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Abstract 
 
Chromosomal instability (CIN) is a hallmark of human cancer that involves mis-segregation of 

chromosomes during mitosis, leading to aneuploidy and genomic copy number heterogeneity. CIN 

is a prognostic marker in a variety of cancers, yet, gold-standard experimental assessment of 

chromosome mis-segregation is difficult in the routine clinical setting. As a result, CIN status is 

not readily testable for cancer patients in such setting. On the other hand, the gold-standard for 

cancer diagnosis and grading, histopathological examinations, are ubiquitously available. In this 

study, we sought to explore whether CIN status can be predicted using hematoxylin and eosin 

(H&E) histology in breast cancer patients. Specifically, we examined whether CIN, defined using 

a genomic aneuploidy burden approach, can be predicted using a deep learning-based model. We 

applied transfer learning on convolutional neural network (CNN) models to extract histological 

features and trained a multilayer perceptron (MLP) after aggregating patch features obtained from 

whole slide images. When applied to a breast cancer cohort of 1,010 patients (Training set: n=858 

patients, Test set: n=152 patients) from The Cancer Genome Atlas (TCGA) where 485 patients 

have high CIN status, our model accurately classified CIN status, achieving an area under the curve 

(AUC) of 0.822 with 81.2% sensitivity and 68.7% specificity in the test set. Patch-level predictions 

of CIN status suggested intra-tumor spatial heterogeneity within slides. Moreover, presence of 

patches with high predicted CIN score within an entire slide was more predictive of clinical 

outcome than the average CIN score of the slide, thus underscoring the clinical importance of 
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spatial heterogeneity.  Overall, we demonstrated the ability of deep learning methods to predict 

CIN status based on histopathology slide images. Our model is not breast cancer subtype specific 

and the method can be potentially extended to other cancer types. 

 

Introduction: 
 
Chromosomal instability (CIN) refers to ongoing chromosome segregation errors throughout 

consecutive cell divisions that can potentially result in extensive numerical and structural 

chromosomal aberrations [1] [2]. CIN, as one of the hallmarks of human cancer, has been 

recognized as a central driver of cancer evolution owning to its multipronged effects which 

facilitate processes such as metastasis, immune evasion and therapeutic resistance [3, 4]. For 

example, Smid et al. [5] found that elevated CIN and consequent high aneuploidy burden is 

associated with poor breast cancer prognosis, measured as time to distant metastasis. Carter et al. 

[6] revealed a correlation between a transcriptional signature of CIN with metastasis, tumor 

grading and clinical outcome in multiple human cancers. Given the widespread nature and far-

reaching consequences of CIN in human cancer, strategies for targeting CIN as a therapeutic 

vulnerability are being actively researched [7] [8]. Despite its clear importance, CIN status is not 

readily testable for cancer patients in routine clinical settings because it requires complicated 

experimental assessment either involving live microscopy, sensitive detection of micronuclei (a 

consequence of CIN) via immunohistochemistry or comprehensive genomic analysis.  On the other 

hand, gold-standard histopathological examinations that are used for cancer diagnosis and grading 

are ubiquitously available. Here we sought to investigate the feasibility of using histopathology 

whole slide images to predict CIN status. 

    Deep learning is a state-of-the-art methodology for analyzing and interpreting cancer histology 

images. In recent years, a large number of studies attempted to employ deep learning approach for 

a variety of tasks in computational pathology field by taking advantage of its ability to extract 

hierarchical features from images in a direct and automatic fashion. Previous research has shown 

that presence of driver mutations, mutational signatures and expression-defined tumor subtypes 

can be predicted from H&E slides [9, 10, 11]. For example, Kather et al. [12] trained a 

Convolutional Neural Network (CNN) model that can robustly predict genome microsatellite 

instability (MSI) in gastrointestinal cancer from H&E histology, obtaining patient level area under 

the curve (AUC) of 0.84. Coudray et al. [9] trained deep learning network that successfully 
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predicted six out of ten most commonly mutated genes from lung adenocarcinoma (LUAD) 

pathology images, with AUCs from 0.733 to 0.856. Kather et al. [13] then demonstrated the ability 

of deep learning to predict point mutations, molecular tumor subtypes and immune-related gene 

expression signatures directly from H&E images in multiple cancer types. Fu et al. [14] used 

transfer learning and correlated histopathological pattern features with genomic, transcriptomic 

and survival data in 28 cancer types. 

    In this study, we proposed using pathology images to predict patients’ CIN status in breast 

cancer. We created a framework that uses transfer learning and feature aggregation to accurately 

discriminate high CIN and low CIN histopathology slides without human intervention. Our results 

indicate that (1) CIN can be predicted accurately from histopathology slides (2) unexpectedly there 

appears to be substantial spatial heterogeneity CIN status in many patients.  These results pave the 

way for using CIN as a biomarker of prognosis and response to anti-CIN therapies fully integrated 

into existing clinical pathology workflows.  

 
 
 
Results: 
 
A weakly supervised deep learning model for patient genomic CIN classification in breast 

cancer 

We obtained H&E slides and genomic profiles from breast cancer patients in TCGA. Here we 

quantify CIN using the fraction genome altered (FGA, see Methods). FGA quantifies the burden 

of aneuploidies detectable in bulk genomic profiles. While not a perfect measure of CIN, we and 

others have observed a strong correlation between FGA and CIN measured using microscopy 

and/or micronuclei staining [15]. We refer to FGA as genomic CIN score, to contrast it with 

pathology predicted CIN scores introduced in this study. Genomic CIN score higher than 0.3 was 

labelled as high CIN; genomic CIN score lower than 0.3 was labelled as low CIN (Figure S1). 

H&E slides were processed as described in Methods. Based on our CIN classification, the breast 

cancer (BRCA) cohort had 485 high CIN patients with 515 WSI and 23,427 patches, and 525 low 

CIN patients with 550 WSI and 23,568 patches (Table S1). This study presents a deep learning 

model that can automatically predict patients’ genomic CIN status on molecular level from H&E 

stained histopathology slides (Figure 1a-e, see Methods). Our model uses Convolutional Neural 

Network (CNN) models pre-trained on ImageNet as patch-level feature extractor (Figure 1b) and 
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then aggregated patch features into patient features (Figure 1c). This approach effectively 

addresses intra-tumor heterogeneity using “weak” patient-level labels, but also offers opportunity 

to explore spatial CIN heterogeneity in individual patients (Figure 1d-e). The 1,070 Whole Slide 

Images (WSI) of 1,010 patients from TCGA-BRCA were randomly split into training, validation 

and test set. We then evaluated model performance in the hold-out test set, which included 152 

patients. 

 
 

 
 
Figure 1. Overview of the pipeline. (a) During mage preprocessing, an overall ROI was identified in WSI as window 
with highest tissue percentage using a sliding window approach. Then the ROI was tiled into non-overlapping patches 
before quality control. Only qualified patches were kept as described in Methods. (b) Patch-level feature extraction 
was performed using a pre-trained CNN architecture. (c) Max-pooling layer was used for aggregating patch level 
features to patient level features. (d) MLP was trained in supervised approach based on patient-level genomic CIN 
status. (e) Patch level features were fed into trained MLP in d. Pathology predicted CIN scores were calculated and 
probability maps based on patch predictions were generated. (f) Pathological Images were used to predict genomic 
CIN. Since genomic CIN can potentially alter gene expression and pathways on transcriptional level, differentially 
expressed gene analysis and pathway analysis were performed. Pathology predicted CIN and Genomic CIN were 
compared to CIN transcriptional signatures.   
 
 
 
Deep learning model predicts CIN with high accuracy and sensitivity  

Several commonly used CNN architectures were tested in the transfer learning step used to extract 

the most relevant features that can predict genomic CIN. The best feature extraction method was 

selected based on ability of trained MLP to predict CIN groups. Results shown in Figure 2 indicate 

that Densenet-121 achieved the best performance with AUC of 0.822 and accuracy of 74.3%. 

Densenet networks with different depth achieved similar performance with AUC of 0.806 and 
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0.807 for Densenet-169 and Densenet-201 respectively. The Densenet-121 model got a good 

sensitivity of 81.16%. Xception model achieved AUC of 0.752 and Resnet-50 with 0.650. 

Altogether these results indicate that a deep learning model can accurately classify CIN status, 

achieving an area under the curve (AUC) of 0.822 with 81.2% sensitivity and 68.7% specificity in 

an independent test set not used for training or parameter exploration. 

 

 
 

 
Figure 2. Model performance final evaluation. Model performance was evaluated in test set. (a) ROC curves for 
different CNN architectures. (b) Table for model performance with AUC, accuracy, sensitivity and specificity. 
 
High CIN patients exhibits more atypical mitosis events 

To independently validate that pathology-predicted CIN status (and genomic CIN) correlates with 

CIN related aberrant mitotic events, we inspected 10 tumor slides at 40x magnification level, 

looking manually for aberrant mitotic events. Half of the 10 slides were predicted as high CIN and 

half as low CIN. All 10 slides were also concordantly labelled as high CIN or low CIN by genomic 
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CIN (in other words, they were true positive and true negative predictions).  As shown in Figure 

3a-h, both normal and abnormal mitosis events including anaphase bridge, spindles with 

misalignment chromosomes, multipolar and monopolar chromosome arrangements were observed. 

By fitting Generalized estimating equation (GEE) Poisson regression model, we found that 

atypical mitosis event counts per field of view (patches with fixed size of 1,024*1,024 pixels on 

40x) are significantly higher in predicted high CIN patients comparing with predicted low CIN 

patients (p-value<0.0001,  Figure 3i). 

 
Figure 3. Patches containing normal and abnormal mitosis events at 40x magnification. (a)-(b) Normal mitosis; (c)-
(h) Abnormal mitosis. (c) Anaphase bridge. (d) Monopolar mitosis. (e)-(g) Mitotic figure with unaligned 
chromosomes. (h) Multipolar mitosis. (i) Boxplot of atypical mitosis events per field of view between 5 predicted 
high CIN and 5 predicted low CIN patients. 
 
 
Patch predictions demonstrates intra-tumor heterogeneity 

As discussed in the previous section, we had hypothesized that not all patches within the same 

slide may have the same level of CIN; in other words, we hypothesized that there may be spatial 

heterogeneity in CIN within the same tissue section. To test this hypothesis, we visualized patch 

predictions within one WSI. Patch predictions were generated by feeding individual patch features 

into trained MLP independently. As shown in Figure 4, both high CIN and low CIN patches can 

be found within one WSI regardless of the slide’s CIN status. Figure 4a is an example of low CIN 

slide with predicted high CIN probability of 0.27. Out of all 45 patches, 11 (= 24.44%) were 

predicted as high CIN patches. Because high CIN patches still exist in low CIN slides due to intra-

tumor heterogeneity, the prevalence scale and patch probability also have influence of the whole 

slide CIN status. Similar results were shown in Figure 4b, where low CIN patches were also found 

in high CIN slide. We thus define predicted CIN-high fraction score as the percentage of predicted 

high CIN patches based on each pathology image. Altogether we found that only 94 (9.31%) out 
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of 1010 patients in the whole cohort exhibited low level of spatial heterogeneity with predicted 

CIN-high fraction score smaller than 10%. The median predicted CIN-high fraction score of this 

cohort is 57% with 25th and 75th percentile of 32% and 83% respectively (Figure S2). 

 

a.                                                                 b.             
 
 
 
 
 
 
     

 
 
 
 
 
Figure 4. Intra-tumor heterogeneity by patch predictions. Red shows predicted probability of high CIN slide based on 
our deep learning model. Numbers within each grid imply patch level predictions. Blue indicates high CIN patch, 
yellow indicate low CIN patch. (a) an example of low CIN slide in test set. (b) an example of high CIN slide in test 
set 
 
Fraction of predicted CIN high patches is correlated with Transcriptional CIN score 

CIN, as a hallmark of cancer has been linked to activation of key downstream biological pathways 

such as cGAS-STING and non-canonical NF-kb. [3] To bridge the gap between molecular genome 

alternations with pathological features, we conducted correlation analysis between a CIN driven 

transcriptional gene signature with both genomic CIN score and predicted CIN-high fraction score. 

CIN23 is a gene signature derived from the human metastatic cell line models (MDA-MB-231) 

engineered to over-express MCAK (to suppress CIN) or a dominant negative version of MCAK 

(to increase CIN) [4]. Employing CIN23, we derived a gene signature score for each patient as 

transcriptional CIN score using ssGSEA. Genomic CIN score was positively correlated with 

transcriptional CIN score with correlation coefficient of 0.14 (Table S4, p-value<0.0001). We then 

reasoned that the average predicted CIN spatial heterogeneity measured by the percentage of 

predicted high CIN patches of each slide may correlate with the transcriptional CIN score, which 

is also an average representation of CIN across all spatial areas. Indeed, we observed a weak but 

significant positive correlation with transcriptional CIN (Table S4, rho: 0.1, p-value=0.0026).   
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Model performance is not breast cancer subtype specific 

In the past, different patterns of CIN were observed to be associated with distinct subtypes of breast 

cancer. [16] In this cohort, we found significant positive association between genomic CIN status 

with the prevalence of ER- (p-value<0.0001), PR- (p-value<0.0001) and Triple Negative (p-

value<0.0001) subtype status but not HER2 (p-value=0.1) status (Table S2). We therefore sought 

to verify that our algorithm is not simply predicting tumor subtypes (since we have that predicting 

breast cancer subtypes is feasible from H&E slides [17]). We combined subtype information (ER, 

PR, HER2 status) along with clinical features including age, race, menopause status and number 

of positive lymph-nodes with image input and retrained an MLP model. Adding these features did 

not improve the model performance (p-value=0.82) (Fig S3). Finally, no evidence suggested our 

model to be subtype specific with AUCs statistically the same across different subtypes (p-values: 

ER: 0.33, PR: 0.94, HER2: 0.41, Triple Negative: 0.86) in this TCGA cohort (Table S3). We 

concluded that our model is predictive of CIN independently of tumor subtypes. 

 

CIN is associated with poor prognosis in breast cancer 

The association between CIN and cancer prognosis is complex and paradoxical. Some studies 

showed association of CIN with poorer cancer prognosis [18, 6], while other studies reached 

opposite conclusions, suggesting that excessive level of CIN would suppress tumor progression 

and lead to better clinical outcomes [19, 20]. To further investigate this point, we conducted a 

survival analysis in the TCGA cohort aiming to explore the prognostic values of different CIN 

scores. In these analyses, we used maximally selected rank statistics to determine optimal 

prognostic CIN score cutoffs and log-rank tests to evaluate the differences between survival curves. 

We found that high genomic CIN is associated with poorer 5 years’ prognosis compared to low 

genomic CIN, where prognosis is measured as time to any events including new tumors or 

mortality (Figure 5a. p-value=0.0023). Pathology-predicted CIN using our deep learning model 

was also predictive of outcomes (Figure 5b. p-value=0.0045). Finally, predicted CIN-High 

fraction score was also correlated with worse outcomes (Figure 5c. p-value=0.0086). We 

postulated that the presence of patches with high predicted CIN scores within each slide may be 

sufficient to impact clinical outcomes. We calculated different percentile CIN scores based on all 

patches of each slide (75th, 95th and maximum). We found that all slide-level percentile CIN scores 

were prognostic (Figure 5d-f. p-values: CIN-75th: 0.0085, CIN-95th: 0.0018, CIN-max: 0.02) with 
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CIN-95th being the most robust prognostic score, even more predictive than genomic CIN. That 

CIN-95th is more predictive than CIN-max can be explained by the lack of stability of maximal 

value and possibly by the need for more than one patches to have high CIN to impact outcomes.  

   

 
Figure 5. Kaplan-Meier curves of disease-free survival (DFS) probabilities grouped by different CIN biomarkers. P 

values were calculated by log rank test. (a) Genomic CIN (Stratification cutoff: 0.3). (b) Predicted CIN (Stratification 

cutoff: 0.44). (c) Fraction of predicted CIN high patches (Stratification cutoff: 0.42). (d) CIN-max, the maximum 

patch prediction within each slide (Stratification cutoff: 0.77). (e) CIN-95th, the 95th percentile patch prediction within 

each slide (Stratification cutoff: 0.72). (f) CIN-75th, the 75th percentile patch prediction within each slide 

(Stratification cutoff: 0.55). 

 

 

CIN is associated with profound transcriptional changes in tumor samples 

We reasoned that our ability to predict CIN based on histopathology slides may underlie a 

relatively profound difference in biological features between CIN low and CIN high tumors, which 

may influence cell morphology and tissue structure in H&E slides. We therefore conducted 

differentially expressed genes and gene set enrichment analysis between high CIN and low CIN 

samples. To minimize the confounding effect of cancer subtypes caused by the unbalanced subtype 
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distributions across CIN groups, we adjusted tumor subtypes in the design matrix and tested 

differentially expressed genes for genomic CIN term. 307 differentially expressed genes were 

identified (logFC>1, adjusted p-value<0.05) between CIN low and CIN high tumors as shown in 

Figure S8a. Cell cycle and mitosis related gene signatures were up-regulated significantly in high 

CIN tumor samples (Figure S8b). This analysis thus confirms substantial biological differences 

between CIN high and CIN low tumors.       

 

 
 
Conclusion and Discussion:  

In this study we demonstrate for the first time the ability to predict chromosomal instability (CIN) 

based on H&E slides. Currently it is challenging to capture the ongoing rate of chromosome mis-

segregation to identify CIN in routine clinical setting since mitotic alterations are rare in H&E 

slides; other assays such as microscopy or micronuclei staining have not been deployed in the 

clinical setting. Here we demonstrated the ability of using histopathology slide images to predict 

CIN status of each patient and achieved high accuracy (=74.3%) and sensitivity (=81.2%). Equally 

importantly, our model indicates the existence of intra-tumor spatial heterogeneity in CIN levels 

and revealed its association with poorer clinical outcomes. Further research, perhaps based on 

regional sequencing, is needed to further validate these findings. The substantial prognostic impact 

potentially exerted by spatial sub-regions (patches) with highest CIN scores is important since it 

indicates that such regions may drive response to treatment. Future treatment modalities may need 

to focus on eliminating CIN high tumor cells if they are to achieve maximal therapeutic impact. 

Either way, our results pave the way for integrating CIN as prognosis biomarker and therapeutic 

vulnerability into existing clinical pathology settings.  

One of the main challenges of computational pathology is to manage the tradeoff between 

abundant morphological information and large size of whole slide image. Splitting WSI into 

hundreds of thousands of patches and training neural networks on patch level is a commonly used 

strategy [21]. As mentioned above, there are several studies that successfully demonstrated the 

ability of using H&E stained histology to predict genetic mutations using this patch-level learning 

approach [17, 12]. We also experimented using patients’ level labels to supervise patch learnings 

directly with the same approach but failed in predicting CIN levels. We reasoned there might exist 

substantial intra-tumor heterogeneity within individual slides, and that therefore using patient-
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level CIN labels are not directly applicable to patches for training. To overcome this obstacle for 

CIN status learning, we applied a weakly supervised learning approach. More specifically, we used 

transfer learning to extract patch level features followed by adding a max-pooling layer with only 

maximum feature values were kept along each feature dimension so that most irrelevant features 

that would potentially add noise to the model learning throughout the WSI were removed during 

this step. The features that were kept to train the top MLP were distributed widely throughout the 

whole slide image but not from a local region so that intra-tumor heterogeneity problem is reduced 

during training. We successfully demonstrated the effectiveness of this strategy by achieving high 

accuracy (=74.3%) in classifying genomic CIN status in test dataset. 

    Digital pathology images can be examined at different magnification levels. We experimented 

on both 2.5x and 10x magnified tiles for the predictions. We found that 2.5x achieved more 

accurate predictions marginally than 10x (2.5x AUC: 0.82, 10x AUC: 0.76; p-value=0.06) and 

multi-scaled model by combining 2.5x with 10x magnification features (2.5x AUC: 0.82, multi-

scaled AUC: 0.81; p-value=0.59), although not statistically different tested by DeLong’s method 

(Figure S3). We reasoned that each tile on 2.5x level can capture more relevant features with a 

wider spatial view than high resolution tiles. While on 10x magnification level, tiles were more 

likely to be covered up by some ‘unknown’ irrelevant features. A similar observation was made in 

Coudray’s study [9] where analyzing 5x patches led to higher accuracy than 20x patches.  

    To validate the rationale of utilizing pathological slide images to infer genomic alternations, we 

performed differentially expressed gene analysis between CIN low and CIN high patients. The 

results revealed the impact of chromosomal instability in breast cancer including activating 

multiple pathways relating to cell cycle and mitosis (Figure S8b). As expected that mitotic 

alterations can be identified in slide images on high resolution views. Future studies may focus on 

training machine learning models to detect aberrant mitotic events directly from H&E slides. This 

will require a very large training set of such events that is currently not available.   

     

 

Material and Methods: 
 
Dataset: 

Whole slide images along with clinical and genomic data were downloaded from The Cancer 

Genome Atlas (TCGA), project TCGA-BRCA using the TCGAbiolinks R package [22]. Only 
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formalin-fixed paraffin-embedded (FFPE) diagnostic H&E stained histopathology slides from 

primary tumor sites were used for this study. After removing slides that lack magnification 

information, and/or slides with artefacts including tissue folding, air bubbles and out-of-focus 

regions, the cohort consisted of 1,010 patients with 1,070 whole slide images (WSI). 

    Fraction genome altered (FGA), which was defined as the ratio of Sum of altered genome size/ 

Total genome size analyzed, was calculated using whole exome sequencing based copy number 

variation (CNV) data on the same TCGA patients. Copy-number segments were downloaded from 

TCGA.  Segments with log transformed mean copy number values larger than 0.2 or less than -0.2  

[23, 24] were treated as altered segments, respectively. Based on examining the FGA distribution  

for all 1,010, patients, we labelled patients with FGA less than 0.3 as low CIN; those with FGA 

above 0.3 were labelled as high CIN .  

 

Image Preprocessing: 

First, a single overall region of interest (ROI) with dimension of 2,048x2,048 pixels on 2.5x 

magnification (4mpp) was determined by a sliding window approach from each whole slide image, 

which typically has dimension of about 8,000x4,500 pixels. A simple thresholding method was 

used to distinguish tissue from white space background on greyscale space. All pixels with value 

lower than 215 were treated as tissue, otherwise as background. The ROI window that contained 

the highest percentage of tissue was kept for further processing. The selected window was then 

split into 8x8 non-overlapping patches each with dimension of 256x256 pixels. Quality control on 

patch level was conducted using the following method. All patches with tissue percentage less than 

80% or with significant blurriness, pen marks or folded tissues were deleted. Color normalization 

was then performed to reduce batch effects across different data sources (Figure 1a). We 

performed Reinhard normalization to transform the color characteristics to a desired standard 

defined by the mean and standard deviations of target image (TCGA-AN-A0FK) from the cohort 

using Python library of HistomicsTK [25]. Patients with more than one WSIs were treated as 

having one big WSI and can get more than 64 (8x8) patches depending on how many WSIs they 

have, but 64 qualified patches were randomly chosen to prevent over-representing those patients. 

Overall, after deleting all unqualified patches, we obtained median of 51 (IQR: 32, 61) qualified 

patches for each patient that to be used for transfer learning.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.09.23.20200139doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.23.20200139
http://creativecommons.org/licenses/by-nc-nd/4.0/


Transfer Learning: 

(1) Feature Extraction: 

Instead of training CNN architectures from scratch, we used commonly used pre-trained models 

as feature extractors. We passed all patches (256x256 pixels) of each patient through Densenet-

121, Densenet-169, Densenet-201 [26], Xception [27] and Resnet-50 [28] networks that were pre-

trained on ImageNet [29] without top layers. Then we got a set of feature vectors for every patient 

with dimensions of m*n where m denotes number of patches of one patient and n implies number 

of features according to specific architecture that was used. For example, we got matrix of 

32*1,024 for patch features with the patient who has 32 patches by using Densenet-121. To adapt 

patch level features to patient level labels and reduce the noise generated by intra-tumor 

heterogeneity, we applied a max-pooling layer on top of patch features and got patient level 

features with the same dimension for all patients (Figure 1b) [30]. 

 

(2) Train Multi-Layer Perceptron (MLP): 

The whole cohort was randomly divided into training and validation set (n=858 patients, 85%) and 

hold-out testing set (n=152, 15%) without any overlap for both patients and images. Then the 858 

patients were further split into training (730, 85%) and validation (128, 15%) set for tuning 

hyperparameters. We implemented multi-layer perceptron (MLP) which consists of several fully 

connected layers to take patient level features extracted by each of the CNN architectures 

mentioned above as input respectively (Figure 1c). Therefore, output by each model will be a 

prediction probability of high CIN class patient. Our model used binary cross-entropy loss function. 

We initialized the MLP network weights with He initialization [31]. Adam optimizer was used for 

the training network weights with learning rate of 0.00001. Training was stopped early  [32] if 

validation loss was not improving within 200 epochs. Epoch numbers were selected as per lowest 

validation loss. Then model performance metrics including ROC curve and AUC, balanced 

accuracy, sensitivity and specificity were calculated in the hold-out test set for the final evaluation 

(Figure 1d).  

  

Visualization of predicted patches: 

The trained MLP from last step can be fed with both combined patches (patient level features) and 

individual patches (patch level features) for hierarchical predictions. We predicted both patient 
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level and patch level high CIN probabilities and visualized the predictions to demonstrate the 

existence of intra-tumor heterogeneity (Figure 1e).  

 

Pathological, Genomic and Transcriptomic scoring of CIN: 

We define predicted CIN-high fraction score as the percentage of predicted high CIN patches based 

on each pathology slide image. CIN-max, CIN-95th and CIN-75th are defined as maximum, 95th 

percentile and 75th percentile of patch predictions within each slide, respectively. Genomic CIN 

score was calculated by fraction genome altered as mentioned earlier [24]. CIN23 gene signature 

[4] score was computed using single sample Gene Set Enrichment Analysis (ssGSEA) to indicate 

transcriptional CIN score from RNA expression data of the same cohort.  

 

Transcriptome analysis: 

We examined differentially expressed genes of primary tumor between high CIN and low CIN 

patients using Limma R package [33]. Differential expressed genes and samples shown in heatmap 

were clustered using Euclidean distance. Gene set enrichment analysis was conducted using fgsea 

[34] R package and Reactome pathway database (https://reactome.org). 

 

Mitosis events inspection: 

Among all the patients who have agreed predicted CIN and genomic CIN status, top five extreme 

high CIN and low CIN patients were selected according to genomic CIN score. Several tumor 

patches of one patient with dimension of 1,024x1,024 on 40x magnification were randomly 

inspected and atypical mitosis events number in each patch were recorded.  

 

Statistical analysis and Software: 

Training of our DNN method was performed on local computer powered by one NVIDIA GeForce 

GT 640M GPU with 512 MB memory and one 2.7-GHz Quad-Core Intel Core i5 CPU. All 

statistical and bioinformatics analyses were performed in R, version 3.6.2. Image preprocessing 

and neural network training were conducted in Python, version 3.7.4. ROC curves were compared 

using DeLong’s method by R package of pROC. Chi-square test was conducted to test the 

independency between cancer subtypes with genomic CIN status. Spearman’s rank-order 

correlation test was performed for the correlation analysis without distribution assumption. Log 
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rank test was used for comparing Kaplan-Meier survival curves between different genome and 

predicted CIN groups. Time to any new tumor events and mortality was used as composite survival 

events and the data was censored at 5 years. Maximally selected rank statistics [35, 36] was used 

to determine the optimal prognostic cutoff points for CIN biomarkers including predicted CIN, 

predicted CIN-High fraction, CIN-max, CIN-95th and CIN-75th. Generalized estimating equation 

(GEE) of Poisson regression model was used to compare atypical mitosis event number between 

CIN high and CIN low groups. All statistical tests were two sided with p<0.05 indicated significant. 

OpenSlide python was used for reading and tiling whole-slide images. TensorFlow2 were used for 

building and training neural networks. The source code and the guideline are publicly available at 

https://github.com/eipm/CIN. 

 

Disclosure 

AV is a full-time employee of Volastra Therapeutics. OE and SB are co-founders and hold equity 
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