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a Departamento de Matemáticas, División de Posgrado. Universidad de Sonora, 83000, Hermosillo, México

Abstract

Human movement is a key factor in infectious diseases spread such as dengue. Here, we explore a

mathematical modeling approach based on a system of ordinary differential equations to study the

effect of human movement on characteristics of dengue dynamics such as the existence of endemic

equilibria, and the start, duration, and amplitude of the outbreak. The model considers that every

day is divided into two periods: high-activity and low-activity. Periodic human movement between

patches occurs in discrete times. Based on numerical simulations, we show unexpected scenarios

such as the disease extinction in regions where the local basic reproductive number is greater than

1. In the same way, we obtain scenarios where outbreaks appear despite the fact that the local

basic reproductive numbers in these regions are less than 1 and the outbreak size depends on the

length of high-activity and low-activity periods.
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1. Introduction1

Dengue is an endemic disease in many countries around the world, mainly throughout the tropics2

[1, 2]. It is estimated that there are a total of 3.97 billion people at risk of dengue transmission [3].3

Risk levels depend strongly on rainfall, temperature and the degree of urbanization [1]. Human4

movement is also a key component of the transmission dynamics of many vector-borne diseases5

[4, 5]. For example, dengue infections has been related to travel to endemic places such as the6

Caribbean, South America, South-Central Asia, and Southeast Asia [6].7

In urban areas, human movement is frequent and extensive but often composed of commuting8

patterns between homes and places of employment, education or commerce [7]. At this scale,9

commuting people occurs day-to-day, dominated by daily activities. In a study conducted at two10

factories in Bandung [8], authors suggest that some people may have acquired the dengue virus at11

work and not at home. Therefore, local human movement plays an important role in the temporal12

and spatial spread of the dengue disease.13

From the mathematical point of view, the role of the human movement on vector-borne diseases14
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from various perspectives has been studied. In particular, ordinary differential equations have1

been used to model the human mobility between two or more locations [9]. One approach is2

the continuous moving of the human population between places [10–15]. Other proposal is the3

residence time, which represents the proportion of time that human budget their residence across4

regions [16–19]. However, other approach is to explicitly consider the daily movement of people on5

the dynamics. This approach has been studied in [20], where the authors formulate a star-network6

of connections between a central city and peripheral villages. Also, they suppose the commute7

population is the same every day and the movement period to the central city is half a day.8

Despite there are studies about the human movement from different approaches, it has been poorly9

understood.10

In this work, our objective is to study the effect of the daily periodic movement on dengue11

dynamics such as the existence of endemic equilibria, and the start, duration and, amplitude of the12

outbreak. We formulate a two-patch model based on a system of ordinary differential equations13

and incorporate human daily movement, where movement takes place at periodic discrete times14

every day as in [20]. Every day is divided into two periods: low-activity and high-activity, which15

could represent night and day, respectively. We consider that the low-activity period represents16

the time interval where humans stay at their residence patch. The movement takes place during17

the high-activity period in which people commute to school, work or other daily activities; also18

a high-activity period can be related to extraordinary events where large numbers of humans19

interact. To study this model, we first analyze the patches separately without considering a20

piecewise definition in time. Then, based on numerical simulations, we study the complete model21

to observe some effects of the human periodic movement on the dynamics.22

This work is divided in the following sections. The formulation of the model and the analysis23

of uncoupled patches is given in Section 2. Then, in Section 3, we study the effect of daily human24

movement on some characteristics of model dynamics based on numerical studies under some25

scenarios. Finally, conclusions and discussions about our results are presented in Section 4.26

2. Formulation of model27

The classic vector-host mathematical model is given by the following system28

Ṡ(t) = µhN −
βS(t)Q(t)

N
− µhS(t),

İ(t) =
βS(t)Q(t)

N
− (δ + µh)I(t),

Ṙ(t) = δI(t)− µhR,

Ṗ (t) = Λ− βvQ(t)I(t)

N
− µvP (t),

Q̇(t) =
βvQ(t)I(t)

N
− µvQ(t),

(1)

2
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where S, I and R represent the susceptible, infected and recovered population, respectively, and1

P y Q the susceptible and infected mosquito population, respectively.2

We include the daily periodic movement between two patches in model (1) as follows. The3

interval [tk, tk+1) is the time period corresponding to the kth day and Tl ∈ (0, 1) the fraction of the4

day of low-activity such that for interval [tk, tk +Tl) we have in each patch only resident population5

composed of Ni individuals (i = 1, 2). Thus, the time interval [tk, tk +Tl) is named the low-activity6

period. For a fixed day k, αi represents the proportion of the population from patch i that moves7

every day to another patch j at time tk + Tl and returns to patch i at time tk+1. Thus, human8

movement takes place on the time interval [tk + Tl, tk+1) which is named the high-activity period.9

For the low-activity period, the susceptible, infected and recovered human population from10

patch i are represented by Sl
i, I

l
i and Rl

i, respectively, and the susceptible. The susceptible and11

infected vector population from patch i are represented by Pi and Qi, respectively. On the other12

hand, for high-activity period, human population from patch i is divided into two subpopulations.13

The first subpopulation is composed of people from patch i who do not move to another patch, that14

is, (1−αi)Ni. This subpopulation is subdivided into susceptible (Sh
ii), infected (Ihii) and recovered15

(Rh
ii). The second subpopulation is composed of residents from patch j who move to patch i, αjNj .16

This subpopulation is subdivided into susceptible (Sh
ji), infected (Ihji) and recovered (Rh

ji). Since17

we assume that the vector population does not move between patches, susceptible and infected18

vectors remain represented by Pi and Qi, respectively. Thus, the following equations represent the19

dynamics of the populations for the low-activity period [tk, tk + Tl):20

Ṡl
i(t) = µhNil −

βiS
l
i(t)Qi(t)

Nil
− µhS

l
i(t),

İ li(t) =
βiS

l
i(t)Qi(t)

Nil
− (δi + µh)I li(t),

Ṙl
i(t) = δiI

l
i(t)− µhR

l
i(t),

Ṗi(t) = Λvi −
βviPi(t)I

l
i(t)

Nil
− µviPi(t),

Q̇i(t) =
βviPi(t)I

l
i(t)

Nil
− µviQi(t),

(2)

where Nil := Ni and i = 1, 2.21

3
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For the high-activity period [tk + Tl, tk+1), the set of equations become:1

Ṡh
ii(t) = (1− αi)µhNil −

βiS
h
ii(t)Qii(t)

Nih
− µhS

h
ii(t),

˙Ihii(t) =
βiS

h
ii(t)Qii(t)

Nih
− (δi + µh)Ihii(t),

Ṙh
ii(t) = δiI

h
ii(t)− µhR

h
ii(t),

Ṡh
ji(t) = αjµhNjl −

βiS
h
ji(t)Qii(t)

Nih
− µhS

h
ji(t),

˙Ihji(t) =
βiS

h
ji(t)Qii(t)

Nih
− (δi + µh)Ihji(t),

Ṙh
ji(t) = δiI

h
ji(t)− µhR

h
ji(t),

Ṗi(t) = Λvi −
βviPi(t)(I

h
ii(t) + Ihji(t))

Nih
− µviPi(t),

Q̇i(t) =
βviPi(t)(I

h
ii(t) + Ihji(t))

Nih
− µviQi(t),

(3)

where Nih := (1− αi)Ni + αjNj , and i, j = 1, 2, i 6= j. All model parameters are defined in Table2

1.3

We observe that model (2)-(3) can be reduced to uncoupled patches in the form of system (2).4

This is done by taking T l = 1, that is, having only low-activity periods.5

Parameter Meaning

αi Proportion of humans from patch i who move to patch j
at time tk + Tla.

Ni Resident humans of patch i.
1/µh Average life time of humans.
1/µvi Average life time of mosquitoes in patch i.
βi Transmission rate from mosquito to human in patch i.
βvi Transmission rate from human to mosquito in patch i.
1/δi Average recovery time of humans in patch i.
Λvi Mosquito recruitment rate in patch i.

Table 1: Parameter definition of model (2)-(3).

In order to study our coupled model (2)-(3), we first make an analysis for each system separately6

without considering a piecewise definition in time. Then, we focus on understanding the dynamics7

of the daily human movement.8

2.1. Uncoupled case9

System (2) is positively invariant in Ωi = {(Sl
i, I

l
i , R

l
i, Pi, Qi) ∈ R5 : Sl

i ≥ 0, I li ≥ 0, Rl
i ≥10

0, Sl
i + I li +Rl

i = Nil, Pi ≥ 0, Qi ≥ 0, Pi +Qi ≤ Λvi
/µvi
} [21]. Then, the disease-free equilibrium11

of system (2) is given by (S̄i, Īi, R̄i, P̄i, Q̄i) = (Nil, 0, 0,Λvi
/µvi

, 0) and, using to the next generation12

4
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matrix approach as in [22], the basic reproductive number (Ril) of uncoupled system is given by1

Ril :=
βiβviΛvi

µ2
vi

(δi + µh)Nil
. (4)

Previous work [21] has shown that ifRil > 1, then there exists an endemic equilibrium (S̃i, Ĩi, R̃i, P̃i, Q̃i),2

where3

S̃i =
µhN

2
il

βiQ̃i + µhNil

, Ĩi =
βiµhNilQ̃i

(βiQ̄i + µhNil)(δi + µh)
,

R̃i = Nil − S̃i − Ĩi, P̃i =
Λvi(βiQ̃i + µhNil)(δi + µh)

βviβiµhQ̃i + µvi
(βiQ̃i + µhNil)(δi + µh)

,

Q̃i =
µhµvi

Nil(δi + µh)[Ril − 1]

βi[βviµh + µvi(δi + µh)]
.

(5)

In addition, authors in [21, 23] also have shown that the disease-free equilibrium is globally4

asymptotically stable (GAS) when Ril < 1, and the endemic equilibrium is GAS when Ril > 1.5

For the high-activity period (3), we define Si∗ := Sh
ii + Sh

ji, Ii∗ := Ihii + Ihji, Ri∗ := Rh
ii + Rh

ji,6

Nih := Si∗ + Ii∗ +Ri∗ = (1− αi)Nil + αjNjl. Thus, the dynamics of uncoupled system (3) can be7

written as:8

Ṡi∗(t) = µhNih −
βiSi∗(t)Qi(t)

Nih
− µhSi∗(t),

İi∗(t) =
βiSi∗(t)Qi(t)

Nih
− (δi + µh)Ii∗(t),

İi∗(t) = δiIi∗(t)− µhRi∗(t),

Ṗi(t) = Λvi −
βviPi(t)Ii∗(t)

Nih
− µvi

Pi(t),

Q̇i(t) =
βviPi(t)Ii∗(t)

Nih
− µviQi(t),

(6)

for each i = 1, 2.9

Since the structure of system (6) is the same as (2), results concerning the stability of the10

equilibrium points are analogous to system (2). In particular, the disease-free and endemic11

equilibrium points are given by (Nil, 0, 0,Λvi
/µvi

, 0) and (S̃i∗, Ĩi∗, R̃i∗, P̃i∗, Q̃i∗)), respectively, where12

S̃i∗ =
µhN

2
ih

βiQ̃i∗ + µhNih

, Ĩi∗ =
βiµhNihQ̃i∗

(βiQ̄i + µhNih)(δi + µh)
,

R̃i∗ = Nih − S̃i∗ − Ĩi∗ P̃i∗ =
Λvi

(βiQ̃i∗ + µhNih)(δi + µh)

βviβiµhQ̃i∗ + µvi
(βiQ̃i∗ + µhNih)(δi + µh)

,

Q̃i∗ =
µhµviNih(δi + µh)[Rih − 1]

βi[βvi
µh + µvi

(δi + µh)]
.

(7)

In addition, the basic reproductive number (Rih) for uncoupled system (6) is given by13

Rih =
βiβvi

Λvi

µ2
vi

(δi + µh)Nih
. (8)

5
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We observe that each Ril and Rih does not depend on human movement, in this sense,1

the theoretical results on the existence and stability of the equilibrium points are given for the2

uncoupled system. However, when we the patches are coupled, these basic reproductive numbers3

loses meaning and only provide information when the patches are uncoupled. In this case, a global4

R0 is not well defined so that we want to give an understanding of what occurs in each patch due5

to the movement depending on the local basic reproductive numbers.6

3. Effect of daily human movement on the endemic levels and the outbreaks7

In this section, we focus on understanding some effects due to daily human movement on the8

existence of the endemic equilibrium points and on the outbreaks for coupled model (2)-(3). For9

this, we proceed to study such effects in three stages. In the first stage, we characterize the10

local basic reproductive number and the endemic equilibrium values of each patch as a function11

of the total population size, in order to see how changes in the population affect both, the R012

and equilibrium point values. In the second stage, we show the changes that the local basic13

reproductive numbers in each patch may experiment after migration. In the last stage, based on14

numerical studies, we evidence the effects of daily human movement on some characteristics of the15

dynamics such as the existence and disappearance of endemic equilibria, duration, size and peak16

of the outbreak.17

3.1. Dependence on the basic reproductive number and the endemic equilibria as a function of18

population size19

In general, the basic reproductive number (R0) and the endemic equilibrium (I∗) of model20

(2)-(3) for a disconnected patch with human population N can be written as21

R0 =
ββvΛv

µ2
v(δ + µh)N

(9)

and22

I∗ =
βµhNQ

∗

(βQ∗ + µhN)(δ + µh)
, where Q∗ =

µhµvN(δ + µh)[R0 − 1]

β[βvµh + µv(δ + µh)]
. (10)

From (9) and (10), we have that R0 = 1 at a point N = ββvΛv/[µ
2
v(δ + µh)], and I∗ reaches23

its maximum at point N̂ given by24

N̂ =
−2µ2

vβΛva+ 2µvβΛv

√
µ2
va

2 + µhµvβva

2µhµ3
va

, (11)

where a = δ+µh. From Figure 1, we observe that a patch with N smaller (larger) than N leads to25

have R0 > 1 (R0 < 1). The basic reproductive number is a measure that gives conditions for the26

existence of endemic equilibria and disease propagation in each patch separately. Thus, R0 < 127

means that there is no favorable conditions for the disease spread, whereas R0 > 1 implies that the28

6
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conditions are favorable for an outbreak to occur in each disconnected patch. In addition, while1

N < N̂ , the value of the endemic equilibrium I∗ increases as N grows up, and decreases when2

N > N̂ .3

0
2

4
6

8
1
0

N

0 45000 80000N
^

N

I*

R0

R0=1

Figure 1: R0 and I∗ versus N . Parameter values: Λv = 1200, β = 0.25, βv = 0.15, µh = 0.000036, µv = 0.0714,
and δ = 0.1428.

3.2. Changes in R0 after one migration process4

The findings in the previous subsection can be applied to see how the disease propagation5

conditions change in each patch when there is human migration between them. For this, we define6

A as the net population that move between patches, that is, A := |α1N1l − α2N2l|. Table 2 shows7

a list of possible outcomes of the basic reproductive numbers after the interchange of populations8

from one patch to another. The results of Table 2 are based on the value of N which is the9

threshold population that generates or not endemic equilibria. The first column of the table shows10

the value of the basic reproductive number in each patch before migration is considered (R1l and11

R2l). The second column shows the possible outcomes after a proportion of humans from patch 112

moves to patch 2, and vice versa (R1h and R2h). The third column displays the conditions that the13

populations must satisfy in order for every scenario to occur. The scenarios are used to understand14

the daily human movement between patches.15

7
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Scenarios before Scenarios after Conditions
migration migration

R1l < 1 and R2l > 1

R1h < 1 and R2h < 1
N1h = N1l −A and N2h = N2l +A

where N −N2l < A < N1l −N

R1h < 1 and R2h > 1

N1h = N1l −A and N2h = N2l +A
where A < min

{
N1l −N,N −N2l

}
or

N1h = N1l +A and N2h = N2l −A

R1h > 1 and R2h < 1
N1h = N1l −A and N2h = N2l +A

where A > max
{
N1l −N,N −N2l

}
R1h > 1 and R2h > 1

N1h = N1l −A and N2h = N2l +A
where N1l −N < A < N −N2l

R1l < 1 and R2l < 1

R1h < 1 and R2h < 1

N1h = N1l −A and N2h = N2l +A
where A < N1l −N

or
N1h = N1l +A and N2h = N2l −A

where A < N2l −N

R1h < 1 and R2h > 1
N1h = N1l +A and N2h = N2l −A

where A > N2l −N

R1h > 1 and R2h < 1
N1h = N1l −A and N2h = N2l +A

where A > N1l −N

R1l > 1 and R2l > 1

R1h > 1 and R2h > 1

N1h = N1l +A and N2h = N2l −A
where A < N −N1l

or
N1h = N1l −A and N2h = N2l +A

where A < N −N2l

R1h > 1 and R2h < 1
N1h = N1l −A and N2h = N2l +A

where A > N −N2l

R1h < 1 and R2h > 1
N1h = N1l +A and N2h = N2l −A

where A > N −N1l

Table 2: Possible scenarios for R1h and R2h after population exchange.

In order to show how the displacement of people from one patch to another may influence1

the disease propagation conditions, we examine the scenario R1l < 1 and R2l > 1, i.e, during the2

low-activity period, in patch 1, the disease propagation conditions are not favorable, and in patch 2,3

the conditions are favorable. To this, we consider the following resident populations: N1l = 900004

and N2l = 45000 for patch 1 and 2, respectively, and parameter values given in Table 3. Based5

on the parameter values, we obtain that R1l = 0.68 and R2l = 1.37. Figure 2 shows under which6

conditions R1h and R2h are smaller or greater than 1, where the latter results in the existence of7

endemic equilibria according to α1 and α2 values. Note that Figure 2 shows only the first three8

outcomes for the case R1l < 1 and R2l > 1 given by Table 2. Observe that there are no values of9

α1 and α2 where both R1h and R2h are simultaneously greater than 1.10

8
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Parameter Value

µh 0.000036
µv1, µv2 0.0714
β1, β2 0.25
βv1, βv2 0.15
δ1, δ2 0.1428
Λv1, Λv2 1200

Table 3: Parameter values for the different scenarios. All parameter values are taken from [24]. Values for Λv1 and
Λv2 are given in this study.

α1

α
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
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0
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0
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0
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1
.0

A
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[1.2,2)

(1,1.2)
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α
2

0.0 0.2 0.4 0.6 0.8 1.0

0
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0
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0
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0
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0
.8

1
.0

B
≥ 2

[1.2,2)

(1,1.2)

[0.8,1)

< 0.8

R
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=
1

Figure 2: Value regions for R1h and R2h according to the α1 and α2 values for the scenario R1l > 1 and R2l < 1
in (A) patch 1 and (B) patch 2. The gray thick lines denotes the region where R1h = 1 (A) and R2h = 1 (B). The
black lines drawn represent the scenarios that will be studied in the next section.

From now on, to study the effect of daily periodic movement with complete model (2)-(3), we1

take variables I1 and I2 to represent infected residents from patches 1 and 2, respectively. That is,2

Ii(t) =

 I li(t) if t ∈ [tk, tk + Tl),

Ihii(t) + Ihij(t) if t ∈ [tk + Tl, tk+1).
(12)

for i, j = 1, 2, i 6= j. Observe that Ii contabilize the infected individuals from patch i, no matter3

where the disease was acquired.4

3.3. Numerical studies5

In this subsection, we study, by means of numerical simulations, some effects of daily human6

movement on characteristics of the coupled model solutions, such as the existence of endemic7

equilibria, and the start, duration, and amplitude of the outbreak.8

3.3.1. Disappearance and appearance of endemic equilibria9

Here we show the importance of Tl, α1 and α2 on the existence of endemic equilibria when10

R1l < 1 and R2l > 1. We present numerical simulations for different combinations of these11

parameters to observe whether or not the existence of endemic equilibria of the uncoupled patches12

9
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is preserved. Here we study the following cases of the presented scenario in Figure 2: α1 = 0.11

(black solid line), α1 = 0.5 (black dotted line), and α1 = 0.9 (black dashed line), and for every case,2

we vary α2 in [0, 1] and Tl in [0.1, 0.9]. Figures 3 to 6 summarize the results of these experiments3

where we show the values of asymptotic solutions of I1 and I2 respect to parameters α2 and Tl.4

These values will give us an endemic state or a disease-free state.5

� Case α1 = 0.16

From Figure 2, theoretically R1l < 1 and R1h < 1, that is, there are no favorable conditions7

at any time during the day in patch 1 for an endemic equilibrium to exist. However, from8

Figure 3, there exists an endemic equilibrium of patch 1 for almost any combination of α29

and Tl values. Taking α1 = 0.1, that is, 10% of individuals from patch 1 move to patch 2,10

generates endemic levels in patch 1. In general, while the resident people from patch 2 spends11

more time every day in their own patch, the dynamics are dominated by the theoretical values12

of R2l and R2h which are greater than 1.13
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Figure 3: Existence of endemic equilibria for (A) I1 and (B) I2, against α2 and Tl for case α1 = 0.1. Population
sizes N1l = 90000 and N2l = 45000.

From Figure 3, for values of α2 close to 1 and Tl approximately 0.5, the opposite scenario14

also occurs. If in a patch there are favorable conditions for the existence of endemic levels15

all the time (R2l > 1 and R2h > 1), we might get no endemic equilibrium in any patch.16

To get a better understanding of this phenomenon, we examine the behavior of the endemic17

equilibrium from patches when α2 = 1.0. Figure 4 shows the existence of endemic equilibria18

of I1 and I2 for N1l = 90000 with N2l = 45000 (black solid lines) and N2l = 18000 (black19

dashed lines) when α1 = 0.1 and α2 = 1.0. For N1l = 90000 and N2l = 45000, we have that20

R1l = 0.68, R2l = 1.37, R1h = 0.49 and R2h = 6.86. We observe that there is a set of Tl21

values where the disease disappears in both patches when N2l = 45000. This phenomenon is22

explained as follows. Since α1 = 0.1 and α2 = 1.0, then, at the beginning of the high-activity23

period, 10% of the population from patch 1 moves to patch 2 and the whole population from24

10
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patch 2 moves to patch 1. In the extreme case Tl = 0.9 (the low-activity period is very1

large), there is an endemic equilibrium in patch 2 due to the fact that almost all the time2

the population remains in their residence patch and the basic reproductive number (R2l)3

is greater than 1. In this case, we could approximate the R0 value of patch 2 by the R04

value of the disconnected patches. For individuals residing in patch 1, we observe that by5

taking 10% of individuals from patch 1 who move to patch 2, for a short time period, it6

is sufficient to generate endemic levels in patch 1 despite theoretically R1l and R1h are less7

than 1. Now, for the extreme case Tl = 0.1 (short low-activity period), the presence of an8

endemic level in patch 1 is due to the fact that most of the time the 10% of the population9

that belongs to patch 1, is in patch 2. This 10% carries the endemic levels aquired in patch10

2 and take it to patch 1. The endemic levels in patch 2 are due to the presence of endemic11

levels of mosquitoes that are present in the medium due to the 10% of individuals from12

patch 1. Finally, for intermediate values of Tl, the disease disappears in both patches. For13

this scenario, both, the resident individuals from patch 2 and the visiting population from14

patch 1 spend almost the same time in each patch. As the basic reproductive numbers are15

smaller than 1 in patch 1 and larger than 1 in patch 2, we need to know why the disease16

cannot be sustained by patch 2. When populations are in patch 2, they do not stay long17

enough to increase the number of new infected individuals significantly. When individuals18

move to patch 1, the infective process is much less than in patch 2 (as R1l = 0.68 < 119

and R1h = 0.49 < 1) and new infections are imperceptible as the corresponding values of20

the basic reproductive numbers are very small and not close to 1. The overall effect leads21

to having a small enough infection rate compared to the disease recovery process and the22

disease disappears in both patches. However, from Figure 4, this region of disease extinction23

disappears when N2l decreases to 18000 (black dashed lines). In this case, we have that R1h24

goes up from 0.49 to 0.62 and the region of disease extinction disappear.25
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Figure 4: Existence of endemic equilibria for (A) I1 and (B) I2, for α1 = 0.1 and α2 = 1.0, and population sizes
from patch 2 as N2l = 45000 (black solid line) and N2l = 18000 (black dashed line).
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� Cases α1 = 0.5 and α1 = 0.91

A similar behavior of existence and non-existence of endemic equilibria arise for these values2

of α1 and scenario R1l < 1 and R2l > 1.3

Figure 5 displays the existence of endemic equilibria of infected residents I1 and I2 for α1 =4

0.5. For long periods of low-activity (Tl ≥ 0.7), there are endemic levels in both patches,5

except for some values of α2 and Tl. In this case (α1 = 0.5), the region of disease extinction6

is larger than case α1 = 0.1. Here, the effect of human movement is more pronounced due to7

the fact that, for α1 = 0.5, the values of the basic reproductive numbers for the high-activity8

period in both patches are in the interval [0.68, 1.37], whereas for α1 = 0.1, even though R1h9

is smaller than 1 (R1h ∈ [0.49, 0.76]), R2h takes values in the interval [1.14, 6.54] (see Figure10

2).11
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Figure 5: Existence of endemic equilibria for (A) I1 and (B) I2, against α2 and Tl for case α1 = 0.5. Population
sizes N1l = 90000 and N2l = 45000.

Regions of disease extinction can be more complex as is observed in Figure 5, which shows12

the existence of endemic equilibria of I1 and I2 in case α1 = 0.9. As in the case α1 = 0.1 and13

α1 = 0.5, although there are favorable conditions for the existence of endemic equilibria in14

one of the patches during the low-activity period, the disease disappears for a set of values15

of α2 and Tl. For this scenario, the values of R1h and R2h are opposite to R1l and R2l, that16

is, R1h > 1 and R2h < 1. Clearly, depending on the settings of parameters α1, α2, Tl and17

the intensity of the basic reproductive numbers (values of R1l, R2l, R1h and R2h), different18

regions of disease extinction can be obtained as observed in Figure 6.19

12
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Figure 6: Existence of endemic equilibria for (A) I1 and (B) I2, against α2 and Tl for case α1 = 0.9. Population
sizes N1l = 90000 and N2l = 45000.

3.3.2. Effect on the outbreaks1

In this subsection, we present scenarios to observe some effects of the periodic human movement2

on the outbreak dynamics. The parameter values from Table 3 are used for the numerical simulations.3

� Disappearance of outbreaks4

We first explore the scenario given in Subsection 3.3.1, where conditions for the emergence5

of an outbreak exist only in one of the patches. The purpose is to analyze the complete6

outbreak in a scenario where the disease disappears.7

As we have seen in Figure 3, there are no endemic equilibria in any patch for α2 values close8

to 1 and Tl in [0.4, 0.7]. From Figure 7, we observe that there is an oubreak in patch 2 but9

not in patch 1 when the patches are uncoupled (see dashed lines), which coincides with the10

fact that R1l < 1 and R2l > 1 (R1l = 0.68 and R2l = 1.37). If we take α1 = 0.1 and α2 = 1.0,11

implies that R1h = 0.49 and R2h = 6.86. Under this scenario, from Figure 7, we notice there12

are outbreaks in both patches for very long periods of high-activity (Tl = 0.1) and very long13

periods of low-activity (Tl = 0.9). However, for Tl values in [0.4, 0.7], outbreaks disappear in14

both patches. That means that this combination of parameters affects not only the existence15

of endemic equilibria but also the complete existence of the outbreak.16

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.20.20198093doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.20.20198093
http://creativecommons.org/licenses/by-nc-nd/4.0/


t

I 1

0 400 800 1200 1600 2000

0
2

0
0

4
0

0
6

0
0

A

t

I 2

0 400 800 1200 1600 2000

0
2

0
0

4
0

0
6

0
0

uncoupled

Tl = 0.9

Tl = 0.5

Tl = 0.1

B

Figure 7: Disappearance of outbreaks. Numerical solutions of infected residents (A) I1 and (B) I2, for N1l = 90000,
N2l = 45000, α1 = 0.1 and α2 = 1.0.

� Emergence of outbreaks1

Here we show the scenario where even though there are no conditions in any of the patches2

for the existence of an outbreak when patches are uncoupled, there is one due to the human3

movement. For this, human populations are taken as N1l = N2l = 70000, and α1 = 0 and4

α2 = 0.9. For uncoupled patches, there is no outbreak in both patches which coincides with5

the fact that both R1l and R2l are smaller than 1 (R1l = R2l = 0.88), and, when there is6

human movement, theoretically R1h = 0.46, and R2h = 8.82. From Figure 8, we observe7

that an outbreak appears in both patches when Tl = 0.5 approximately and becomes longer8

as the high-activity period increases. In addition, the time in which the outbreak reaches9

the highest incidence of cases occurs earlier and is larger as Tl decreases. This phenomenon10

occurs because as the high-activity period increases, the dynamics of patch 2 are governed11

by R2h = 8.82, generating earlier and larger outbreaks in patch 2. For patch 1, in contrast12

to Figure 7, there is an outbreak in patch 1 despite the fact that there are no favorable13

conditions for the disease development (R1l = 0.88 and R1h = 0.46). However, as outbreaks14

appear earlier in patch 2 than in patch 1, those infected individuals from patch 2, who move to15

patch 1 (90% of individuals), interact with mosquitoes from patch 1, generating an outbreak16

in that patch.17

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.20.20198093doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.20.20198093
http://creativecommons.org/licenses/by-nc-nd/4.0/


t

I 1

0 400 800 1200 1600 2000

0
4

0
0

8
0

0
1

2
0
0

A

t

I 2

0 400 800 1200 1600 2000

0
4

0
0

8
0

0
1

2
0
0

uncoupled

Tl = 0.9

Tl = 0.5

Tl = 0.3

Tl = 0.1

B

Figure 8: Emergence of outbreaks. Numerical solutions of infected residents (A) I1 and (B) I2, for N1l = N2l =
70000, α1 = 0 and α2 = 0.9.

� Delay and advance of outbreaks1

To end our study cases, we present scenarios where delay and advance of outbreaks are2

observed when patches separately have conditions for the existence of outbreaks.3

We first take N1l = 50000, N2l = 15000, α1 = 0.5 and α2 = 0.1. For these values, we obtain4

R1l = 1.23, R2l = 4.11, R1h = 2.33 and R2h = 1.60. In Figure 9, we notice that if the patches5

are uncoupled (black dashed lines), the dynamics of both patches are governed by the R1l6

and R2l values. In this case, the maximum incidence of cases in patch 2 is greater than in7

patch 1, which coincides with the fact that R2l is much larger than R1l. Compared to the8

dynamics of the decoupled patches, the outbreaks for Tl = 0.98 occur earlier in patch 1, and9

the one in patch 2 remains practically the same. In this case, the temporal dynamics of the10

uncoupled system are inherited, that is, although the behavior of the outbreak in patch 111

is preserved, this outbreak is advanced because patch 2 has a high incidence of cases. As12

the high-activity period increases, the maximum incidence in patch 1 goes up and the one13

in patch 2 decreases. In addition, the outbreak in patch 2 is delayed as Tl goes from 0.9814

to 0.02. Clearly, these effects are due to R1l < R2l for the low-activity period, but during15

the high-activity period, the intensity of the basic reproductive numbers is inverted, that is,16

R1h > R2h.17

15
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Figure 9: Delay and advance of the outbreaks. Numerical solutions of infected residents (A) I1 and (B) I2, for
N1l = 50000, N2l = 15000, α1 = 0.5 and α2 = 0.1.

Finally, we set N1l = N2l = 45000, α1 = 0.2 and α2 = 0.8. Thus, we have that R1l = R2l =1

1.37, R1h = 0.85 and R2h = 3.43. In Figure 10, we observe that there are outbreaks when2

patches are uncoupled (black dashed lines) and these appear earlier when the coupled model3

is taken into account. Also, the maximum incidence of cases increase as the high-activity4

period gets longer. In general, this behavior is observed for different settings of α1 and5

α2. To get a better understanding of outbreaks behavior, we analyse how the R1h and R2h6

values change according to proportions of people who move between patches (α1 and α2). In7

fact, since the conditions of disease spread are identical in both patches, this scenario can be8

studied directly considering only the net population that moved between patches (A), defined9

in Subsection 3.2. For this, we assume, without loss of generality, R1h < R2h. From Figure10

11, we have that while R1h decreases, R2h take very large values. In fact, R1h ∈ [0.68, 1.37],11

while R2h can be greater than 20. That is, while R2h take values very high and R1h is at12

least 0.68, the outbreaks appear earlier and the maximum incidence of cases increase.13
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Figure 10: Advance of the outbreaks. Numerical solutions for infected residents (A) I1 and (B) I2, for N1 = N2 =
45000, α1 = 0.2 and α2 = 0.8.
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4. Conclusion and discussion1

In this work, our goal was to investigate how the daily human movement affects some characteristics2

of dengue dynamics based on a two-patch model. The model assumed that the patches are3

connected by the periodic human movement at discrete times. Given the complexity of the model4

dynamics, an explicit expression could not be found for the basic reproductive number and the5

endemic equilibrium points. However, knowing the structure and stability of the equilibrium points6

and the basic reproductive numbers of the uncoupled system have been useful to determine when7

there could be favorable or unfavorable conditions for the existence of endemic equilibrium points8

and outbreaks for the complete model.9

This work studies the effects of daily commuters on the disease dynamics under a little-explored10

approach, different from what is traditionally applied to multi-patch models. We believe that11

modeling the disease spread where the division of more than one region is clearly defined, needs to12

be analyzed with a more complete view. Thus, this approach is useful when there are well-defined13

regions where there is daily human movement between them. Moreover, mixing information from14

different regions to model it as a single region through a one-patch model without considering15

movement might give rise to different dynamics than those found in this work. In addition, under16

this approach, it is possible to recognize where individuals became infected. This fact is important17

because before applying control measures against possible outbreaks, we should recognize if the18

cases were imported or autochthonous.19

Our scenarios focused on understanding only the effect of human movement on endemic disease20

levels and on the outbreak dynamics. Some cases of interest were, for example,that although there21

are regions with disease propagation conditions, the disease do not necessarily subsist. In addition,22

there could be regions without favorable conditions for the development of the disease, but human23

movement might lead to the appearance of outbreaks as seen in [25], where the main carriers of24

the disease between patches is cattle. However, the advantage of the scenarios presented in this25

17
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work is that it is possible to have a better biological description of the phenomenon.1

From Figures 3 to 6, the region of disease extinction varies greatly. We have observed that2

these regions become larger when the basic reproductive numbers of the uncoupled patches are3

relatively close to 1. Thus, this fact is dependent on the size of interacting populations and the4

time spent by the populations in their residence patch. These results are not intuitive and might5

have not been observed unless the movement between two patches is considered.6

Other different scenarios might occur if we assume that the patches have different propagation7

intensity not related to humans. For example, regions with different sanitary measures or with8

abundant vegetation could lead to different rates of transmission from humans to mosquitoes or9

vice versa, mosquito mortality rate, and mosquito recruitment rate. In fact, Table 2 could be10

generalized considering that the parameters values are not the same in both patches. Also, the11

model can be extended to a network of patches where individuals from each patch spend different12

high-activity and low-activity periods in neighboring patches. This extended model might give rise13

other effects not reported in this work.14

Our approach can be useful not only for vector-borne diseases such as zika or chikungunya15

but also for those with direct transmission such as SARS and COVID-19, diseases which might16

generate pandemics due to human movement. In this respect, an infected human might be17

exposed to different populations during its complete period of infection, leading to a more complex18

understanding of the basic reproductive number and the disease dynamics. Moreover, to obtain a19

generalization of the basic reproductive number for our complete model might be useful to establish20

control policies that consider the human movement.21

Finally, although the study was mostly computational, it was quite complex. This is due to the22

number of parameters involved in the model dynamics such as the population sizes of both patches,23

the proportion of people moving between patches and the time period that individuals spend in24

their residence patch. Therefore, it is not easy to have a complete theoretical understanding of25

a system of this nature; however, it was useful to know some properties of the uncoupled model26

dynamics.27
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