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Abstract

Background: Sepsis, a life-threatening illness caused by the body’s response to an infection, is the leading
cause of death worldwide and has become a global epidemiological burden. Early prediction of sepsis increases
the likelihood of survival for septic patients.

Methods: The 2019 DII National Data Science Challenge enabled participating teams to develop models for
early prediction of sepsis onset with de-identified electronic health records of over 100,000 unique patients. Our
task is to predict sepsis onset 4 hours before its diagnosis using basic administrative and demographics,
time-series vital, lab, nutrition as features. An LSTM-based model with event embedding and time encoding is
proposed to model time-series prediction. We utilized the attention mechanism and global max pooling
techniques to enable interpretation for the proposed deep learning model.

Results: We evaluated the performance of the proposed model on 2 use cases of sepsis onset prediction which
achieved AUC scores of 0.940 and 0.845, respectively. Our team, BuckeyeAI achieved an average AUC of
0.892 and the official rank is #2 out of 30 participants.

Conclusions: Our model outperformed collapsed models (i.e., logistic regression, random forest, and
LightGBM). The proposed LSTM-based model handles irregular time intervals by incorporating time encoding
and is interpretable thanks to the attention mechanism and global max pooling techniques.

Availability: The code for this paper is available at: https://github.com/yinchangchang/DII-Challenge.
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Background
Sepsis, a life-threatening illness caused by the body’s
response to an infection, is the leading cause of death
worldwide and has become a global epidemiological
burden. Sepsis occurs at all ages and increases mor-
tality rate. In the United States, for example, over 1.7
million adults develop sepsis and nearly 270,000 pa-
tients die as a result of sepsis each year [1]. Besides,
sepsis is the costliest among all disease states and ac-
counts for $24 billion of U.S. hospital costs in 2013
[2].

Sepsis-2 is diagnosed as the presence of proven or
suspected infection together with 2 or more systemic
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inflammatory response syndrome (SIRS) criteria [3].
Without timely and adequate treatment, sepsis can
progress to severe sepsis and septic shock, which lead
to higher mortality. Several studies suggest that early
prediction of sepsis enables early treatment and signif-
icantly improves patient outcomes [4, 5].

Electronic Health Records (EHRs) are longitudinal
electronic records of patients’ health information and
the percent of non-Federal acute care hospitals with
the adoption of at least a Basic EHR system increased
from 9.4% to 83.8% over the 7 years between 2008 and
2015 in the United States [6]. The broad adoption of
electronic health records (EHRs) provides great op-
portunities for conducting health care research. With
recent advances and success, machine learning meth-
ods have shown great potential in unlocking insights
from EHRs. Various methods have been developed for
accurate sepsis prediction [7, 8]. Faisal [9] developed a
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logistic regression model (CARS) to predict the risk of
sepsis using a patient’s firstly recorded vital signs and
blood test results, which are usually available within
a few hours of emergency admission. Horng [10] con-
structed a machine learning model using a linear sup-
port vector machine (SVM) and demonstrated the in-
cremental benefit of using free text data in addition
to vital signs and demographic data for sepsis clinical
decision support at the emergency department. Lyra
[11] used an optimized random forest to predict sepsis
for imbalanced clinical data from intensive care units
in the PhysioNet Computing in Cardiology Challenge
2019 [8]. Mao [12] validated a machine learning al-
gorithm with gradient boosting trees, InSight, which
used only 6 vital signs for the prediction of sepsis, se-
vere sepsis, and septic shock and showed that InSight
outperformed existing sepsis scoring systems. Using
65 features from a combination of EHR and high-
frequency physiological data, Nemati [13] developed
and validated an interpretable machine learning model
based on modified Weibull-Cox proportional hazards
algorithm for making an accurate and interpretable
prediction of sepsis.

Recently, deep learning methods have achieved
promising results and shown unprecedented potential
in many areas [14] such as computer vision [15], speech
recognition [16], and natural language processing [17].
Deep learning models automatically learn the data
representation with improved performance and do not
require conventional feature extraction steps. Recur-
rent neural networks (RNNs) and convolutional neu-
ral networks (CNNs) are commonly used network ar-
chitectures in modeling multi-variate series prediction
[18, 19, 20]. van [21] built a convolutional neural net-
work model to classify septic and non-septic patients
and the CNN-based model outperformed a multi-layer
perceptron model for various data collection frequen-
cies. Kam [22] proposed a sepsis detection model with
long short term memory (LSTM) and their model
showed better performance than InSight and supe-
rior capability for sequential patterns. Fagerström [23]
developed an improved algorithm, LiSep LSTM, and
demonstrated the benefit of using an LSTM network
as opposed to the Cox proportional hazards model for
early prediction of septic shock. Lauritsen [24] pro-
posed a deep learning model based on a combination
of a convolutional neural network and a long short-
term memory network (CNN-LSTM) that could learn
characteristics of the key factors and interactions from
the raw event sequence data and outperformed base-
line models.

Common signs and symptoms of sepsis, such as fever,
chills, rapid respiratory, and high heart rate, are the

same as in other conditions, making sepsis hard to di-
agnosis in its early stages. The DII (Discover, Innova-
tive, Impact) challenge is a national data science chal-
lenge established to advance human health through
machine learning. The goal of the 2019 DII challenge
is the early prediction of sepsis using a patient’s demo-
graphic and physiological data. The 2019 DII challenge
provided an opportunity for researchers to develop ma-
chine learning and deep learning methods to compu-
tationally detect sepsis 4 hours ahead before onset.

Our team, BuckeyeAI, participated in the 2019 DII
challenge and ranked #2 out of 30 teams on the early
prediction of sepsis onset task with an average AUC
score of 0.892. In this paper, we presented our meth-
ods, results, and analyses. To summarize, the contri-
butions are:
• We present benchmark results of the sepsis onset

prediction task. We show that our model outper-
forms baseline machine learning models.

• We propose an LSTM-based model for sepsis on-
set prediction which handles irregular time inter-
vals with time encodings.

• We leverage the attention mechanism and global
max pooling techniques to help interpret our
model.

Method
Dataset description
Definition of sepsis
The goal of 2019 DII challenge is early prediction of
sepsis with demographic and physiological data pro-
vided. In this challenge, definition of sepsis2, presence
of proven or suspected infection together with 2 or
more SIRS criteria, is used as the gold standard. The
SIRS criteria are defined as:
• heart rate > 90 beats/min
• body temperature > 38◦C or < 36◦C
• respiratory rate > 20 breaths/min or PaCO2 < 32

mm Hg
• white cell count > 12 × 109 cells/L or < 4 × 109

cells/L

Cohort preparation and statistics
The challenge data are extracted from the Cerner
Health Facts database. Cerner Health Facts is a
database that comprises de-identified EHR data from
over 600 participating Cerner client hospitals and
clinics in the United States and represents over
106 million unique patients. With this longitudi-
nal, relational database—reflecting data from 2000-
2016—researchers can analyze detailed sets of de-
identified clinical data at the patient level. Types of
data available include demographics, encounters, di-
agnoses, procedures, lab results, medication orders,
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medication administration, vital signs, microbiology,
surgical cases, other clinical observations, and health
systems attributes. Sepsis2 definition is used to define
the ground truth. Patients who are < 18 years old
or do not have enough observation data are excluded.
The whole data preparation pipeline diagram is shown
in Figure 1. The label statistics and characteristics of
the final cohort are provided in Table 1.

Figure 1 Inclusion and exclusion diagram of DII challenge
data preparation pipeline. After filtering and correction, the
final cohort has a sepsis prevalence of 29.0%.

Predictive tasks and evaluation metric
In this challenge, we aim to predict sepsis 4 hours be-
fore onset for hospitalized adult patients. There are 2
use cases as demonstrated in Figure 2.

Case 1 In this case, patients are sampled from septic
patients. By randomly splitting patient records into
2 segments at a roughly middle point, segment close

Table 1 Label statistics and characteristics of the final cohort.

Sepsis2 patient Sepsis2 control
Total 52,802 (29.5%) 126,041 (70.5%)

Gender
Female 25,936 (49.1%) 65,523 (52.0%)
Male 26,866 (50.9%) 60,518 (48.0%)

Race

African American 11,084 (21.0%) 20,556 (16.3%)
Asian 1,085 (2.1%) 1,627 (1.3%)
Caucasian 35,059 (66.4%) 95,657 (75.9%)
Others/unknown 5,574 (10.5%) 8,201 (6.5%)

Age

18-20 1,602 (3.0%) 1,776 (1.4%)
20-40 8,100 (15.3%) 15,288 (12.1%)
40-60 15,654 (29.6%) 34,295 (27.2%)
60-80 20,241 (38.3%) 51,914 (41.2%)
80-100 7,205 (13.6%) 22,768 (18.1%)

to sepsis onset ( = 4 hours) is labeled as 1, another
segment ( > 4 hours before sepsis onset) is labeled 0.
Given patient records either from Tadmission to Tmiddle

or from Tmiddle to Tonset − 4, our model is required to
distinguish this 2 kinds of records.

Case 2 In this case, case and control segments are
from different patients who have sepsis onset in the
next 4 hours, as well as those who do not have sepsis.
Given patient records from Tadmission to Tonset − 4,
we are going to predict whether sepsis occurs in the
following 4 hours.

Figure 2 Two use cases of sepsis onset prediction 4 hours
before it occurs.

To evaluate the performance and discrimination of
binary classifier, for each use case, the area under the
receiver operating characteristic curve (AUC) is used
as the evaluation metric. The arithmetic average of
AUC scores of 2 use cases is used for final performance
comparison.

Neural network architecture
The proposed neural network architecture is shown in
3. This model is inspired by [25]. Although we focus on
the early prediction of sepsis onset in this challenge,
our proposed model is general and can be applied to
other multi-variate time-series prediction tasks, such
as mortality prediction for septic patients.
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Figure 3 Architecture of proposed LSTM-based model. The concatenation of the medical event embedding vectors (v1, v2, · · · , vn)
and the corresponding time encoding vectors (e1, e2, · · · , en) are inputs to the model. For each input event, the Bi-LSTM model
generates 2 output vectors. All the output vectors are concatenated and then a global max pooling operation is followed to produce
the patient representation vector. Finally, a fully connected layer and the sigmoid function are used to predict the probability of
sepsis onset in the next 4 hours.

Event embeddings

For each temporal feature, we sort the values from low
to high and use the order to replace the original values.
Then, we divide the orders into 10 groups (i.e., 0.0-0.1,
0.1-0.2, · · · , 0.9-1.0) and then each event is embedded
into a 512-d vector.

Time encodings

When modeling time-series EHR data, most existing
LSTM-based models only consider the relative order
of events. However, these methods typically ignore the
irregular time intervals between neighboring events.
Similar to position encodings in Transformer [26], we
infuse time information using ”time encodings”. Time
encodings are sent to LSTM together with value em-
beddings. We compute each event’s relative time to
the criterion operation date and the time interval rel-
ative to the last event. Then, we use sine and cosine
functions of the different time intervals to represent
the time encoding for the tth event:

pt,2j = sin((dateo − datet)/51200j/d)

pt,2j+1 = cos((dateo − datet)/51200j/d)

0 ≤ j < d

(1)

where datao denotes the criterion operation date,
datat denotes the tth event’s date, and pt ∈ R2d de-
notes the time encoding vector, and j is the dimension
of EHRs event embeddings. Then both the event em-
beddings and time encodings are input to LSTM.

To better align patient records at their last recorded
medical event, the time of each event is mapped from
[0, Tlastevent] to [−Tlastevent, 0].

LSTM and attention mechanism
RNNs are popular and suitable for sequential EHR
data modeling. Given medical event embedding and
time encoding vectors, we build our model based on
LSTM [27] for its ability to recall long term informa-
tion. The LSTM model can be described as follows:

it = σ(Wiêt +Witp̂t + Uiht−1 + bi)

ft = σ(Wf êt +Wftp̂t + Ufht−1 + bf )

ot = σ(Woêt +Wotp̂t + Uoht−1 + bo)

Ct = σ(Wceêt +Wctp̂t + Ucht−1 + bc) ∗ it + Ct−1 ∗ ft
ht = ot ∗ tanh(Ct)

(2)

where σ is the sigmoid function, t denotes the tth step
of LSTM, and Ct is the corresponding cell state, and ht

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.21.20198895doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.21.20198895
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zhang et al. Page 5 of 9

is the output vector. êt is the input event embedding,
p̂t is the input time enconding. Wi,Wf ,Wo,Wce ∈
Rk×d, Wit,Wft,Wot,Wct ∈ Rk×2d, Ui, Uf , Uo, Uc ∈
Rk×d, bi, bf , bo, bc ∈ Rk are learnable parameters. At-
tention mechanism is used to automatically identify
influential clinical features.

Global max pooling
RNN-based models are sometimes inefficient due to
their long-term dependency. When the input sequence
is too long, it is easy for the models to forget the earlier
data. Therefore, we adopt a global pooling operation to
shorten the distance between the earlier inputs and the
final outputs. As is shown in Figure 3, all the outputs of
the LSTM are concatenated, and then a global pooling
operation is followed. The output og is fed through
the fully connected layer to produce the clinical risk of
patient i, which is defined as:

ri = Wsog + bs

yi = σ(ri)
(3)

where Ws ∈ Rk and bs ∈ R are the learnable param-
eters, yi denotes the predicted probability for sepsis
onset. Because of the shortened distance between the
inputs and the outputs, the pooling operation makes it
more efficient to propagate the gradients. Besides, the
global pooling operation is useful to compute the con-
tribution rates of the outputs and their corresponding
input medical events.

Objective function
For binary classification, the objective function is de-
fined as the binary cross entropy loss between ground
truth y∗ and predicted probability y:

L = −(y∗log(y) + (1− y∗)log(1− y)) (4)

Interpretability
Interpretability is very important for machine learn-
ing models of clinical applications. The global pooling
operation leveraged in our architecture can associate
the contribution of each input medical event to the fi-
nal clinical outcome, paving the way for interpretable
clinical risk predictions.

In Figure 3, given the output vectors, the global max
pooling operation is followed and produced the final
patient feature vector hc, which is used to predict risk
of sepsis onset. We can track the output vectors which
constitutes specific element of hc. After the fully con-
nected layer, we can calculate every dimension’s con-
tribution rate. For a case patient, the contribution rate

of output vector ht for the tth input event is is calcu-
lated as:

ct =
ht∑n

j=1max(hj , 0)
(5)

In order to illustrate the interpretability of our model
clearly, we display 2 input events and 4 corresponding
6-dimensional output vectors (h1, h2, h3, h4) in Figure
4. Given patient feature vector (hc) and fully con-
nected parameters (Ws, bs), the output risk is com-
puted (ri = Wshc + bs). The first dimension’s contri-
bution risk is 0.21 and the contribution rate is 9.1%,
which comes from the fourth output vector h4. Simi-
larly, the fifth dimension’s contribution rate also comes
from h4. Thus, the contribution rate of the fifth vec-
tor h4 is computed by summing the two contribution
rates. Then, we compute the contribution rate of the
input event e2 by summing the contribution rates of
h3 and h4, c2 = 36.9%. For feature j in event i, we can
compute its contribution rate with attention weight as:

cij = ci ∗ aj (6)

Results and Discussion
Experiment settings
Baselines
We implemented and evaluated 4 early warning scores
and 3 traditional machine learning methods as base-
lines. The 4 early warning scores included Modified
Early Warning Score (MEWS) [28], National Early
Warning Score (NEWS) [29], Systemic Inflammatory
Response Syndrome (SIRS) [30], and quick Sequential
(Sepsis-Related) Organ Failure Assessment (qSOFA)
[4]. For traditional machine learning methods, we con-
sidered logistic regression, random forest, and gradi-
ent boosting trees. Because these standard machine
learning methods cannot work directly with multi-
variate time-series sequences, the element-wise aggre-
gation (i.e. count, mean value, minimum value, maxi-
mum value, and standard deviation of events) of tem-
poral features are used as model inputs.

Implementation details
The 4 early warning scores are calculated based on
the worst value for each physiological variable within
the past 24 hours before Tonset − 4 (i.e., the last ob-
served time point). Logistic regression and random for-
est are implemented with scikit-learn toolkit [31]. We
implement gradient boosting trees using LightGBM
[32]. For the proposed LSTM-based model, we use Py-
Torch [33] and the number of timesteps for LSTM is
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Figure 4 Interpretability of the proposed model with global max pooling: a toy example. Here we display 2 medical events (e1, e2)
and their correpsonding output vectors (h1, h2, h3, h4). After a global max pooling layer and a fully connected layer, the model
predicts the risk of sepsis onset in the next 4 hours for an individual patient. Then each output vector’s contribution is calculated by
summing the corresponding dimensions’ contribution risks. Finally, the contribution of each medical event is calculated according to
Eq. 5.

set to 100. For evaluation, 80% of the data are used
for training, and 10% for validation, 10% for testing.
For binary classification tasks, AUC score is used as
the evaluation metric. The competition was hosted on
Amazon Web Services (AWS) and experiments were
conducted on a limited secure server to protect data
privacy. GPUs are available to accelerate computing.

Results

In this section, we report the performance of our pro-
posed model on the sepsis prediction task. The results
are shown in Table 2. To validate the contribution
of event embeddings, time encodings, and global max
pooling, we adopt ablation study and the results are
shown in Table 3.

Table 2 AUC scores of sepsis onset prediction task on the
training dataset.

Method Case1 Case2 Average
MEWS 0.54 0.72 0.63
NEWS 0.52 0.72 0.62
SIRS 0.56 0.69 0.62
qSOFA 0.53 0.65 0.59
Logistic regression 0.89 0.79 0.84
Random forest 0.90 0.81 0.85
LightGBM 0.91 0.81 0.86
Proposed model 0.94 0.84 0.89

Classification results
Table 2 summarizes the performance of various mod-
els for sepsis onset prediction on the training set. From
Table 2, our model outperforms baseline models. The
main reasons why our model works better are two-fold:
(1) Our model can automatically learn better patient
representations as the network grows deeper and yield
more accurate predictions with sufficient data. (2) Our
LSTM-based model can better capture temporal infor-
mation, while logistic regression, random forest, and
LightGBM simply aggregate time-series features and
hence suffer from information loss.

We found that machine learning-based algorithms
outperformed early warning scores on both 2 cases. All
3 machine learning methods achieved similar perfor-
mance on both Case 1 and Case 2. MEWS and NEWS
were shown to perform better than SIRS and qSOFA
on Case 2. However, the result suggested little discrim-
ination of 4 scores on Case 1 with low AUC scores.

On the private test dataset, our proposed model
achieved AUC scores of 0.940 and 0.845 for 2 use cases
respectively. The official score is (0.940 + 0.845)/2 =
0.892.

Ablation study
In order to measure the effectiveness of different com-
ponents (i.e. event embeddings, time encodings, and
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global max pooling), we adopt an ablation study to
gain a better understanding of the proposed model
by removing one component each time. The results
of ablation study on Case 1 sepsis onset prediction are
reported in Table 3. Based on the results from Ta-
ble 3, the most influential component is event embed-
dings. By removing event embeddings, AUC score de-
creases 0.11. By handling irregular time intervals using
time encoding, the model performance increases from
0.89 to 0.94. Besides, incorporating global max pooling
causes an AUC score increase of 0.03.

Table 3 Ablation study of different components (i.e. event
embeddings, time encodings, and global max pooling).

Model AUC
Proposed model w/o event embeddings 0.83
Proposed model w/o time encodings 0.89
Proposed model w/o global max pooling 0.91
Proposed model 0.94

Interpretability
Generally, linear models and tree-based models can
be easily interpreted because of their intuitive way of
predicting output from inputs, but these models are
quite simple. Although deep learning models can usu-
ally yield more accurate predictions, they usually oper-
ate as black boxes and make it unclear why the models
make specific predictions. However, due to the atten-
tion mechanism and global max pooling operation, our
deep learning model is interpretable. At patient level,
we are able to calculate the contribution rate of each
medical event for sepsis risk according to Eq. 5. Med-
ical events with higher contribution rates contribute
the most to the clinical outcome (i.e. sepsis onset in
the next 4 hours).

While patient-level interpretation reveals medical
events that are most influential to sepsis onset for an
individual patient, population-level analysis is needed
to determine the most influential medical events as
well as clinical features over the entire EHR dataset.
Therefore, to better understand the model’s behavior,
we try to interpret our model at population-level in
two ways (i.e., medical event importance, influential
clinical features).

Medical event importance
As we can calculate the contribution rate of each medi-
cal event of each patient, we can compute each medical
event’s importance on population level. For each med-
ical event, event importance is calculated by averaging
it’s contribution rates for all patients, whose EHR data
contain this event.

Figure 5 shows the medical event importance (aver-
age contribution rate) over time for all patients. We

Figure 5 Average contribution rate of medical events over
time for all patients.

can observe this plot shows an overall upward trend.
This observation meets our expectation, the medical
events are closer to sepsis onset are more important
for our model to make predictions.

Clinical feature importance
Apart from medical event importance, we also want
to know which clinical features are most important
for sepsis onset prediction. Similar to medical event
importance, for each clinical feature, we compute its
importance over all medical events on the entire popu-
lation according to Eq. 6. The top influential features
found by the deep learning model are shown in Figure
6. The clinical features with the highest contribution
to sepsis prediction are easily attainable clinical values.
Thus our model suggests the development of sepsis can
be predicted easily based upon items within the EHR.
Interestingly, lab values traditionally associated with
sepsis prediction (for example, white blood cell count
and renal function) were not predictive in this model.

Conclusion
Our team, BuckeyeAI, participated in the 2019 DII
Challenge and ranked #2 out of 30 teams on the early
prediction of sepsis onset task. In this paper, we pre-
sented our solution to sepsis onset prediction 4 hours
before it occurs. For sepsis onset prediction, our pro-
posed deep model achieved an AUC score of 0.892 and
outperformed several baseline machine learning mod-
els. By incorporating event embeddings, time encod-
ings, and global max pooling, our model yields more
accurate predictions. Time encodings help handle ir-
regular time intervals. The global pooling operation
enables the model to associate the contribution of each
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Figure 6 Contribution risks of top influential features found by the deep learning model. Blue-colored tick label on x-axis is the
corresponding normal range of each feature.

medical event to the final clinical outcome, paving the
way for interpretable clinical risk predictions.

Although we mainly focus on sepsis onset predic-
tion in this challenge, our model is general and can
be applied to other multi-variate time-series prediction
problems. In addition to the superior performance, our
proposed model is interpretable from an individual pa-
tient to the whole population.
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