future states diverge from predictions. In DPM, which takes into account 

possible need for dose reduction in simultaneous combinations, if there are two partially 

non-cross resistant therapies A and B, there are three options at each move: full dose 

A, full dose B, and a simultaneous combination of A and B at reduced dose. (We note a 

“therapy” may itself be a combination of drugs. A “therapy” is defined as a drug or group 

of drugs targeted against a particular subclone). Due to frequent adaptation, both A and 

B can be delivered at high intensity early on, even if administered as monotherapy 

pulses. The number of possible paths if two therapies are considered over n moves is 

thus 3n. If we consider only 2 moves, or a 12-week window, there are 9 sequences to 

consider.  
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Evolutionary classifier (EC): In contrast to a conventional biomarker classifier, which 

informs a matching between patients and optimal therapies, we seek to develop an 

evolutionary classifier that will match patients to strategic algorithms for computing 

optimal treatment sequences. Moreover, the classifier matches not just based on static 

molecular properties but based on dynamic properties such as growth and mutation 

rates that may predict future states. To support the translation of DPM into the clinic, we 

note the EC must now perform two classifications. EC1 must first identify patients most 

likely to benefit from DPM, who will then be the trial participants. EC2 must then sort 

patients selected by EC1 into optimal therapy sequences. Figure 1 shows how these 

two classifiers might function together in the context of a window pilot study in the 

neoadjuvant setting in ER/HER2 double positive breast cancer.  

 

Figure 1. Vision of an evolutionary window pilot clinical trial using novel mathematical 

and computational tools of an evolutionary classifier (EC). Within the neoadjuvant 

setting, breast cancer patients are screened for double HER2 and ER positive status. A 

diagnostic biopsy collects the individual DPM input parameters required for EC1 

predictions. Patients expected to benefit from DPM are enrolled in a 2-move window 

trial. EC2 assigns patients to the evolutionary treatment sequence over the 2 moves 

predicted to be optimal. Core biopsy is performed at the end of move 1. Another biopsy 

is performed at surgery for tissue analysis. Patients continue on CPM after surgery. 

Patients who are not predicted to benefit from DPM will simply receive CPM before and 

after surgery. The primary endpoint will be relapse-free survival in a high-risk group. 

Subsequent clinical development steps (not shown) would contain randomization 

between DPM and CPM.   

DPM simulations were performed on nearly 3 million virtual patients comprising different 

combinations of input parameters as described in the introduction6. A system of ordinary 

differential equations based on the evolutionary model was integrated piecewise to 

simulate clinical time courses and DPM and CPM recommendations for each move read 
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out to support EC1 and EC2 using strategy 2.2 to represent DPM and strategy 0 to 

represent CPM6. Strategy 2.2 prioritizes prevention of the birth of multiply resistant cells 

unless the total cancer burden exceeds a predetermined threshold, whereupon overall 

cytoreduction is prioritized. In practice, determining when it is critical to prioritize overall 

cytoreduction would rely on the judgement of the treating physician. Strategy 0 focuses 

on personalized cytoreduction by giving therapy directed at the most prevalent 

subclone. Death occurs in the simulation when cell numbers exceed a second 

predetermined threshold6.  

Kaplan-Meier analyses and calculation of EC1 statistical properties were performed 

using functions in R.  

 

RESULTS 

 

Nearly equal benefit from Full DPM and 2-Move Trial DPM: In order to consider a 

window study design in which DPM is given only within a 2-move window, we must 

determine the benefit conferred by only 2 moves of DPM. Figure 2A shows the 

surprising finding that the first 2 moves of DPM confer most of the benefit of full DPM. In 

the entire simulation, 40 moves of DPM confers a hazard ratio, HR (DPM/CPM), of 0.52 

and 2 moves of DPM confers a HR of 0.55. 

Extraordinary benefit for virtual patients whose benefit from full DPM and 2-move 

trial DPM are closely equal. Figure 2B shows the benefit predicted for those virtual 

patients whose survival on trial DPM and full DPM differs by less than 25% relative and 

less than 2 months absolute. These patients, representing nearly 20% of the original 

population, experience an HR of 0.04. 

 

Figure 2. (A) Kaplan-Meier plot of simulated survival, which is increased over the 

standard therapeutic sequence (red) when following the strategy defined by DPM for the 

entire clinical course (full DPM, green) or the first two moves only (DPM trial simulation, 
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blue). Benefits from trial DPM and full DPM are similar, as shown by the hazard ratios. 

(B) Kaplan-Meier plot of those virtual patients predicted to have similar survival (within 

25% relative and 60 days absolute) between trial DPM and full DPM. This group of 

patients, about 20% of those from the original population, experience substantial benefit 

from either trial DPM or full DPM. (Note p values in figures A and B (not shown) are 

highly significant, but with such large sample sizes p values would be significant even 

with small differences. Similarly, 95% confidence intervals would be extremely tight due 

to the large number of virtual patients, not truly reflecting the total uncertainty inherent in 

such an analysis).  

Construction of EC1 and its performance: Given that the first two moves of DPM 

appear to confer most of its benefit, we hypothesized that DPM would not be beneficial 

compared to CPM in patients with specific parameter configurations where the 

recommendations for both moves 1 and 2 were identical between DPM and CPM.. 

Thus, a patient was labelled by EC1 as potentially benefitting from DPM if DPM and 

CPM diverged in one or both of the first two moves. We can evaluate the performance 

of EC1 by comparing the results of CPM and DPM, where a patient was defined as 

benefitting from DPM in simulation if it provided at least 25% relative and 2-month 

absolute survival advantage compared to CPM. The performance of EC1 as a predictor 

of benefit is shown in Table 1, where the high sensitivity and negative predictive power 

demonstrate its effectiveness at identifying at identifying a significant portion of the 

simulated population that should not be enrolled in the 2-move trial of DPM. Figure 3 

shows Kaplan-Meier curves of three treatment strategies – CPM, full DPM (applying the 

DPM algorithm over the full 40-move course), and trial DPM (applying DPM to the first 

two moves and reverting to CPM afterward) – among the patients with identical 

recommended moves 1-2 between DPM and CPM. No clinically significant advantage of 

DPM is seen under these conditions. Note p values are not shown in this research brief 

since the sample size in the virtual trial is extremely large, conferring statistically 

significant p values even in the face of clinically insignificant differences.  

Table 1. Statistical performance of an initial heuristic EC1 based on differences 

between DPM’s and CPM’s recommended sequence of two drugs or a combination for 

the first two moves. Benefit is defined by an overall increase in survival by at least 25%, 

and at least 60 days when using the DPM approach.   
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Figure 3. Kaplan-Meier Plot for a simulated trial of DPM, where three treatment 

strategies were compared. CPM (Standard Therapy) (red) recommendations are based 

on the therapy that provides the greatest response to the largest population of tumor 

cells, and the Full DPM (green) recommendations minimize the emergence of multiple 

drug resistance at the expense of overall tumor shrinkage. The DPM Trial (blue) 

treatment strategy used the DPM recommendations for the first two therapeutic 

interventions before reverting to the standard therapeutic strategy. The resulting 

populations can be grouped based on comparing the recommendations of DPM and 

CPM. Here we show that if DPM and CPM give identical recommendations for moves 1 

and 2, there is little to no benefit of DPM. If only move 2 differs, DPM gives a clinically 

significant benefit (hazard ratio 0.74), but trial DPM does not (hazard ratio 0.86) (data 

not shown). (Note 95% confidence intervals (not shown) are tight due to the large 

number of virtual patients, but this may not truly reflect the total uncertainty inherent in 

such an analysis).  
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DISCUSSION 

 

Previously, biomarker classifiers have been used to categorize patients and match them 

to therapy according to conventional precision medicine. These classifiers have 

consisted of a single biomarker such as a mutation, or a panel of biomarkers such as a 

gene expression profile, involving categorical or continuous variables, the latter 

converted to categorical by cutoffs12-16. Here, the classifier is being applied to determine 

if patients will benefit from DPM and to match patients to individualized therapy 

sequences of the same drugs according to an algorithm based on initial subclonal state 

variables and evolutionary dynamics parameters6. The EC input values are thus unique, 

related in a complex way by a system of differential equations6, and deployed for unique 

purposes compared to previous biomarker classifiers. 

The classification, however, can be dramatically simplified by a high-level principle. 

Populations can be enriched for DPM benefit based on comparison of therapy 

recommendations by DPM and SOC in just the first move. It is striking that this is true 

for DPM, which has the ability to plan each move against a future horizon far longer 

than the proposed window, i.e. up to 5 years11. 

DPM and potentially other EGPM approaches require repeated observations over time 

at deep sub-clonal resolution. While single cell methods are improving, they are 

expensive and sensitivity and accuracy may be insufficient to distinguish rare cells from 

technical error. According to DPM simulations, one cell in 100,000 can alter the optimal 

strategy if it is an extreme hypermutator6. These challenges are magnified for liquid 

biopsies which are nonetheless essential to minimize patient risk and inconvenience if 

prolonged monitoring is required. The finding that a brief window of DPM provides 

similar benefits to prolonged DPM opens up the possibility of reduced patient risk and 

inconvenience, and reduced cost. The proposed 3-month window may allow DPM to be 

deployed in high risk neoadjuvant settings, where tissue availability at diagnosis and at 

surgery are routine and only one additional core biopsy between these timepoints would 

be required. 

From the point of view of dynamic models of cancer treatment, especially EGPM 

approaches, it also raises the question of how general this high-level approach to 

classifying patients can be. Can patients who will benefit from other treatment 

approaches based on other dynamic models of cancer be selected based on whether 

the recommended treatment differs from SOC in an initial treatment window, and what 

in a given model determines the required length of this window? 

One might imagine, in patients who benefit equally from a finite number of moves 

directed by EGPM and more extended EGPM, that the initial moves convert the 

patient’s cancer to a state similar to the initial state of a patient who cannot benefit. 

Once these states precluding further benefit are identified, periodic checks can in 

principle be instituted to govern stopping and restarting of an EGPM as needed, again 
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optimizing cost-effectiveness. While details will differ for each EGPM, the high-level 

principle may be general. 

Future work is necessary to more deeply understand these findings. We will determine 

whether this process can in fact be used to stop and restart DPM. We will create 

subsets of the very large simulation population based on recommended moves and on 

clustering based on initial state variables and input parameters, and visualize and 

analyze representatives of each cluster to elucidate underlying evolutionary 

mechanisms for DPM benefit. There may be multiple mechanisms behind significant 

DPM benefit in the nearly one million virtual patients who demonstrated it.  
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