
A statistical algorithm for outbreak detection in a

multi-site setting: the case of sick leave

monitoring

Tom Duchemin*1,2, Angela Noufaily3, and Mounia N. Hocine1

1MESuRS laboratory, Conservatoire National des Arts et Métiers, Paris, France
2Malakoff Humanis, Paris, France

3Warwick Medical School, Coventry, UK

Corresponding author: Tom Duchemin, Conservatoire National des Arts et Métiers,

Laboratoire MESuRS, 292 Rue Saint-Martin, 75003 Paris, France.

tom.duchemin@cnam.fr

Abstract

Surveillance for infectious disease outbreak or for other processes should
sometimes be implemented simultaneously on multiple sites to detect lo-
cal events. Sick leave can be monitored accross companies to detect is-
sues such as local outbreaks and identify companies-related issues as local
spreading of infectious diseases or bad management practice. In this con-
text, we proposed an adaptation of the Quasi-Poisson regression-based
Farrington algorithm for multi-site surveillance. The proposed algorithm
consists of a Negative-Binomial mixed effect regression with a new re-
weighting procedure to account for past outbreaks and increase sensitivity
of the model. We perform a wide range simulations to assess the perfor-
mance of the model in terms of False Positive Rate and Probability of
Detection. We propose an application to sick leave rate in the context of
COVID-19. The proposed algorithm provides good overall performance
and opens up new opportunities for multi-site data surveillance.

1 Introduction

The increasing flow of data and the recent epidemic threats have increased the
need for the development of robust epidemiological surveillance. Epidemiolog-
ical surveillance is not limited to the study of new cases of a disease, but has
been widely used in pharmacovigilance, to detect adverse events related to drug
and vaccine consumption [1], and in syndromic surveillance to detect unusual
concentration of a virus in waste water or an unusual amount of Google queries
as an early signal of an outbreak [2, 3, 4]. The diversity of these data calls for
new or adapted methods that could fit to different issues.
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Many reviews of epidemiological surveillance methods have already been per-
formed [5, 6, 7, 8] and many statistical techniques have been used for this pur-
pose: regression, time series, statistical process control, spatio-temporal meth-
ods for instance [5]. Within the framework of regression models, a widely-used
algorithm developed by Farrington et al. [9] uses a Quasi-Poisson regression
adjusted for trend and seasonality and reweighted to account for past outbreaks
[10]. The Farrington algorithm was extensively validated with simulations and
was adapted to improve the weighting procedure and seasonality by Noufaily et
al. [11]. Another well-known algorithm is RAMMIE [12] and uses mixed-model
Poisson regression and Negative-Binomial regression. In this second algorithm,
a mixed effect was included to monitor infectious diseases at local levels. Both
algorithms are used routinely by health authorities [10, 12].

Our methodological development is motivated by the analysis of sick leave
data. Companies are places where lots of diseases, as infectious disease or stress
[13, 14], can spread. Those diseases could lead to sick leaves and then to sick
leaves outbreaks if actions are not taken in time. Monitoring sick leave could
help companies to identify ongoing issues and to provide a better environment
for workers.

Epidemiological surveillance is already used to monitor occupational health
issues such as work-related injuries to identify ongoing issues [15], to monitor
school absenteeism or agregated sick leave data at the regional level and to iden-
tify influenza outbreaks [16, 17]. To our knowledge, no method was developed
on the specific case of the surveillance of sick leave rate in multiple companies.

Monitoring sick leave data raised specific methodological issues: sick leave
rate of companies shows a strong seasonal pattern since it is highly correlated to
seasonal infectious diseases such as influenza [18] and should then be adjusted
for trend and seasonality. Moreover, it should also be adjusted for other covari-
ates since sick leave rate is associated with exogenous events as school holidays
or with the population of workers in each company (age is for instance associ-
ated with sick leave rate [19]). To adjust for those covariates, a mixed effects
regression model should also be fitted, with the companies being included as
a random effect in the model. To solve these issues linked to sick leave data,
we propose a model inspired by Farrington and RAMMIE: a Negative-Binomial
mixed effects regression algorithm with reweighting procedure to account for
past outbreaks. We propose to assess it with extensive simulation and present
an application to sick leave data.

In this paper, we adapt the Farrington algorithm to the case of a multi-site
surveillance. Section 2 describes the mixed model based algorithm. Section
3 sets out the design of the simulation to study the algorithm performance
for outbreak detection and Section 4 describes the results in terms of False
Positive Rate (FPR) and Probability of Detection (POD). In Section 5, we
present an application to sick leave data. Finally, we discuss our findings and
their implications in Section 6.
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2 A mixed model for outbreak detection

To determine if a count outcome is unusually high and to detect outbreaks, we
use the same ideas as in the Farrington algorithm [9]. The Farrington algo-
rithm output is an outbreak threshold based on a Quasi-Poisson regression and
reweighted to downweight previous outbreaks. Our algorithm uses these ideas
and adapts them to a mixed model context.

2.1 The developed algorithm

To determine if Yi,T , the count outcome in a site i ∈ {1, ..., N} with N > 0 at
week T > 0 is an outbreak, we proceed in three steps.

First step First, we fit a Negative-Binomial regression on the past counts Yi,t
with t ∈ {0, ..., T} adjusting for trend (η), seasonality (γ), covariates (β) and a
random effect representing the sites’ effects ui ∼ N(0, σ2):

Yi,t ∼ NB(µi,t, θ) with

µi,t = exp(β0 + βXi,t + γδt,T + ηt+ ui).

µi,t is the mean of the Negative Binomial distribution and θ is the dispersion

parameter such that V ar(Yi,t) = µi,t + µ2

θ . Xi,t is a matrix of covariates and β
are the associated coefficients.

δt,T is a matrix of level factors adjusting for seasonality similarly to the
flexible Farrington algorithm [11] to give more weights to the comparable periods
in past years. Each column of δt,T describes a period: a first reference 7-week
period (corresponding to weeks T ± 3 weeks) and nine 5-week periods in each
year. γ are the associated parameters. It is thus a matrix with 10 columns (one
per period) which gives 1 for the period associated with t and 0 otherwise.

To avoid adaptation of the model to emerging outbreaks, we exclude the 26
most recent weeks from the baseline data and we only fit the regression on the
previous weeks.

Second step In a second step, we reweight the outliers of the training dataset
to underweight past alerts and to fit a more robust outbreak threshold. We use
the following weight function. ∀i, t > 0,

wi,t =

{
γ S
ri,t

, if ri,t > s,

γ, otherwise.
with γ s.t.

∑
i,t

wi,t = NT.

S > 0 is a constant controlling for the strictness of the reweighting and ri are
the Pearson residuals of the model and are defined as:

∀i, t > 0, ri =
Yi,t − µ̂i,t
µ̂i,t + µ̂2/θ̂

.
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Third step The third step is the computation of the outbreak threshold. We
fit a new Negative-Binomial regression with the previous reweighting to give less
importance to past outbreaks. The outbreak threshold of company i ∈ {1, ...N}
is defined as Uit = Qµ̂i,T ,θ̂

(α2 ) with µ̂i,T and θ̂ the respective estimates of µi,T
and θ retrieved from the second regression, Qµ̂i,T ,θ̂

, the quantile function of a

Negative Binomial distribution with parameters µ̂i,T and θ̂ and 1−α the chosen
confidence level.

All the sites could be hierarchized and a specific site is flagged for further
investigation if the outbreak threshold Uit is exceeded. An exceedance score can
be defined as:

Vit =
Yit − µ̂it
Yit − Uit

All the analyses are performed in R and with the help of the package
glmmTMB [20]. Codes used in this article can be read from an online de-
posit referenced in the Supporting Information.

2.2 Comparaison with Farrington and Farrington flexible
algorithms

Our model provides an adaptation of the Farrington algorithm in the context
of multi-site data. The main change is the inclusion of a random effect and it
resulted in the modification of the algorithm.

First, we fitted a Negative-Binomial regression model instead of a Quasi-
Poisson model. We used a Negative-Binomial because a quantile function was
needed to derive our threshold and this function is not defined for the Quasi-
Poisson model.

Second, the formula for the threshold in the original Farrington algorithm
used a normal approximation thanks to Taylor expansion and to power trans-
formation. Our threshold is more straightforward as it only used the quantiles
of the estimated distribution as was also proposed in Farrington Flexible [11].

Finally, we chose a different weight function. The weight function used
in the Farrington algorithm includes a hat matrix that is not straightforward
in a mixed model framework. Our function is however similar since it used
standardized Pearson residuals instead of standardized Anscombe residuals.

3 Simulation study

We will investigate the validity of the model using extensive simulation study.
We will first describe the simulated datasets and their associated scenarios and
we will then propose some exploratory analyses. the procedure is similar to
Noufailly et al. [11] in order to allow for a comparison.
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3.1 Simulated datasets

Baseline data We generate data using a negative binomial model of mean µ

and variance µ + µ2

θ with θ > 0 a dispersion parameter. To be consistent with
Noufaily et al., we reparametrize the Negative Binomial distribution such that
its variance equals to φµ. We then define θ as: θ = µ̄

φ−1 with µ̄ = 1
it

∑
i,t µi,t

µi,t is defined for i ∈ {1, ..., N} and t ∈ {1, ..., T} as:

µi,t = exp

(
β0 + βXXi,t + βZZi,t + ηt +

2∑
i=1

γ

(
cos

(
2πst

52

)
+ sin

(
2πst

52

))
+ ui

)
.

µi,t is then defined by an intercept β0, two covariates Xi,t and Zi,t we will define
later, a trend θ, a seasonality we defined with Fourier terms and a random effect
ui ∼ N (0, σ2) with σ > 0.

In practice, we expect to have continuous and discrete covariates. The co-
variates should be quite stable in each site but can be very different from one
site to another. We then simulate X and Z as the following:

Xi,t ∼ N (mi, 1) with m1 ∼ U\〉o∇m(30, 50),

Zi,t ∼ Bernoulli(pi) with pi ∼ U\〉{o∇m(0, 1).

In all of the simulations, we set N = 50 sites and T = 312 weeks which
correspond to 6 years of data. The most recent 52 weeks constitue the current
data set we use to evaluate the model and the previous 260 weeks constitue the
baseline data we will use to fit the model. We will also fix the weight threshold
s to s = 2.5 and the type I error to α = 0.95.

Outbreaks We simulated outbreaks as follows:

1. We randomly selected four weeks from the baseline data and one week
from the current data;

2. For each week t0 > 0, we randomly generated the outbreak size with
a Poisson random variable of mean equal to k > 0 times the standard
deviation of the baseline count at t0 ;

3. We finally randomly distributed these cases in time using a lognormal
distribution of mean 0 and standard deviation 0.5.

In the baseline scenarios, we will use k = 3 to simulate medium outbreaks.
Other k will be chosen to test the performance of the model in different contexts.

Simulated scenarios To evaluate the robustness of the model to a wide
range of data sets we can meet in real life, we generate our simulations from 32
parameter combinations described in Table 1. We try different baseline volumes
(given by β0), different trends and covariates (given by η, βX and βZ), different
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overdispersion (given by θ) and different standard deviations for the random
effect (given by σ2).

For each scenario, we perform 5 replications of N = 50 companies for T = 52
weeks. We perform only 5 replications because the computation time of the
algorithm is long as we will see latter.

3.2 Evaluation metrics

We evaluate the performance of the model using criteria already suggested in
Noufaily et al. to ensure a comparison between the two models. The two
criteria evaluate the performance of the model when there is an outbreak and
where there is no outbreak.

For each replicate of the simulations, we first calculated the False Positive
Rate (FPR) as the proportion of observations where the observed value exceeded
the threshold in the absence of any current outbreak. The FPR is a rate per
week.

The second criterion we calculated is the Probability of Detection (POD):
it describes the probability that a true outbreak is detected. A true outbreak
is detected when the observed value exceeded the threshold at least one week
in the presence of a current outbreak. The POD is defined as the proportion of
outbreaks detected among the 50 companies in each replicate.

For both of these criteria, we will compute it for each of the 5 replicates
and we will report the average value and the minimum and maximum values
across those replicates, to briefly assess the variability of these criteria between
simulations.

4 Results of the simulation

We run our algorithm on the most recent 52 weeks of the 32 simulation scenarios
in Table 1. For each scenario, we run 5 replicates from each of 50 companies.
Hence, we run 416,000 simulations in total.

We first perform the simulation for a fixed medium outbreak size (k = 3)
and reweighting threshold (s = 2.5). We then undertake exploratory analyses
to investigate the most appropriate value for s.

4.1 False positive rates

Figure 1 shows the FPRs we obtained for α = 0.05, k = 3 and s = 2.5. Each
point represents the median of the five simulations and the vertical line repre-
sents the range of FPRs for those 5 iterations. The nominal FPR is 0.025 and
we see that the actual FPRs are a bit lower. Scenarios with no trend and with
low random effect presents higher FPR but still lower than 0.025 in median.
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Figure 1: False positive rates obtained α = 0.05, s = 2.5 and k = 3. The
horizontal line represents the nominal value of 0.025 and the numbers refer to
the scenarios.

4.2 Probability of detection

Figure 2 shows the PODs obtained for α = 0.05, s = 2.5 and k = 3. The
point represents the median POD across the 5 iterations and the vertical line
represents the range of PODs for those 5 iterations. PODs are varying around
0.5 with higher value for scenarios with covariates.

4.3 Exploratory analyses

The previous simulations fixed some parameters that can have an impact on
the results of the model as s or k. To check the impact of those parameters,
we performed some quick exploratory analyses. using the 7th scenario which
includes every parameter with a medium value.

Weight threshold Figure 3 shows the FPRs and the PODs obtained for
different weight thresholds s = 1, 1.5, 2, 2.5 and 3, for k = 3 and α = 0.05.

As expected, we see that a higher threshold s leads to lower FPR: the un-
derweighting is less strict which leads to less alert. The optimal s, which is the
s that gives a FPR around the nominal value, is different according to the size
of the outbreaks of our dataset. For large outbreaks (k = 8), we should choose a
low s around 1. For medium outbreaks (k = 3), we should choose a s around 2.5
(which is our baseline value for our previous simulations). For small outbreaks
(k = 1), a higher s should be chosen (s = 3). Those results are quite consistent
with the results from Noufaily et al. (2013) [11] that found that the optimal
value was s = 2.58.
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Figure 2: Probability of Detection obtained α = 0.95, s = 2.5 and k = 3.
Numbers refer to scenario.

The POD remains almost constant for all values of s: the choice of the
threshold s will mostly influence the FPR and is used to monitor the specificity
of the model.

Outbreak size Figure 4 shows the FPRs and the PODs obtained for different
outbreak size k (from 1 to 10) for s = 2.5 and α = 0.95. The same baseline
dataset is used for the different k (only the outbreaks are modified) to isolate
the impact of the outbreak size.

The FPR is lower when the outbreak size is higher: it underlines yet again
that the s should be adjusted according to the expected size of the outbreaks.

On the other hand, the POD increases greatly with the value of k to approach
almost 100% after k = 8.

5 Case study: sick leave monitoring and the ex-
ample of Covid-19

5.1 Data

The dataset comes from digital files from companies insured by Malakoff Hu-
manis, a French health insurer. The insured companies monthly updates the
socio-demographic characteristics of their employees, their administrative sta-
tus and their sick leaves. The dataset is named Déclaration Sociale Nominative
and describes all employees of 1376 French companies which have more than 50
employees, followed since January 2018.
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Figure 3: False Positive Rate and Probability of Detection according to the
threshold s for outbreak sizes k=1, 3 and 8.

Figure 4: False Positive Rate and Probability of Detection according to the
outbreak size k for α = 0.05 and s = 2.5
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Figure 5: Weekly mean sick leave rate among all companies

The outcome of the model is the weekly number of sick leave days for each
company and. The number of theoretical work days per week is included in the
model as an offset to adjust for the size of the company.

The dataset also describes some characteristics of the companies which we
include in the model as covariates: the number of employees per category of age
(35 years old and less, 36-45 years old, 46-55 years old, 56 years old and more),
the number of workers with a temporary contract and the number of workers
per occupational categories (managerial occupations, intermediate occupations,
manual lower occupations, non-manual lower occupations). We also add an in-
dicator of week with high numbers of vacation days that correspond to low level
of sick leaves. A report of the statistics departement of the French Ministry of
Labour (DARES) shows that peaks in annual leave occur during the Christmas
school holidays (last week of December and first week of January) and during
summer (second week of July to third week of August) [21].

We train the model on 2018 and 2019 and evaluate it on data from January to
May 2020. We set the type I error to be α = 0.05 and the reweighting threshold
to s = 2. We define an outbreak when we observe during two consecutive weeks
a sick leave rate above the alert threshold.

5.2 Results

Figure 5 shows the evolution of the mean sick leave rate from January 2018 to
May 2020. 2020 is a special year because of the COVID-19 pandemics. Before
the third week of March 2020, the sick leave rate follows a distribution similar
to the previous years. A peak is observed at the third week of March 2020
and corresponds to the first week of lockdown in France. This high sick leave
rate should not be interpreted as a high incidence of COVID-19 patients but
as an implication of regulatory change: employees who had to stay home for
their children were provided sick leaves. We run the algorithm on 2020 data to
identify companies which were impacted by COVID-19 after the lockdown and
companies which had alerts non-related to COVID-19 before lockdown.
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Figure 6: Four examples of companies sick leave rates from July 2019 to May
2020. The vertical line represents the first day of 2020, the solid line represents
the weekly sick leave rate of the company and the dashed line represent the alert
threshold.

Table 2 gives the results of the algorithm run on the dataset in 2020. We
observe that, before lockdown, 5.9% and 7.9% of the companies have an outbreak
in January and February. In March, the number of companies in outbreak
rises to 56.8% in March, 58.9% in April and 42.1% in May. More than half of
the companies therefore seem to have been affected by COVID-19 in terms of
sick-leave. The companies with an outbreak have higher sick leave rate after
lockdown (17.7% in April and May) than before (8.3% in January and February).

Figure 6 shows four examples of companies sick leave rates with different
numbers of employees and outbreak incidences. The first company represents
a case where an outbreak occurs just after the lockdown and then the sick
leave level goes back to the baseline level. The second company presents no
outbreak. The third company has a large outbreak just after the lockdown and
the sick leave level stays really high. The fourth company has an outbreak at
the beginning of the year. We can observe that the alert threshold is consistent
with the baseline level of absence of each company.
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6 Discussion

We proposed an adaptation of the Farrinton algorithm for surveillance of multi-
site data and we proposed an application to the case of sick leave. The inclusion
of a random effect resulted in change in the choice of the weight function and
of the alert threshold. Extensive simulations proved that the model provides
results that are consistent with the results of the flexible Farrington algorithm.
We found that the optimal s was 2.5 and it led to average FPR between 0.015
and 0.025 and POD between 0.368 and 0.616 according to 32 different scenarios
and for an outbreak size of 3. As expected, higher k led to higher POD and
lower FPR.

Computation time could be an obstacle for mixed effect models as mentioned
[12]. It is still an issue with this algorithm as approximately an hour and a
half was needed to run an iteration of the model for 1376 companies on our
computer. To improve this computational weight, the model could have been
stratified by group of companies (by company size for instance) and the new
models could have been run in parallel. Some recent developments show the
interest of neural networks for the estimation of generalized linear mixed models:
this could be another alternative to improve the performance of our model [22].
These difficulties lead us to think carefully about the need to use a mixed model:
this model is not necessarily the most appropriate one for each situation.

The application to sick leave provides interesting results in the case of
COVID-19 and helped to indentify companies that were impacted by the pan-
demics. We did not use 5 years of historical data as suggested by Noufaily et al.
(2013) [11] because our data did not allow us to do so. However, we believe that
this model can be fitted on a smaller time window since this is compensated by
a large number of companies.

In more standard situations, this surveillance system could help to identify
and alert companies that have unusual levels of sick leave in a timely manner
to monitor potential issues as bad management practices. Mixed model surveil-
lance is already used in practice to monitor some syndromic data [12] and this
study provides a validated algorithm including reweighting procedure.
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Supporting information

R codes used for the analyses and the simulations can be found at: https:

//github.com/TomDuchemin/mixed_surveillance.
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Table 1: Parameters used to generate the 32 scenarios.
Scenario β0 η βX βZ φ σ2

1 1 0 0 0 1,5 0,5
2 1 0 0 0 1,5 1,5
3 1 0,0025 0 0 1,5 0,5
4 1 0,0025 0 0 1,5 1,5
5 1 0 -0,5 1 1,5 0,5
6 1 0 0,5 1 1,5 1,5
7 1 0,0075 -0,5 0,5 1,5 0,5
8 1 0,0075 -0,5 0,5 1,5 1,8
9 3 0 0 0 1,5 0,5
10 3 0 0 0 1,5 2
11 3 0,0025 0 0 1,5 0,5
12 3 0,0025 0 0 1,5 2
13 2 0,0025 -1 1 1,5 0,5
14 2 0,0025 -1 1 1,5 1
15 2 0,0075 -0,5 0,5 1,5 0,5
16 2 0,0075 -0,5 0,5 1,5 1,8
17 1,5 0 0 0 3 0,5
18 1,5 0 0 0 3 1,5
19 1,5 0,0025 0 0 3 0,5
20 1,5 0,0025 0 0 3 1,5
21 0,5 0,0025 -1,5 1,5 3 0,5
22 0,5 0,0025 -1,2 1,2 3 1,5
23 0,5 0,0075 -0,5 0,5 3 0,5
24 0,5 0,0075 -0,5 0,5 3 1,5
25 3 0 0 0 3 0,5
26 3 0 0 0 3 1,5
27 3 0,0025 0 0 3 0,5
28 3 0,0025 0 0 3 1,5
29 3 0,0025 -1,2 1,2 3 0,5
30 2 0,0025 -1,2 1,2 3 1,5
31 3 0,0075 -0,5 0,5 3 0,5
32 2 0,0075 -0,5 0,5 3 1,5

Table 2: Proportion of companies with a declared outbreak in the five first
months of 2020

January February March April May
Number of companies
with an outbreak

5.9% 7.9% 56.8% 58.9% 42.1%

Sick leave rate among companies
with outbreak

7.5% 7.6% 9.6% 8.0% 6.5%

Sick leave rate among companies
with no outbreak

8.3% 8.3% 14.4% 17.7% 17.7%
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