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SUMMARY 
Background and Objectives 
The island of Mauritius experienced a COVID-19 outbreak from mid-March to end April 2020. 
The first three cases were reported on March 18 (Day 1) and the last locally transmitted case 
occurred on April 26 (Day 40). An island confinement was imposed on March 20 followed by a 
sanitary curfew on March 23. Supermarkets were closed as from March 25 (Day 8). There were 
a total of 332 cases including 10 deaths from Day 1 to Day 41. Control of the outbreak 
depended heavily on contact tracing, testing, quarantine measures and the adoption of 
personal protective measures (PPMs) such as social distancing, the wearing of face masks and 
personal hygiene by Mauritius inhabitants. Our objectives were to model and understand the 
evolution of the Mauritius outbreak using mathematical analysis, a logistic growth model and 
an SEIR compartmental model with quarantine and a reverse sigmoid effective reproduction 
number and to relate the results to the public health control measures in Mauritius. 
 
Methods 
The daily reported cumulative number of cases in Mauritius were retrieved from the 
Worldometer website at https://www.worldometers.info/coronavirus/country/mauritius/. A 
susceptible-exposed-infectious-quarantined-removed (SEIQR) model was introduced and 
analytically integrated under the assumption that the daily incidence of infectious cases 
evolved as the derivative of the logistic growth function. The cumulative incidence data was 
fitted using a logistic growth model. The SEIQR model was integrated computationally with an 
effective reproduction number (𝑅𝑒) varying in time according to a three-parameter reverse 
sigmoid model. Results were compared with the retrieved data and the parameters were 
optimised using the normalised root mean square error (NRMSE) as a comparative statistic. 
 
Findings 
A closed-form analytical solution was obtained for the time-dependence of the cumulative 
number of cases. For a small final outbreak size, the solution tends to a logistic growth. The 
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cumulative number of cases was well described by the logistic growth model (NRMSE = 0.0276, 
𝑅2 = 0.9945) and by the SEIQR model (NRMSE = 0.0270, 𝑅2 = 0.9952) with the optimal 
parameter values. The value of 𝑅𝑒 on the day of the reopening of supermarkets (Day 16) was 
found to be approximately 1.6. 
 
Interpretation 
A mathematical basis has been obtained for using the logistic growth model to describe the 
time evolution of outbreaks with a small final outbreak size. The evolution of the outbreak in 
Mauritius was consistent with one modulated by a time-varying effective reproduction number 
resulting from the epidemic control measures implemented by Mauritius authorities and the 
PPMs adopted by Mauritius inhabitants. The value of 𝑅𝑒 ≈ 1.6 on the reopening of 
supermarkets on Day 16 was sufficient for the outbreak to grow to large-scale proportions in 
case the Mauritius population did not comply with the PPMs. However, the number of cases 
remained contained to a small number which is indicative of a significant contribution of the 
PPMs in the public health response to the COVID-19 outbreak in Mauritius. 
 

1. INTRODUCTION 
 
Infectious diseases have seriously undermined global health for centuries [1, 2]. The rapidity of 
the spread of the diseases has increased many-fold with the globalisation of air travel [3] and 
the formation of air traffic hubs [4]. Contextually, the emergence of the zoonotic SARS-CoV-2 
virus in Wuhan, Hubei province, China, in late December 2019, [5] and its global spread as a 
pandemic [6] and manifestation in humans as the highly contagious respiratory disease COVID-
19 [7] has been accompanied by large-scale efforts on several fronts to prevent its entry in 
many territories, contain its spread and mitigate its impact. Entry prevention has, to a large 
extent, depended on the country-closure of international borders and the quarantining of 
returning residents. Within countries, spread-containment has been based on active testing and 
contact tracing and the quarantining of positively-tested persons, lockdowns and the adoption 
of personal protective measures (PPMs) [8, 9]. Some countries have, however, relied on 
measures to flatten the epidemic curve, while protecting the more vulnerable persons, so as to 
alleviate the pressure on their health systems and with the possibility of reaching herd-
immunity levels [10]. 
 
Mathematical models have significantly contributed to the understanding of the dynamics of 
infectious diseases. The susceptible-infected-removed (SIR) compartmental model [11] provides 
a sound epidemiological basis for explaining the S-shape [12] of epidemic curves and explains 
the concept of herd-immunity from which vaccination-threshold levels can be calculated [11]. 
The inclusion of an exposed compartment generates the SEIR model which allows the inclusion 
of incubation and latent periods. More sophisticated models such as agent-based models can 
work at the level of individuals [13]. Logistic growth models are simpler but have nevertheless 
been widely used to describe epidemics [14, 15]. All these models have helped in informing and 
shaping policy decisions on effective responses to the SARS-CoV-2 virus. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.22.20199364doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.22.20199364
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Currently, more than 31 million cases of COVID-19 have been recorded worldwide with about 
960,000 deaths. In Mauritius, the first three cases were reported on March 18 (Day 1) and the 
last locally transmitted case occurred on April 26 (Day 40). An island confinement was imposed 
on March 20 followed by a sanitary curfew on March 23. Supermarkets were closed as from 
March 25 (Day 8) and reopened on Day 16. There were a total of 332 cases, including 10 deaths, 
from Day 1 to Day 41. There were no cases for the next 18 days, following which there have 
been 34 new cases all of whom have been observed from passengers to Mauritius placed in 
quarantine. Control of the outbreak depended heavily on contact tracing, quarantine measures 
and the adoption of PPMs such as social distancing, the wearing of face masks and personal 
hygiene by Mauritius inhabitants. Our objectives were to model and understand the evolution 
of the Mauritius outbreak using mathematical analysis, a logistic growth model and an SEIR 
compartmental model with quarantine and a reverse sigmoid effective reproduction number 
and to relate the results to the public health control measures in Mauritius. 
 

2. METHODS 
 
2.1. SEIQR model 
 
Compartmental models are widely used in epidemiological analysis [11]. Simple dynamical 
equations are used to describe the evolution of epidemics. The basic reproduction number and 
the concept of herd-immunity are easily understood within the framework of, for example, the 
SIR model where the population is compartmentalised in susceptible, infected and removed 
classes. Various extensions of the SIR model exist. We have used a susceptible-exposed-
infectious-quarantined-removed (SEIQR) compartmental model to model the COVID-19 
dynamics with the removed compartment consisting of both the recovered patients and the 
dead people. A schema of the model together with the dynamical equations used are shown in 
Figure 1. 
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Fig. 1. Schema of the SEIQR model and the dynamical equations used. 
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The time variable, infection rate, removal rates from the infectious and the quarantine 
compartments are represented by 𝑡,  𝛽, 𝛾 and 𝜇 respectively and 1/𝛼 represents the average 
latent period. The removal rates from the exposed and infectious compartments due to 
quarantine are represented by 𝛿1and 𝛿2 respectively. It was also assumed that 𝑆 +  𝐸 + 𝐼 +
𝑄 + 𝑅 = 𝑁, where the total population 𝑁 is constant.  
 
2.2. Mathematical analysis 
 
The dynamical equation for the cumulative number of cases 𝑁𝑐(𝑡) = 𝐸 + 𝐼 + 𝑄 + 𝑅, 
 

𝑑𝑁𝑐

𝑑𝑡
= 𝛽

𝑆𝐼

𝑁
  

 
where 𝑁 is the total population, was analytically integrated with the substitution 𝑆 = 𝑁 − 𝑁𝑐 
and the solution considered under the assumption that the incidence of infectious cases, 𝛽𝐼, 
evolved as the derivative of the logistic growth function: 
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2.3. Logistic growth modelling 
 
The logistic growth model was introduced by Verhulst in 1836 [16] as a model of population 
growth in a limited environment where if the population at time 𝑡 is 𝑁(𝑡) then  
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is the logistic equation where 𝑟 is the growth rate,  𝐾 is the carrying capacity of the 
environment and (1 − 𝑁/𝐾) is a self-regulatory term which limits the growth of the 
population. The solution of the logistic equation is the logistic growth function 
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The growth curve is S-shaped if 𝑁(0) < 𝐾/2. Several extensions of the Verhulst model have 
been proposed to address deviations from the symmetric shape of the logistic curve [15]. 
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Epidemiologically, the logistic equation is an exact solution of the susceptible-infected-
susceptible (SIS) compartmental model for the infected cases where it is assumed that 
individuals who recover become immediately susceptible again because the disease confers no 
immunity against reinfection [17].  
 
We have modelled the cumulative number of COVID-19 cases, 𝑁𝑐(𝑡), in Mauritius using the 
logistic growth function 
 

𝑁𝑐(𝑡) =  
𝑎

1 + 𝑒− 
(𝑡−𝑡0)

𝑏

 , 

 
where 𝑎 is the maximum cumulative case incidence (final outbreak size) and 1/𝑏 is the intrinsic 
growth rate during the exponential phase, 𝑡0 is the inflection point, the time where maximum 
number of cases per day occur. Computations were done using Python (with SciPy library) and 
MATLAB. 
 
2.4. SEIQR modelling 
 
The SEIQR dynamical equations were integrated using MATLAB. It was assumed that the 
effective reproduction number (𝑅𝑒) varied in time according to the reverse sigmoid model 
 

𝑅𝑒(𝑡) =  
𝑅𝑒(0)

(1 + 𝑒  
(𝑡−𝑡𝛼)

𝑠  )

 , 

 
with the inflection point and scale parameter now represented by 𝑡𝛼 and 𝑠 respectively. 
Referring to Figure 1, the infection rate was 𝛽(𝑡) = 𝑅𝑒/(𝛾 + 𝛿2) . As initial conditions, we used 
𝑆(0) = 𝑁 and 3 persons in the infectious compartment and none in the others. The values of 𝛼, 
𝛿1, 𝛾, 𝛿2, 𝜇 and 𝑁 were respectively 0.25 day−1, 0.1 day−1, 0, 0.5 day−1, 1/14  day−1 and 
1.22 × 106. The value of 𝛾 was taken as zero because it was assumed all infectious persons 
had been diagnosed as such and quarantined before moving to the removed compartment. 
 
Simulations were performed for 2.5 ≤ 𝑅𝑒(0) ≤ 6.0 over a range of 𝑡𝛼 and 𝑠 values. For every 
𝑅𝑒(0), 𝑡𝛼 and 𝑠, the computed cumulative number of cases were compared with the reported 
cumulative incidence data using the normalised root mean square error (NRMSE) as a 
comparative statistic. The NRMSE was defined as 
 

NRMSE =  

1
𝐿

∑ (𝐶𝑐,𝑖 − 𝐶𝑟,𝑖)
2𝐿

𝑖=1

𝐶𝑟,𝐿 −  𝐶𝑟,1
, 

 
where 𝐶𝑐,𝑖 and 𝐶𝑟,𝑖 are respectively the cumulative number of computed and reported cases on 

the 𝑖𝑡ℎ day. The last day is denoted by 𝐿. This process was repeated for all the values of 𝑅𝑒(0) 
so as to obtain the optimal values of 𝑅𝑒(0), 𝑡𝛼 and 𝑠 which gave the minimum NRMSE with the 
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additional constraint that 𝑅𝑒 should not decrease by more than 10% on the first day of the 
simulation so as to include the realism of the limits of the efficacy of control measures. 
 
3. RESULTS 
 
3.1. Mathematical analysis 
 
From the dynamical equations, 
 

𝑑𝑁𝑐

𝑑𝑡
 =  𝛽

(𝑁 − 𝑁𝑐)𝐼

𝑁
, 

 
where 𝑁 is the total population, 𝑁𝑐 =  𝐸 + 𝐼 + 𝑄 + 𝑅 and 𝑆 = 𝑁 − 𝑁𝑐. 
 
On integration and assuming that 𝛽𝐼 evolves as the derivative of the logistic growth function as 
in Equation 1, it follows that for 𝑎 ≪ 𝑁 and 𝑡0 significantly larger than b, 
 

𝑁𝑐(𝑡) =  𝑁𝑐(0) + 𝑎 (1 −
𝑁𝑐(0)

𝑁
)
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. 

 
For small t and 𝑁𝑐(0) ≪ 𝑁,  
 

𝑁𝑐(𝑡)   = 𝑁𝑐(0) + 𝑎 

𝑡
𝑏

(1 + 𝑒− 
(𝑡−𝑡0)
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which corresponds to a linear growth modulated by a logistic function, whereas when t 
becomes large compared to b 
 

𝑁𝑐(𝑡) =  𝑁𝑐(0)  + 
𝑎

(1 + 𝑒− 
(𝑡−𝑡0)

𝑏  )

 

 
which corresponds to a logistic growth. Details are given in the Appendix. 
 
3.2. Logistic growth modelling 
 
Corresponding to the basic premise of the logistic model, as of March 20, the cumulative 
COVID-19 cases curve of Mauritius can be described by a sigmoid curve with a single turning 
point (Figure 2). High correlations between the observed and predicted incidence were found 
(NRMSE = 0.0276, 𝑅2 = 0.9945). 
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Fig.2. Reported cumulative number of cases in Mauritius (∗) and graphical representation of the 
modelling results: logistic growth (---), SEIQR simulation (full curve) using the optimal effective 
reproduction number (− ∙ − ∙ −) with the parameter values given in the text. 
 
3.3. SEIQR modelling 
 
The optimal values of 𝑅𝑒(0), 𝑡𝛼 and 𝑠 which gave the minimum NRMSE under the 10% 
constraint were found to be 4.0, 14.0 and 5.9 respectively. The variation of the reciprocal of the 
NRMSE for 𝑅𝑒(0) = 4.0 is shown in Figure 3 as an intensity colormap. The intensity peak 
corresponds to the values of 𝑡𝛼 and 𝑠 for which the NRMSE is a minimum. 
 

 
Fig. 3. Comparison of the computed cumulative number of cases using the SEIQR model with 
the reported number of cases for 𝑅𝑒(0) = 4.0 and varying 𝑡𝛼 and 𝑠. The colour plot shows the 
reciprocal of the NRMSE which was used as the comparative statistic. 
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The computed best-fit cumulative incidence curve (NRMSE = 0.0270, 𝑅2 = 0.9952) obtained 
using the optimal parameter values in the SEIQR simulations is shown in Figure 2. The optimal 
𝑅𝑒(𝑡) is also shown. The value of 𝑅𝑒 on the day of the reopening of supermarkets (Day 16) was 
found to be approximately 1.6. 
 
4. DISCUSSION 
 
The prediction of final epidemic sizes remains a challenging problem. Logistic models may 
require the presence of the inflection point in the reported data for good estimates. They, 
however, do not come with the epidemiological principles anchored in compartmental models 
such as the SEIR model, where, for example, the inflection of the epidemic curve can be 
explained using herd-immunity concepts. For the COVID-19 outbreak in Mauritius with a small 
final outbreak size, though, the inflection arises from a time-varying decreasing effective 
reproduction number resulting from control measures and compliance to PPMs and are not due 
to herd-immunity effects. SEIR models, such as the one used here, are themselves limited by 
the homogeneous mixing assumption and by the accuracy of the parameters used. Also, 
asymptomatic cases were not included. Additionally, the errors in the NRMSE calculations may 
not be normally distributed with the consequence that the mean may not be a complete 
statistic. However, in spite of these limitations, the models provide a good description of and 
insight in the evolution of the Mauritius outbreak. 
 
In particular, we have shown analytically how the solution of a simple SEIQR model tends to a 
logistic equation under the assumption that the final outbreak size is small, that the number of 
cases at the point of inflection is sufficiently large and that the incidence of infectious cases 
evolves as the derivative of the logistic growth function. Computationally, a good fit was 
obtained for the epidemic curve of the reported cumulative number of cases using a three-
parameter logistic growth model. An equally good fit was also computationally obtained using 
the SEIQR model with an optimal reverse sigmoid time-varying effective reproduction number. 
Importantly, the value of 𝑅𝑒 ≈ 1.6 on the day of the reopening of supermarkets was sufficient 
for the outbreak to grow to large-scale proportions in case of the non-compliance of the 
population to the PPMs. However, the number of cases remained contained to a small number 
which is indicative of a significant contribution of the PPMs in the public health response to the 
COVID-19 outbreak in Mauritius. 
 
Mauritius has successfully contained the outbreak of COVID-19 on its territory. Its response 
strategy to the SARS-CoV-2 virus has been centered on early virus entry prevention, controlling 
and containing the spread of the virus, principally through an intensive contact tracing, testing, 
strict quarantine measures and enlisting public cooperation in the public health response so 
that PPMs are strictly adhered to, and on impact mitigation measures. The response has 
benefited from the lessons learnt in dealing with recent chikungunya [18] and dengue fever 
outbreaks [19] particularly with respect to the need for control measures at the frontiers, rapid 
contact tracing and intervention and an efficient communication strategy. There have, 
however, been 10 deaths and these have been partly attributed to the high level of 
comorbidities such as diabetes and cardiovascular diseases in the Mauritius population which 
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are known to be strong risk factors for severe complications with COVID-19 [20, 21]. As the 
island reopens its international borders to all incoming passengers, but with a strict compliance 
to a two-week quarantine period as from arrival accompanied by PCR tests, periodic recalls for 
strict compliance to the PPMs are of the essence, while surveillance and contact tracing 
capabilities need to be reinforced and upscaled, a process which could be underpinned by 
global collaborations within a One World One Health approach. 
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APPENDIX 

From the dynamical equations, 

𝑑𝑁𝑐

𝑑𝑡
=  𝛽

𝑆𝐼

𝑁
 ,  

where 𝑁 = (𝑆 + 𝐸 + 𝐼 + 𝑄 + 𝑅) is the total population and 𝑁𝑐 =  𝐸 + 𝐼 + 𝑄 + 𝑅. 

𝑑𝑁𝑐

𝑑𝑡
=  𝛽

(𝑁 − 𝑁𝑐)𝐼

𝑁
 

∫  
𝑑𝑁𝑐

𝑁 − 𝑁𝑐
=  

1

𝑁
∫ 𝛽𝐼 𝑑𝑡 

𝑡

0

,
𝑁𝑐

𝑁𝑐(0)

 

where 𝛽 = 𝛽(𝑡). 

𝑁𝑐(𝑡) = 𝑁 − (𝑁 − 𝑁𝑐(0))exp (− 
1

𝑁
∫ 𝛽𝐼 𝑑𝑡

𝑡

0

) 

On integration and assuming that 𝛽𝐼 evolved as the derivative of the logistic growth function, 

i.e. 

𝛽𝐼 =  

𝑎
𝑏

 𝑒− 
(𝑡−𝑡0)

𝑏  

(1 + 𝑒− 
(𝑡−𝑡0)

𝑏  )2

, 

and noting that 

∫ 𝛽𝐼 𝑑𝑡 = 
𝑡

0

𝑎

(1 + 𝑒− 
(𝑡−𝑡0)

𝑏  )

|

0

𝑡

=  
𝑎 𝑒

𝑡0
𝑏  (1 − 𝑒−

𝑡
𝑏)

(1 + 𝑒−
(𝑡−𝑡0)

𝑏  )(1 + 𝑒
𝑡0
𝑏 )

, 

we get the closed-form solution 

𝑁𝑐(𝑡) = 𝑁 − (𝑁 − 𝑁𝑐(0)) exp (− 
𝑎

𝑁
 

 𝑒
𝑡0
𝑏  (1 − 𝑒−

𝑡
𝑏)

(1 + 𝑒− 
(𝑡−𝑡0)

𝑏  ) (1 + 𝑒
𝑡0
𝑏 )

 ). 

For 𝑎 ≪ 𝑁 and 𝑡0 significantly larger than b, 

𝑁𝑐(𝑡) = 𝑁 − (𝑁 − 𝑁𝑐(0)) {1 −
𝑎

𝑁
 

(1 − 𝑒−
𝑡
𝑏 )

(1 + 𝑒− 
(𝑡−𝑡0)

𝑏  )

}   
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=  𝑎 
(1 − 𝑒− 

𝑡
𝑏 )

(1 + 𝑒− 
(𝑡−𝑡0)

𝑏  )

 +   𝑁𝑐(0)  −   𝑎
𝑁𝑐(0)

𝑁

(1 − 𝑒− 
𝑡
𝑏 )

(1 + 𝑒− 
(𝑡−𝑡0)

𝑏  )

 

=  𝑁𝑐(0) + 𝑎 (1 −
𝑁𝑐(0)

𝑁
)

(1 − 𝑒− 
𝑡
𝑏 )

(1 + 𝑒− 
(𝑡−𝑡0)

𝑏  )

. 

For small t and 𝑁𝑐(0) ≪ 𝑁,  

𝑁𝑐(𝑡)   = 𝑁𝑐(0) + 𝑎 

𝑡
𝑏

(1 + 𝑒− 
(𝑡−𝑡0)

𝑏  )

  

which corresponds to a linear growth modulated by a logistic function, whereas when t 

becomes large compared to b 

𝑁𝑐(𝑡) =  𝑁𝑐(0)  + 
𝑎

(1 + 𝑒− 
(𝑡−𝑡0)

𝑏  )

 

which corresponds to a logistic growth. 
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