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Abstract. Multiple promising COVID-19 vaccines are under rapid development, with deployment of the initial

supply expected by 2021. Careful design of a vaccine prioritization strategy across socio-demographic groups is an

imminent and crucial public policy challenge given that (1) the eventual vaccine supply will be highly constrained for

at least the first several months of the vaccination campaign, and (2) there are stark differences in transmission and

severity of impacts from SARS-CoV-2 across groups. Previous experience with vaccine development mid-pandemic

offers limited insights for SARS-CoV-2 prioritization: SARS and Zika vaccine development was incomplete when those

outbreaks ended and the epidemiology of endemic human influenza viruses differ substantially from that of SARS-

CoV-2. We assess the optimal allocation of a limited and dynamic COVID-19 vaccine supply in the U.S. across

socio-demographic groups differentiated by age and essential worker status. The transmission dynamics are modeled

using a compartmental (SEIR) model parameterized to capture our current understanding of the transmission and

epidemiological characteristics of COVID-19, including key sources of group heterogeneity (susceptibility, severity,

and contact rates). We investigate tradeoffs between three alternative policy objectives: minimizing infections,

years of life lost, or deaths. Moreover, we model dynamic vaccine prioritization policies that respond to changes

in the epidemiological status of the population as SARS-CoV-2 continues its march. Because contacts tend to be

concentrated within age groups, there is diminishing marginal returns as vaccination coverage increases in a given

group, increasing the group’s protective immunity against infection and mortality. We find that optimal prioritization

consistently targets older essential workers. However, depending on the policy objective, younger essential workers

are prioritized to minimize infections or seniors in order to minimize mortality. Optimal prioritization outperforms

non-targeted vaccination strategies by up to 18% depending on the outcome optimized. For example, in our baseline

model, cumulative mortality decreased on average by 17% (25,000 deaths in the U.S. population) over the course of

the outbreak.
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1 Introduction

As the novel coronavirus (SARS-CoV-2) continues to spread in many countries despite intervention efforts, public

health experts see a vaccine as essential to dramatically reduce mortality burden and possibly halt local transmission

in the short term (Corey et al., 2020). Novel coronavirus disease 2019 (COVID-19) has resulted in over 930,000

confirmed deaths globally (Dong et al., 2020) as of mid-September 2020. Multiple promising vaccines are under rapid

development, with deployment possible in late 2020 or early 2021 (USHSS 2020). While the vaccine supply schedule

remains highly uncertain, it is clear that vaccine availability will be highly constrained for at least several months

after launching the vaccination campaign (Emanuel et al., 2020). This scarcity, combined with stark differences

in the spread and impact of SARS-CoV-2 across demographic groups, means that prioritization of the vaccine is

an imminent and crucial public health challenge, and as such under active discussion by the “Advisory Committee

on Immunization Practices (ACIP) of the US Centers for Disease Control and Prevention (CDC) and the National

Academy of Medicine (NAM), as well as globally at the World Health Organization (WHO) and elsewhere” (Toner

et al., 2020).

An effective public health policy for pandemic vaccine allocation requires an understanding of transmission and

epidemiological characteristics of the novel disease across different socio-demographic groups, knowledge of the mech-

anisms that drive the spread of virus in the population as well as reliable estimates of prevalence and built-up

immunity levels about the time immunization strategies are set to begin. These key components are then integrated

into a mathematical and statistical modeling framework of the transmission dynamics of the novel pathogen. Such an

analytic framework can then be utilized to investigate the optimal vaccine allocation strategies to achieve a defined

public health objective while taking into account uncertainties surrounding the vaccine efficacy and temporal changes

in vaccine availability (Medlock and Galvani, 2009; Chowell et al., 2009).

Previous experience with vaccine development mid-pandemic offers limited insights for SARS-CoV-2 prioritization.

SARS and Zika vaccine development was incomplete when those outbreaks ended (Lurie et al., 2020). In 2009, as

the novel A/H1N1 influenza virus continued to spread across the United States, researchers investigated optimal

vaccination strategies using an age-structured dynamical model. They found that school-aged children and their

parents should be prioritized, a strategy that would indirectly protect individuals at higher risk of severe health

outcomes (Medlock and Galvani, 2009). Sharp differences in the epidemiology of human influenza and COVID-19

indicate that vaccination strategies against the ongoing pandemic should not simply mirror vaccination policies against

influenza. For example, COVID 19 is associated with lower susceptibility to infection among children and adolescents

(Davies et al., 2020) and has a substantially higher infection fatality rate that increases markedly with age (Verity

et al., 2020). Toner et al. (2020, p. 24) provide a detailed overview of the 2018 pandemic influenza vaccination plan

and conclude that, “the priority scheme envisioned...does not comport with the realities of the COVID-19 pandemic

and new guidance is needed.”

We develop and apply an analytic framework to assess the optimal and gradual allocation of limited COVID-

19 vaccine supply in the U.S. across socio-demographic groups differentiated by age and essential worker status.
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Toner et al. (2020) emphasize the importance of considering the prioritization of essential workers “who have been

overlooked in previous allocation schemes”. The transmission dynamics are modeled using a compartmental model

parameterized to capture our current understanding of the epidemiology of COVID-19. We investigate three alter-

native policy objectives: minimizing expected cases, years of life lost, or deaths. Moreover, we consider dynamic

vaccine prioritization policies that respond to changes in the epidemiological status of the population as the novel

coronavirus continues its march (shares of the population in different disease states). We construct educated guesses

of initial population conditions when a vaccine first arrives (e.g., in late 2020 or the first half of 2021) by assessing

current conditions and projections of disease burden (as of September 2020). A central constraint is the expected

scarcity of the ongoing supply of vaccines (e.g., sufficient to vaccinate 60% of the population in the first 6 months).

We focus on the challenge of allocating vaccines across the general population, specifically the distribution of vaccine

remaining after specialized top priority groups like medical personnel and front line workers are covered.

To our knowledge there are no published analyses of optimal COVID-19 vaccination prioritization. Analysis in

preprint form is limited to Matrajt et al. (2020) and Bubar et al. (2020). Both consider the optimal allocation of

vaccines across five or more age groups. Their approaches feature rich exploration of policy sensitivity to vaccine

efficacy and availability. Matrajt et al. (2020) is particularly detailed in this respect, while Bubar et al. (2020) extend

to consider differences in demographics and contact rates across multiple countries. In our analysis we take a deeper

approach to the behavioral, demographic and decision models by addressing social distancing, essential worker groups,

and allocation polices that can change over time. Finally, Gallagher et al. (2020) use simulation without optimization

to explore implications of vaccines with various levels of direct and indirect protection.

To date, general ethical guiding frameworks for guiding vaccine prioritization decision making have received more

attention. Toner et al. (2020) emphasize promoting three ethical values: the common good; fairness and equity;

and legitimacy, trust and communal contributions to decision-making. Emanuel et al. (2020) promote four ethical

values: maximizing benefits, treating equally, instrumental value, and priority to the worst off. Our analytic focus on

minimizing new infections, years of life lost, or deaths emerges from promoting “the common good” or “maximizing

benefits”. Issues of fairness and equity and protecting the worst off are not directly analyzed here but remain critical

considerations.

A number of key model components are still highly uncertain in advance of the vaccine’s arrival, including: initial

epidemiological conditions in the population, degree of vaccine scarcity, vaccine efficacy and level of social distancing

in effect as the vaccine is allocated (Toner et al., 2020). There also does not exist a unique preferred structure for

socio-demographic groups or a singular consensus objective. Thus, we consider a number of alternative objectives

and scenarios based on plausible specifications of the model. In our results we highlight findings that are either (1)

consistent across the scenarios, (2) depend on uncertainties that can be narrowed down when a vaccine arrives [e.g.,

the initial disease prevalence], or (3) a matter of subjective choice [e.g., the objective].

For the sake of simplicity, we do not address in the model an important set of additional complex feedback processes

between health status and opening of schools, workplaces and other institutions. While we limit policy objectives to
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a concise metric of health outcomes (minimizing expected cases, years of life lost, or deaths) we acknowledge that

other values of returning to school, work and social life are important. Finally, we do not address additional vaccine

complications, such as temporary efficacy, potential side effects or any failure to take a second dose of the vaccine if

necessary.

Given these assumptions we find that optimal allocation strategies are responsive to both the initial and evolving

epidemiological landscape of the disease. When deaths are considered, vaccines are initially allocated to older essential

workers 40− 59 yrs. followed by seniors 60+ yrs., when years of life lost are minimized both ages groups of essential

workers are prioritized follow by seniors 60−74 yrs., and when infections are minimized essential workers are prioritized

followed by school age children. In general, we find that these results are robust across a range of possible scenarios

and parameters sets. However, they are sensitive to changes in vaccine efficacy and susceptibility between age groups,

indicating that these will be key uncertainties prior to the vaccines arrival. We found that the optimal strategies

outperformed a non-targeted strategy (e.g., distributed proportional to the size of each group) by 8 to 20% for a

given target policy objective. For example, in our baseline model incorporating essential worker groups, cumulative

pandemic deaths decreased on average by 17% or 25,000 COVID-19 deaths (when applied to the U.S. population)

over the course of the outbreak.

2 Model

To investigate the impact of vaccination strategies on the COVID-19 pandemic in the USA, we employed a structured

compartmental transmission model similar to Abrams et al. (2020). We incorporated the demographic structure of

the population by tracking six age groups in the set J = {0-4, 5-19, 20-39, 40-59, 60-74, 75+}. We then extend this

set to differentiate essential workers by splitting the two prime working age groups into two groups—nonessential

workers (20-39, 40-59) and essential workers (20-39*, 40-59*)—yielding four groups of prime working age individuals

and a total of eight demographic groups in J = {0-4, 5-19, 20-39, 20-39∗, 40-59, 40-59∗, 60-74, 75+}.

For each demographic group we tracked 9 epidemiological states: susceptible (S), protected by a vaccine (P ),

vaccinated but unprotected (F ), exposed (E), pre-symptomatic (Ipre), symptomatic (Isym), asymptomatic (Iasym),

recovered (R) and deceased (D). In Fig. 1 we display the compartmental diagram describing the transitions between

epidemiological states.

We model the COVID-19 transmission dynamics using a system of coupled ordinary differential equations for each

demographic group, indexed by i and j. The transmission rate is given by the product of the transmission probability

(q), the age-specific susceptibility (si), strength of non-pharmaceutical interventions (θ), the relative infectiousness

of each symptom type (τm)—where m ∈ M ≡ {asym, pre, sym}—and the rate of contact (rm,i,j) between infected

individuals with symptom type m from group j and susceptible individuals from group i. The exogenously given

population vaccination rate at time t is given by v, where units of time are days.1 In our Base model we assume that

1In the event that vaccination requires two doses over time, we consider an individual vaccinated upon receipt of the second
dose at time t and we assume that v indicates the number of individuals that can be vaccinated with the required number of
doses.
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Figure 1: Movement of individuals between disease states.

for each individual the vaccine either works or it does not (though we also consider vaccines that are partially effective

for all vaccinated in our sensitivity analysis). Individuals in group i are vaccinated at a rate of µiv and a fraction

of the those (εi) are protected while a fraction remain susceptible and move to the failed vaccination category (F ).2

Once infected, individuals move from exposed to pre-symptomatic at rate D−1
exp. Pre-symptomatic individuals become

symptomatic or asymptomatic at rates σasym/Dpre and (1 − σasym)/Dpre, respectively. Asymptomatic individuals

recover at an uniform rate D−1
asym and symptomatic individuals either recover or die at a rate of (1 − δa)/Dsym or

δa/Dsym, respectively, where δa is the age-specific infection fatality rate. These assumptions yield the system of

differential equations for all groups i in set J :

Ṡi = −qsiθ

[∑
j∈J

∑
m∈M

τmrm,i,jSi
Im,j
Nj

]
− µiv (1)

Ḟi = −qsiθ

[∑
j∈J

∑
m∈M

τmrm,i,jFi
Im,j
Nj

]
+ (1− εi)µiv (2)

Ėi = qsiθ

[∑
j∈J

∑
m∈M

τmrm,i,j(Si + Fi)
Im,j
Nj

]
− Ei/Dexp (3)

Ṗi = εiµiv (4)

İpre,i = Ei/Dexp − Ipre,i/Dpre (5)

İasym,i = σasymIpre,i/Dpre − Iasym,i/Dasym (6)

İsym,i = (1− σasym)Ipre,i/Dpre − Isym,i/Dsym (7)

Ṙi = Iasym,i/Dasym + (1− δi)Isym,i/Dsym (8)

Ḋi = δiIsym,i/Dsym. (9)

2This vaccine efficacy is inclusive of any efficiency loss from typical handling in the distribution chain.
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3 Model parameterization

3.1 Contact rates

Contact rates indicating the level of direct interaction of individuals within and between groups drive the transmission

dynamics in the model. We build the contact matrices used in this model from the contact matrices estimated for the

United States in Prem et al. (2017). These estimates are given for age groups with five year age increments from 0

to 80 yrs. These estimates were aggregated to provide estimates for the coarser age structure used in our model. We

also extend these data to estimate the contact rates of essential workers. A detailed derivation of these contact rates

can be found in the appendix A.2, but in short we assume that essential workers have on average the same pattern of

contacts as an average worker in the population in the absence of social distancing. We then scale the contact rates

for essential and non-essential workers to represent the effects of social distancing and calculate the resulting mixing

patterns assuming homogeneity between these groups.

Following, Prem et al. (2017) we construct contact matrices for four classes of locations x ∈ {home,work, school, other}.

The total contact rate for an asymptomatic individual before the onset of the pandemic is given by the sum of these

location specific matrices. However, it is clear that populations are exhibiting social distancing in response to the

pandemic (Weill et al., 2020). We further expect symptomatic individuals to change their behavior in response to

the illness. We account for these behavioral changes as described below in Section 3.2.

3.2 Social distancing

Expression of symptoms and social distancing policies are likely to change individuals behaviors over time. To model

these changes we scaled the contribution of each contact matrix for location/activity x:

rm =
∑
x

αm,x ∗ rx. (10)

The weights αm,x depend on disease and symptom status (m) and location/activity (x) as specified in Table 1.

We scaled social contacts for symptomatic individuals following changes in behavior observed among symptomatic

individuals during the 2009 A/H1N1 pandemic (Van Kerckhove et al., 2013). For those without symptoms (susceptible

and asymptomatic) the weights were specified to match reduced levels of social contacts as the product of social

distancing policies. Home contact rates were held constant. Since completed research studies to understand changes

in work contact rates are not yet available, we select a level based on preliminary survey data across eight U.S. regions

collected by the Institute for Transportation Studies at the University of California Davis, which indicates that trips

to work have fallen after the onset of the pandemic from an average of 4.1 to 1.9 days, or 54% (Circella, 2020). The

work contact rates for both model formulations were set to be consistent with an overall reduction of 54%. This

value was used directly in the age-only model and divided into a weight of 100% for essential works and a weight of

9% for nonessential workers in the essential worker model formulation. School contact rates were set to an assumed

weight of 30%, to account for a mixed effect of a small fraction of schools remaining open and possible increased
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Disease and Contact rate weights, αm,x

symptom type Model home work school other

symptomatic all 1.0 0.09 0.09 0.25
susceptible,
asymptomatic

age-only 1.0 0.54 0.3 0.25
age and essential workers 1.0 1.0∗, 0.09 0.3 0.25

Table 1: Weights on contact rates for a given disease and symptom type (m) and location/activity (x) under
social distancing. When essential and non-essential-worker weights are both needed the former is marked
with a star.

social contacts between school age children during time that would other wise have been devoted to school. As an

alternative scenario, we consider the case of more school contacts with a weight of 70% (see Table 3). Contact in

other locations were given an assumed weight of 25%.

The proportion of workers deemed essential, p, was estimated with two components: the total number of workers

involved in activities essential to the maintenance of critical services and infrastructure and the fraction of these

workers that were required to work in person. The cyber-security and infrastructure security agency of the United

States estimates that 70% of the work force is involved in these essential activities (e.g. heath care, telecommuni-

cations, information technology systems, defense, food and agriculture, transportation and logistics, energy, water,

public works and public safety). We used estimates of the fraction of workers that could successfully complete their

duties from home produced by Bartik et al. (2020) who estimated this value at approximately 30%. These two values

gave a final proportion of p = 0.7(1− 0.3) = 0.49.

3.3 Transmission rate

The relationship between the basic reproduction number, R0, and parameters governing transmission and epidemio-

logical characteristics is given by the so-called next-generation matrix:

R0 = max[eigenval{qDpreτpre(r∆s)∆n+ qσasymDasymτasym(r∆s)∆n+ (11)

q(1− σasym)Dsymτsym(r∆s)∆n}],

where the maximum eigenvalue operator wraps several terms including r, the social contact matrix, s, the age-

specific susceptibility rate, n, a vector of the proportions of the population in each demographic group and ∆, an

operator that signifies multiplying each row of a matrix by the corresponding entry in the vector. For symptom type

m ∈ {asym, pre, sym}, the constants Dm, τm and σm represent the duration, relative infectiousness of an individual

and the probability of type m, respectively.

We first set a baseline R0 = 2.5 as estimated by Kucharski et al. (2020). We then solve for the transmission

probability parameter, q, using Equation 11, assuming a naive (pre-pandemic) population. We then scaled q by a

fixed factor θ ∈ [0, 1] to reflect the impact of non-pharmaceutical interventions (NPI) like masks, hand washing and

maintaining distance when contacts are made.
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3.4 Initial conditions

Because the expected epidemiological conditions {Ipre(0), Iasym(0), Isym(0), S(0)} by the time the initial vaccine

doses are ready for deployment are uncertain, we construct plausible baseline values for the U.S. using estimates of

COVID-19 disease burden from the start of the outbreak in February 2020 through present and use projected disease

burden estimates by December 1, 2020 taken from near real-time projections by the Institute of Health Metrics and

Evaluation (IHME, 2020a). Specifically, we set the initial epidemiological conditions to be consistent with cumulative

and current cases by December 1, 2020. These cases are apportioned between demographic groups to reflect the

attack rates of COVID-19 for each group under the given social distancing policy.

3.5 Parameter summary for Base case and alternative scenarios

In Table 2 we list and describe the parameters used in the Base model along with the value(s) used and the source

(except for contact matrices and social distancing, discussed later). These parameter values reflect moderate restric-

tions of work and social gatherings and that NPIs other than social distancing (mask wearing, hand washing, spacing

between people, etc.) scale the transmission rate q by a factor of θ = 0.65. Consistent with influenza vaccine efficacy,

we assume that the COVID-19 vaccine has efficacy of ε = 0.65. We assume that there will be a sufficient number of

vaccine doses to cover 60% of the population during the first six months of the vaccination campaign—10% per 30

day period—that is available at a constant daily fraction of the population, v = 0.1/30. While the Director of the

U.S. National Institute of Allergy and Infectious Diseases has indicated that tens of millions of doses are likely to be

available in early 2021 (Erman and Mason, 2020), the supply schedule of vaccines is currently unknown.

To address uncertainty in key model model components in advance of the vaccine arrival, we solved for optimal

policies for a range of alternative scenarios with different parameters. In Table 3 we summarize the eight alternative

scenarios considered and how the parameters differ relative to the Base model. Here we consider alternatives to

existing levels of NPI, vaccines efficacy, susceptibility, vaccine availability and level of contacts in schools.
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Parameter Description Base Value(s) Source

J demographic groups: (1)
age-only,

{0-4, 5-19, 20-39, 40-59, 60-74,
75+},

assumed

(2) age and essential workers {0-4, 5-19, 20-39, 20-39*, 40-59,
40-59*, 60-74, 75+}

σasym infection asymptomatic rate 0.16 Byambasuren et al. (2020)

δ infection fatality rate
(age-specific)

{6.7×10−6, 2.5×10−5, 0.0002,
0.002, 0.018, 0.12}

Levin et al. (2020)

s susceptibility (age-specific) {0.5, 0.5, 1.0, 1.0, 1.0, 1.0} Davies et al. (2020)

τpre relative infectiousness 0.51 Abrams et al. (2020)
τasym by symptom type 0.51
τsym 1.0

Dexp symptom duration 3.0 Abrams et al. (2020)
Dpre (days) 3.2
Dasym 3.5
Dsym 7.0

ε vaccine efficiency
(age-specific)

{0.65, 0.65, 0.65, 0.65, 0.65,
0.65}

informed by influenza vaccine
efficiency (Ohmit et al., 2014;
McLean et al., 2015; Gaglani
et al., 2016)

p proportion of essential
workers

0.49 calculated with labor data
(Bartik et al., 2020; LMI and
C2ER, 2020); alternative:
(McCormack et al., 2020)

R0 secondary infections in a
naive population

2.5 Kucharski et al. (2020),
Korevaar et al. (2020)

q transmission probability in a
naive population

0.053 calculated given R0, s and
other parameters

θ scaling factor for transmission
probability due to NPI other
than social distancing

0.65 assumed (consistent with
estimated COVID-19 R0

under NPIs (Korevaar et al.,
2020))

n population shares: (1)
age-only,

{0.06, 0.19, 0.27, 0.26, 0.19,
0.04},

Population Pyramid (2020)

(2) age and essential workers {0.06, 0.19, 0.19, 0.08, 0.18, 0.8,
0.19, 0.04}

e remaining years of life
expectancy (age-specific)

{76, 66, 50, 31, 17, 6} USSSA (2020)

Ipre(0) initial pre-sympt. 0.005n IHME (2020a)
Iasym(0) initial asymptomatic 0.005n estimates and
Isym(0) initial symptomatic 0.01n projections
R(0) initial recovered 0.09n

v fraction of population
vaccinated daily

0.1/30 informed by comments from
CDC Director to U.S. Senate
Panel (Lovelace Jr. and
Higgins-Dunn, 2020)

Table 2: Base model parameter values and sources.

9

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.20199174doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.22.20199174
http://creativecommons.org/licenses/by-nd/4.0/


Scenario Change from Base scenario parameters Source

Strong NPI θ = 0.5 assumed
Weak NPI θ = 0.75 consistent with 30-70%

of U.S. population always
wearing a mask (Premise,
2020) with 33-58% effec-
tiveness (IHME, 2020b)

Weak vaccine εi ∈ {0.4, 0.4, 0.4, 0.4, 0.4} informed by influenza vac-
cine efficiency

Weak vaccine seniors εi ∈ {0.65, 0.65, 0.65, 0.65, 0.5, 0.5} informed by influenza vac-
cine efficiency

Low susceptibility ages
< 20

si ∈ {0.34, 0.4, 1.0, 1.0, 1.0} Zhang et al. (2020)

Even susceptibility si ∈ {1.0, 1.0, 1.0, 1.0, 1.0} assumed
Ramp up

v(t) =

{
0.05/30, t ≤ 90
0.15/30, t > 90

informed by comments
from the scientific head
of the U.S. vaccine devel-
opment program (Slaoui,
2020)

Open schools αschool = 0.7 assumed

Table 3: Parameter values that differ from the Base case for alternative scenarios.

4 Vaccine prioritization optimization

The planner’s decision problem is to allocate the daily supply of vaccine (v(t)) across the demographic groups

according to a given objective. We assume that this allocation vector, µ, can be chosen monthly at the beginning

of each of the first six decision periods (e.g., monthly basis). We numerically solved for vaccine allocation strategies

that minimize the total burden associated with three different health metrics: deaths (12), years of life lost (YLL)

(13) or symptomatic infections (14):

deaths: min

{∫ T

0

∑
i∈J

Isym,i(t)/Dsymdt

}
(12)

YLL: min

{∫ T

0

∑
i∈J

eiδiIsym,i(t)/Dsymdt

}
(13)

symptomatic infections: min

{∫ T

0

∑
i∈J

δiIsym,i(t)/Dsymdt

}
, (14)

where ei is the years remaining of life expectancy for age group i and with a 6-month time horizon (T = 180 days).

Preventing deaths and years of life lost are “consensus value(s) across expert reports” (Emanuel et al., 2020, p. 2052)

while “protecting public health during the COVID-19 pandemic requires...minimizing COVID-19 infection” (Toner

et al., 2020, p. 10).

We solved for the optimal allocation of available vaccines across demographic groups for each month over six

months. We identified the optimal solution using a two-step algorithm. In the first step we used a genetic algorithm

similar to (Patel et al., 2005) to identify an approximate solution. This approach uses random sampling of the
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potential solution space to broadly explore in order to avoid narrowing to a local and not global minimum. In the

second step we used simulated annealing to identify the solution with precision. At a given optimal solution, it may

or may not be the case that the outcome of interest (e.g. minimizing deaths) is sensitive to small changes in the

allocation decision. Thus, around the optimal allocation we also identified nearby allocations that produce outcomes

that are less desirable but still within 0.25% of the optimized outcome. A detailed description of the algorithm is

given in the SI Appendix. All code for the optimization was written in the Julia programming language (Bezanson

et al., 2017).

5 Results

We present results for the Base model with essential worker demographic groups and then show the sensitivity of

these results with respect to the alternative scenarios. Results for individual alternative scenarios are presented in

detail in the SI Appendix. In Fig. 2 we show the optimal allocation of vaccines given each objective for the Base model

with essential workers. The allocations are shown on a monthly basis for six decision periods and then cumulatively

(in percent of vaccine and percent of group vaccinated). Broadly, we find that the optimal policy is very dynamic:

specific groups are targeted each period and these targets shift over time. Furthermore, targeting is very narrow to

start but then becomes less so as vaccines continue to roll out.

In general we also find that optimal dynamic allocation does not cover 100% of the susceptible population in any

single demographic group before switching to another age group. Further, an allocation may initially prioritize one

group, only vaccinate a fraction of the population and prioritize that group again two or more decision periods later.

These features suggest that there are diminishing marginal returns to vaccinating individuals in any single group.

The whiskers on bars in Fig. 2 show the range of alternative allocations that still produce an outcome that is

within 0.25% of the optimum. For example, in the first period of the top panel the whiskers show that some limited

substitution in the allocation between groups d∗, f∗ and h (but not others) can occur without a substantial reduction

in the optimized outcome (minimizing deaths). In general, we find that these whiskers become more pronounced as

periods progress. This shows that it becomes less critical to precisely follow the exact optimal allocation as vaccine

coverage of the population expands. We also find that, even with targeting in specific decision periods, after six periods

the percent vaccine allocated to each group and the percent of each group vaccinated (Fig. 2, final two columns) is

more even across most—though not all—groups. Overall, we find that pre-school age children are substantially less

targeted than most groups (conditional on having relative few contacts and lower susceptibility).

Across objectives there are substantial differences in which groups are targeted early on. When minimizing deaths,

targeting progresses from older essential workers (40-59*), to the oldest (75+), to younger seniors (60-74), and then

younger essential workers (20-39*). These groups are a mix of those at high risk of mortality (older groups) and high

risk of contraction and spread (essential workers). When minimizing YLL, younger essential workers and younger

seniors are targeted earlier (given their longer average years of life remaining). Finally, when minimizing infections

we find that younger essential workers take top priority, followed by older essential workers and school-age children
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Figure 2: The optimal allocation of vaccines (vertical axes) between demographic groups for each decision
period (horizontal axis) under the Base scenario in the essential worker model. The three rows represent each
objective (from top to bottom): minimize deaths, minimize years of life lost (YLL) and minimize infections.
The bars for the six decision periods show the percentage of vaccines allocated to a specific group (indicated
by a letter, color, and asterisks for essential worker groups) in that period. The two final columns show
cumulative measures at the end of month six: the percent of (1) vaccines allocated to each group, and (2)
each group that has been vaccinated. The whiskers on each bar represent the sensitivity of the optimal
solution to small deviations in the outcome, specifically the range of allocations resulting in outcomes within
0.25% of the optimal solution.

(5-19), since these groups have higher contacts and thus risk of contraction and spread.

Results for the age-only model—that does not distinguish essential workers—are broadly similar (see SI Ap-

pendix). However, a significant difference is that the essential worker formulation presented in the main text targets

essential workers before other working age adults and prioritizes these groups before the higher risk 60+ age groups.

In the left panel of Fig. 3 we show the dynamic path of infections, starting from the period in which vaccines

become available, under various policies. As expected, infections are highest given no vaccines. Results for allocating

vaccines in a manner “proportional” to each group’s size shows the substantial value of vaccines even with no targeting.

As expected, the policy for minimizing infections leads to the lowest level of infections. In the second panel of Fig.

3 we show the performance of each targeting policy relative to outcomes achieved with a proportional allocation.

Overall we find that when focusing on minimizing a particular outcome, that outcome is reduced by 17-18%. In the
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first cluster of bars, as expected the policy that minimizes deaths (“D” in green) leads to the greatest reduction in

deaths (18%). However, trade offs are stark in certain cases: the third cluster of bars shows that minimizing deaths

involves a strong opportunity cost in terms of infections, which are higher than even under the proportional policy.

The YLL policy is most consistent, performing second best when considering other outcomes (infections and deaths).

Figure 3: The number of infections per 1,000 individuals over time under each policy (left) and the per-
formance of each policy relative to a uniform allocation policy (right) for the base scenario in the essential
worker model. The bars are clustered by the resulting outcome and colored by the objective driving each
policy.

5.1 Sensitivity of prioritization across scenarios

Iterations of Fig. 2 and Fig. 3 for all alternative scenarios are shown in the SI Appendix. To compare and contrast

cumulative vaccination results, in Figure 4 we show for each of the alternative scenarios the percentage of each group

vaccinated after three months (left panel) and 6 months (right panel). In general we find differences across groups

that lessen (but not completely) by month six. We also find some differences across scenarios and objectives that

differ by the horizon considered.

Certain scenarios are distinctive. For example, when the lower susceptibility enjoyed by those under 20 in the

Base scenario is replaced by “Even susceptibility” for all, over the first three months we see substantial substitution to

school age children and away from older essential workers (min. deaths or infections) or younger seniors (min. YLL).

In a second example, both weaker vaccine scenarios do not substantially change results at three months, except if

minimizing deaths, in which case vaccination shifts from younger seniors to younger essential workers. When fewer

vaccines are available in the first three months due to a “Ramp up” in supply, the deficit mainly accrues to older

essential workers (min. deaths or infections), younger seniors (min. deaths or YLL), younger essential workers (min.

YLL), or school age children (min. infections).

At three months, the only two groups consistently not targeted are pre-school age children and older non-essential

workers. By six months, there are two groups consistently targeted: older and younger essential workers. Across

each objective, one of the essential worker groups has either the highest or second highest coverage rate. The only

exception to this rule is if school age children are equally susceptible to infection as adults (as discussed above).
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(a) Three months (b) Six months

Figure 4: The cumulative percent of each demographic group (x-axis) vaccinated after three or six months
under alternative scenarios (y-axis) and each objective (panel). Vaccine supply is sufficient to vaccinate 10%
of the population each month, except in the “Ramp up” scenario which involves 5% per month for three
months, then 15% per month.

5.2 Vaccines partially effective at the individual level

In our results discussed above we have assumed that for a given percentage of each group (e.g. 65%) vaccines are

completely effective at preventing infection. An alternative approach is to consider vaccines as partially effective for

everyone at the individual level. Furthermore, it may be the case that a vaccine is more effective at reducing symptoms

than preventing infections. To analyze this case we extended our model structure to separate infected individuals

into those that had not been vaccinated. For vaccinated individuals, we replaced the single vaccine efficacy parameter

with separate parameters for reduction in spread (scaling susceptibility and transmissibility) and mortality (scaling

infection fatality rate). We consider three cases. For comparison with the Base model, we consider the same level of

efficacy (65%) for spread and mortality. We also consider a vaccine that is more effective at reducing mortality but

less effective at preventing spread. Specifically we model an extreme case where the vaccine reduces susceptibility

and infectiousness by 10% and infection fatality rate by 90% and a moderate case where these values were 30% and

70% respectively. Detail on modeling and results for these cases are provided in SI Appendix C.

In general, results are similar between the Base model with 65% of individuals 100% protected when vaccinated

and the three scenarios we tested with the partially effective vaccine model formulation. However, when the cases

where the vaccine had an efficacy of 65% for susceptibility, infectiousness and mortality, and when the vaccine had

an efficacy of 90% against mortality but only 10% against susceptibility and infectiousness, the optimal solutions

allocated a greater share of vaccines to ages 60+ to minimize years of life lost and deaths compared to the Base
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model. Surprisingly, the scenario with a vaccine the reduces mortality by 70% and susceptibility and infectiousness

by 30% was qualitatively different to the others, shifting prioritization towards younger essential workers and away

from older nonessential workers. This finding illustrates that the indirect benefits of reducing spread (e.g. in younger

essential workers) is still an important driver relative to the direct benefits of reducing mortality (e.g. in older non-

essential workers) even given a vaccine that is relatively less effective at mitigating infections.

6 Discussion

Key insights and results from our analysis are summarized in Box 1. Together these lessons show the strong im-

plications of considering dynamic solutions, social distancing and essential workers (given their limitations in social

distancing) for vaccine prioritization.

Box 1. Key insights and results

1. Benefits: Prioritization can reduce a particular undesirable outcomes (deaths, YLL, or infections),
by 17-18% in the Base scenario (or 8-23% depending on the alternative scenario).

2. Dynamic prioritization: (A) Prioritization is responsive to the initial and evolving disease status;
(B) Diminishing marginal returns to additional vaccination within a group drives a shift to other
groups well before 100% vaccination of the first group is achieved.

3. High prioritization: Under the Base scenario, group prioritization over the first three months
starts with essential workers then, depending on the objective, progresses to older and younger
seniors (deaths), younger seniors only (YLL) or school age children (infections).

4. Low prioritization: At three months (30% of the population vaccinated) the only two groups
consistently not targeted are pre-school age children and older non-essential workers.

5. Widening prioritization: As vaccination rates rise, precise prioritization becomes less critical and
targeting widens to a larger set of groups.

6. Sensitivity: Some prioritization results are sensitive to the scenario modeled—especially whether
or not those under 20 are less susceptible.

7. Trade offs: Focusing on one objective leads to sacrifices in the other objectives, typically strongest
when minimizing infections.

While vaccine prioritization discussion often takes the form of identifying tiers that should be vaccinated to

completion before moving on (e.g. see Toner et al. 2020, p. 25), we find that the optimal approach does not involve

seeking 100% coverage in a single group before prioritizing other groups. In fact, in some cases a group is prioritized

early on, and then revisited two or more periods later. These findings are indicative of the diminishing marginal

returns to vaccinating individuals within a demographic group. Because social contacts are concentrated within

groups, as vaccine coverage in a given group increases, risks for that group fall more sharply than for others. Thus, as

group vaccine coverage increases, we see attenuation in the direct benefits (protection of the vaccinated) and indirect

benefits (protection of the unvaccinated) of additional vaccinations in that group.

Available existing analysis of optimal COVID-19 vaccination targeting in preprint form is limited to Matrajt

et al. (2020) and Bubar et al. (2020). Before comparing and contrasting results some key modeling differences should

be noted. Both preprints consider a wider range of vaccine availability than considered here. Their models do not
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incorporate non-pharmaceutical interventions (NPIs), including social distancing and non-social distancing (e.g. mask

wearing) as we do here. Doing so allows us to account for differences between groups like essential workers constrained

in distancing versus others who are much less so. Matrajt et al. (2020) and Bubar et al. (2020) both implement static

optimization where all vaccination available is allocated and administered in a one-shot process. Our allocation is

dynamic, responding to changing conditions over a six-month period. Finally, Matrajt et al. (2020) and Bubar et al.

(2020) model vaccines as “leaky”, i.e., reducing the probability that a susceptible individual will be infected. Bubar

et al. (2020) also considers an “all-or-nothing” vaccine that 100% effective for a fraction of the population. In our

Base model the vaccine is “all-or-nothing”, though we check our results against a leaky vaccine in the SI Appendix..

Matrajt et al. (2020) found that optimal strategies to minimize deaths and years of life lost will either exclusively

target groups with high infection fatality rates maximizing the direct benefit of vaccines, or will target groups with

high rates of infection maximizing the indirect benefits of the vaccine. In contrast, our results indicate that optimal

policies initially target groups with high risk of infection and switch to targeting groups with high infection fatality.

This difference is most likely follows from our dynamic versus static allocation. The switching behavior we identify

is consistent with past work on pandemic influenza vaccine prioritization, which suggests that early in an outbreak

when the infection rate is growing targeting spread (maximizing indirect benefits) is more efficient, but later when

the infection rate is leveling off or declining maximizing direct protection is most efficient (Matrajt et al., 2013).

Consistent with this explanation, we find that ages 75+ yrs. are prioritized in the first decision period when deaths

are minimized in the strong NPI scenario where the number of infections are declining, compared to the base case

where they are not prioritized until the second period.

Bubar et al. (2020) found that prioritizing adults older than 60 years of age is a robust strategy for minimizing

deaths. In contrast we find that working age adults are a key priority group, particularly essential workers between the

ages of 40 and 59 yrs. These differences may either arise from differences in social distancing or dynamic allocation.

Our accounting for social distancing on COVID-19 transmission increases the modeled benefits of targeting essential

workers, who are less able to substantially reduce their social contacts than individuals ages 60+. Furthermore,

as discussed above, the ability of dynamic polices to switch over time allows the allocating schemes we discuss to

capture the benefits of using the initial vaccine supply to slow transmission without sacrificing direct protection of

more vulnerable individuals later on.

While we explored a large set of alternative scenarios, there are other important possibilities that we have not

included. For example, if certain population groups (e.g., children or seniors) experience significant side effects from

the vaccine, prioritization might shift away from these groups (NASEM, 2020). Another key component is the set of

logistical constraints imposed by the distribution network used. Vaccines will likely be administered through various

points of contact with the community (pharmacies, clinics, schools, etc.). For some demographic groups there may be

differences between the share of vaccines targeted to that group and the actual share received, e.g., due to constraints

in prediction and implementation.

We do not address the potential for vaccine hesitancy in the model. In general, we find that it is not necessary
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or even ideal to vaccinate all of the susceptible individuals in a demographic group, at least among the first 60% of

the population vaccinated as we consider here. Thus, at least initially, some level of vaccine hesitancy may not have

a material impact. However, hesitancy may play a more significant role in the longer run, especially if hesitancy

rates are large and herd immunity proves difficult to achieve (e.g. if vaccine efficacy is low, and/or NPI relaxation

is aggressive). Vaccine hesitancy that is concentrated in a particular community or demographic group could also

motivate changing a prioritization strategy. Similarly, adjustments would be needed if groups differ in the duration

of vaccine efficacy or diligence in obtaining a second dose of the vaccine (as necessary).

For simplicity we limited policy objectives to a set of concise metrics of health outcomes (minimizing expected

cases, years of life lost, or deaths). However, other health-related metrics such as protecting the most vulnerable

and social values such returning to school, work and social life are important to consider. Our analysis reveals that

optimal strategies for minimizing deaths and years of life lost are broadly aligned with the goal of protecting the

most vulnerable. These solution target essential workers who are the least able to participate in NPI such as social

distancing and thus are the most a risk of infection, and individuals over the age of 60 who have the highest risk of

deaths if infected by the disease. Other social values such as returning to school will most likely change the allocation

schemes to offset the risk created by relaxing social distancing. For example, if allowing children to return to school

was a high priority, then allocation strategies might be tilted towards targeting school age children and teachers. A

detailed analysis of optimal vaccine allocation given the relaxation of social distancing to achieve particular social

objectives is a potentially promising direction for future research.
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Appendix

A Model specification, parameterization and optimization

A.1 Initial conditions

We set plausible baseline values for initial epidemiological conditions that will be present in the U.S. population when
a vaccine arrives using estimates of actual U.S. cases from the start of the outbreak (February 2020) through present
and expected cases projected forward through December 1, 2020 produced by the Institute for Health Metrics and
Evaluation (IHME, 2020a). For the share of the population that is symptomatic, Isym(0), we take the estimated case
count for the Dsym = 7 days (the duration of symptomatic infection) ending December 1, 2020, multiply by the share
of cases that are symptomatic (1− σasym) and then divide by the U.S. population. For the pre-symptomatic share,

Ipre(0), we assume it is consistent with Isym(0) but scaled by its shorter duration: Ipre(0) = Isym(0) ∗
(
Dpre

Dsym

)
. The

asymptomatic share is calculated by scaling Isym(0) to account for differences in duration and the relative share of

asymptomatic to symptomatic cases: Iasym(0) = Isym(0) ∗
(
Dasym

Dsym

)
∗
(

σasym

1−σasym

)
. Finally, we estimate the share of

the population that is recovered, R(0), by taking the cumulative projected case count through December 1, 2020,
divided by the total population.

A.2 Contact matrices distinguishing essential workers

Estimated contact rates for the U.S. were obtained from Prem et al. (2017) who used population-based contact diaries
from the European POLYMOD survey to project to other countries, including the U.S. These included contact rates
for 16 age classes in five year increments from ages 0 to 80. We collapsed these to five age groups (0-4, 5-19, 20-39,
40-59, 60-80) using population-weighted sums:

r̂i,j,x =
∑
i∈i

Npop
i

Npop
i

∑
j∈j

ri,j,x

 , (15)

where {i, j} are the subscripts for the five year age bins, {i, j} are the subscripts for the larger age bins, ri,j,x is the
average number of daily contacts a person in group i makes with a person in group j for activity/location x, and
Npop
h is the population size for age group h.

The total number of i-to-j contacts must equal the total number of j-to-i contacts: Npop
i ri,j,x = Npop

j rj,i,x.
Because numerical issues—estimation in Prem et al. (2017), bin discretization and rounding—can lead to small
differences, we ensure this condition holds by imposing,

ri,j,x =
0.5(Npop

i r̂i,j,x +Npop
j r̂j,i,x)

Npop
i

, (16)

where the numerator is the mean of the two measures of total contacts between groups i and j and the denominator
transforms the result to per-capita in i.

Setting essential worker contact rates requires additional assumptions and attention to the activity/location. We
define the essential worker indicators e ∈ {n, y} for “no” and “yes”. Our grouping is such that all essential workers
(e = y) are employed but non-essential-workers (e = n) are a mix of employed and not employed. Let e′ represent
the indicator for a second group which can be equal or not equal to the value for e.

In the case of all activities/locations x that are not work, contact rates are given by

r(i,e),(j,e′),x =
Npop

(j,e′)

Npop
j

ri,j,x, ∀ x 6= work. (17)

This follows from the assumption that contacts made by any group (i, e) with any other group (j, e′) are independent
of i’s essential worker status. Thus, we only need to split contacts ri,j,x into those made with essential worker type
e′ = y versus the remainder with type e′ = n, i.e. given the share Npop

(j,e′)/N
pop
j .

Estimating contacts when x = work involves a larger number of steps. We first address contacts made by essential
workers (e = y) before turning to non-essential workers (e = n). For e = y, let the share of the working age population
(20− 59) in group i that is employed be given by pi.

We assume that all of the work contacts are attributable to employed adults resulting in an employed adult
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contact rate of ri,j,work/pi. Then the contact rate of essential workers (e = y) in group i with age group j is

r(i,y),j,work =
ri,j,work
pi

. (18)

Let the fraction of working age group i that is employed in an essential worker role be given by pi,y. The average
workplace contact rate for non-essential-workers in group i with group j is given by

r(i,n),j,work = αwork

(
ri,j,work
pi

)(
pi − pi,y
1− pi,y

)
, (19)

where αwork < 1 scales for social distancing and the final term in brackets scales for the share of non-essential workers
that are employed and thus have contacts at work.

Finally, we assume that the average workplace contact rate for an individual of type (i, e) with individuals of
type (j, e′) is given by the partial contact rate r(i,e),j,work times the proportion of total work contacts of individuals
in group j that are made by individuals in sub group e′:

r(i,e),(j,e′),work = r(i,e),j,work

(
N(j,e′) · ri,(j,e′),work

N(j,y) · ri,(j,y),work +N(j,n) · ri,(j,n),work

)
. (20)

Finally we scale the work contacts for age groups that are not separated into essential and non-essential workers
(5-19, 60-80) to match the scaling for prime working age classes.

ri,j,work =

(
pi,y
pwork

+ α
pwork − pi,y

pwork

)
ri,j,work (21)

A.3 Optimization algorithm

The optimization algorithm used our analysis is split into two parts. First a genetic algorithm is run to identify an
effective strategy near a global optimum. This solution is then refined using simulated annealing algorithm.

Genetic algorithms take inspiration from the natural process of evolution, and work by randomly sampling a
populating of candidate solutions, selecting a set of survivors based on the candidates performance against the
objective function, information from these survivors is then used to generate a new generation of candidates solutions,
and so forth (Patel et al., 2005). The genetic algorithm executes the following steps:

1. Sample Nt=0 candidate solutions {xn,t=0} from a Dirichlet distribution with parameter α0.

2. Each candidate solution is evaluated with the objective function.

3. The bests Kt=0 candidates {xbestn,t=0} are solved and the distributions parameter α0 is updated to α1 by maxi-
mizing the likelihood of of the {xbestn,t=0}.

4. Steps 1 to 3 are repeated for a fixed number of iterations T and the best candidate solution sampled at any
iteration is returned. The values Nt and Kt are tuned for each step to maximize performance.

Simulated annealing is based on thermodynamic models of cooling metals. Briefly, the algorithm is initialized
by sampling a candidate solution x0, this candidate solution is updated by sampling a new candidate solution xt
from a proposal distribution centered around x0. This solution is either accepted and replaces the current x0 or
it is rejected and a new candidate solution is drawn using the existing value of x0. The proposed solutions xt are
accepted if they perform better against the objective than the incumbent x0, if xt > x0 it is selected with probability
p = exp [−(xt − x0)/Tt]. large values of Tt increase the probability that a new candidate solution will be accepted
allowing the algorithm to explore the solution space and move away from local minima. Tt is reduced over time to
allow the algorithm to start exploring the solution space and then eventually stabilize on a global minimum. The
simulated annealing executes the following steps:

1. Initialize a chain with value x0. Generate a new sample from the proposal distribution xt ∼ tr(N(tr−1(x0), σI))
where the transform tr from Rn to the solution space. Initialize a counter i that track the number of iterations.

2. If xt < x0 replace x0 with xt, update i = i+ 1 and repeat from step 1.

3. If xt > x0 sample µ ∼ unif(0, 1). If µ > exp (−(xt − x0)/T (i)) then replace x0 with xt update i and repeat
from step 1. Other wise save x0 and repeat from step 1. We used T (i) = T0/i as the temperature function.

4. Stop when i > max iter

These algorithms were tuned experimentally to consistently converge on a minimum solution on a test case. We
used the minimum years of life lost under the base parameter set as our test case.

22

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.20199174doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.22.20199174
http://creativecommons.org/licenses/by-nd/4.0/


To quantify the sensitivity of the solutions to deviations in the outcome of interest, we sampled solutions near the
optimal solution using a Markov chain. This algorithm is initialized at the optimal solution identified by simulated
annealing and the genetic algorithm and samples are drawn from a proposal distribution and accepted if they perform
within the desired tolerance (0.25%) of the optimal solution.

B Results for additional scenarios

In this section we present detailed results for each alternative scenario. For simplicity we do not repeat extended
figure captions, which follow those of main text Figures 2 and 3 (except for the stated scenario).
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B.1 Base model with age-only demographic groups (without essential workers)

Figure 5: Alternative scenario—Age-only groups: The optimal allocation of vaccines between age
groups at each decision time point. Each panel shows the solution for a given objective.

Figure 6: Alternative scenario—Age-only groups: The number of infections per 1,000 individuals over
time under each policy (left) and the performance of each policy relative to a a uniform allocation policy
(right).
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B.2 Strong NPI

Figure 7: Alternative scenario—Strong NPI: The optimal allocation of vaccines between age groups at
each decision time point. Each panel shows the solution for a given objective.

Figure 8: Alternative scenario—Strong NPI: The number of infections per 1,000 individuals over time
under each policy (left) and the performance of each policy relative to a a uniform allocation policy (right).
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B.3 Weak NPI

Figure 9: Alternative scenario—Weak NPI: The optimal allocation of vaccines between age groups at
each decision time point. Each panel shows the solution for a given objective.

Figure 10: Alternative scenario—Weak NPI: The number of infections per 1,000 individuals over time
under each policy (left) and the performance of each policy relative to a uniform allocation policy (right).
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B.4 Weak vaccine

Figure 11: Alternative scenario—Weak vaccine: The optimal allocation of vaccines between age groups
at each decision time point. Each panel shows the solution for a given objective.

Figure 12: Alternative scenario—Weak vaccine: The number of infections per 1,000 individuals over
time under each policy (left) and the performance of each policy relative to a uniform allocation policy
(right).
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B.5 Weak vaccine in seniors

Figure 13: Alternative scenario—Weak vaccine in seniors (ages 60+): The optimal allocation of
vaccines between age groups at each decision time point. Each panel shows the solution for a given objective.

Figure 14: Alternative scenario—Weak vaccine in seniors (ages 60+): The number of infections per
1,000 individuals over time under each policy (left) and the performance of each policy relative to a uniform
allocation policy (right).
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B.6 Lower child susceptibility

Figure 15: Alternative scenario—lower child susceptibility (ages < 20): The optimal allocation of
vaccines between age groups at each decision time point. Each panel shows the solution for a given objective.

Figure 16: Alternative scenario—lower child susceptibility (ages < 20): The number of infections
per 1,000 individuals over time under each policy (left) and the performance of each policy relative to a
uniform allocation policy (right).

29

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.20199174doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.22.20199174
http://creativecommons.org/licenses/by-nd/4.0/


B.7 Even susceptibility

Figure 17: Alternative scenario—Even susceptibility: The optimal allocation of vaccines between age
groups at each decision time point. Each panel shows the solution for a given objective.

Figure 18: Alternative scenario—Even susceptibility: The number of infections per 1,000 individuals
over time under each policy (left) and the performance of each policy relative to a uniform allocation policy
(right).
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B.8 Ramp up

Figure 19: Alternative scenario 4—Ramp up: The optimal allocation of vaccines between age groups
at each decision time point. Each panel shows the solution for a given objective.

Figure 20: Alternative scenario 4—Ramp up: The number of infections per 1,000 individuals over time
under each policy (left) and the performance of each policy relative to a a uniform allocation policy (right).
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B.9 Open schools

Figure 21: Alternative scenario—Open schools: The optimal allocation of vaccines between age groups
at each decision time point. Each panel shows the solution for a given objective.

Figure 22: Alternative scenario—Open schools: The number of infections per 1,000 individuals over
time under each policy (left) and the performance of each policy relative to a a uniform allocation policy
(right).
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C Vaccine that is partially effective at the individual level

Vaccines can provide multiple form of protections against infections. Among these protections is the ability for vaccines
to prevent individuals from becoming infected (the case considered in the main text). In addition, if vaccinated
individuals still become infected they may (1) be less infectiousness and/or (2) develop less severe symptoms. To
allow for these latter two cases we changed the model structure to track vaccinated and infected individuals. To do
this we maintained the protected and uninfected category P and added four categories: vaccinated and exposed class
Pexp, vaccinated and pre-symptomatic Ppresym, vaccinated and asymptomatic Pasym and vaccinated and symptomatic
Psym. The three vaccine efficiencies are modeled by three age specific vectors, V Esucpt, V Etrans, and V Esym, which
represent the amount the vaccine reduces the susceptibility of vaccinated individuals to infection, the reduction in
infectiousness of vaccinated individuals and the reduction in infection fatality rate of vaccinated individuals. This
new model can be described by the following system of equations:

Ṡi = −qsiθ

[∑
j∈J

∑
m∈M

τmrm,i,jSi
Im,j
Nj

+ τmrm,i,jSi
Pm,j(1− V Etrans)

Nj

]
− µiv (22)

Ṗi = −qsi(1− V Esucpt,i)θ

[∑
j∈J

∑
m∈M

τmrm,i,jPi
Im,j
Nj

+ τmrm,i,jPi
Pm,j(1− V Etrans)

Nj

]
+ µiv (23)

Ėi = qsiθ

[∑
j∈J

∑
m∈M

τmrm,i,jSi
Im,j
Nj

+ τmrm,i,jSi
Pm,j(1− V Etrans)

Nj

]
− Ei/Dexp (24)

˙Pexp,i = qsi(1− V Esucpt,i)θ

[∑
j∈J

∑
m∈M

τmrm,i,jPi
Im,j
Nj

+ τmrm,i,jPi
Pm,j(1− V Etrans)

Nj

]
− Ei/Dexp (25)

İpre,i = Ei/Dexp − Ipre,i/Dpre (26)

Ṗpre,i = Pexpi/Dexp − Ppre,i/Dpre (27)

İasym,i = σasymIpre,i/Dpre − Iasym,i/Dasym (28)

Ṗasym,i = σasymPpre,i/Dpre − Pasym,i/Dasym (29)

İsym,i = (1− σasym)Ipre,i/Dpre − Isym,i/Dsym (30)

Ṗsym,i = (1− σasym)Ppre,i/Dpre − Psym,i/Dsym (31)

Ṙi = Iasym,i/Dasym + (1− δi)Isym,i/Dsym + (1− δi (1− V Esym))Psym,i/Dsym (32)

Ḋi = δi(1− V Esym)Psym,i/Dsym + δi(1− V Esym)Isym,i/Dsym (33)

We consider three cases. For comparison with the Base model, we consider the same level of efficacy: V Esym =
V Esucpt = V Etrans = 65%. Next we consider a vaccine that is more effective at reducing the severity of illness
but less effective at preventing infection and transmission. We consider a moderate case where V Esym = 70% and
V Esucpt = V Etrans = 30%. Finally we consider a more extreme case where V Esym = 90% and V Esucpt = V Etrans =
10%. These three scenarios will be referred to as the “All 65%”, “70%-30%”, and “90%-10%” scenarios, respectively.

Iterations of main text Fig. 2 and Fig. 3 for these three alternative scenarios are shown further below. To
compare and contrast cumulative vaccination results, directly below in Fig. 23 we show for the Base model and the
three alternative scenarios the percentage of each group vaccinated after three months (left panel) and six months
(right panel). In general, results are similar between the Base model with 65% of individuals 100% protected when
vaccinated and the alternative where vaccines are 65% effective for all vaccinated. When shifts are apparent at either
three or six months, they typically involve younger essential workers or younger seniors.

Over all scenarios, we find that results after three months are sensitive in specific cases. When minimizing deaths
or infections, results are relatively insensitive. A notable exception is for infections under the extreme scenario (90%-
10%), we see a shift away from school age children to the youngest and oldest. When minimizing YLL, we found
substantial shifts between three groups: younger essential workers, younger seniors and older seniors.

After six months, the sensitivity and shifting lies mostly with younger groups (under 40) when focused on mortality
(deaths or YLL) and conversely with older groups (over 40) when focused on infections (except for the extreme case,
90%-10%).
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(a) Three months (b) Six months

Figure 23: The cumulative percent of each demographic group (x-axis) vaccinated after three or six months
under the Base model and three alternative scenarios for partial vaccine efficacy (y-axis) for each objective
(panel). Vaccine supply is sufficient to vaccinate 10% of the population each month.
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C.1 Vaccine reducing mortality and spread equally

Figure 24: Alternative scenario—Partially effective vaccine, reduces susceptibility, transmission
and infection fatality rate by 65%.

Figure 25: Alternative scenario—Partially effective vaccine, reduces susceptibility, transmission
and infection fatality rate by 65%.
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C.2 Vaccine reducing mortality more than spread (moderately)

Figure 26: Alternative scenario—Vaccine reducing mortality more than spread (moderately).

Figure 27: Alternative scenario—Vaccine reducing mortality more than spread (moderately).

36

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.20199174doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.22.20199174
http://creativecommons.org/licenses/by-nd/4.0/


C.3 Vaccine reducing mortality more than spread (strongly)

Figure 28: Alternative scenario—Vaccine reducing mortality more than spread (strongly).

Figure 29: Alternative scenario—Vaccine reducing mortality more than spread (strongly).
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