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ABSTRACT  

Background and Objective: Radiomics and deep learning have emerged as two distinct approaches to medical 

image analysis. However, their relative expressive power remains largely unknown. Theoretically, hand-crafted 

radiomic features represent a mere subset of features that neural networks can approximate, thus making deep 

learning a more powerful approach. On the other hand, automated learning of hand-crafted features may require a 

prohibitively large number of training samples. Here we directly test the ability of convolutional neural networks 

(CNNs) to learn and predict the intensity, shape, and texture properties of tumors as defined by standardized 

radiomic features. 

Methods: Conventional 2D and 3D CNN architectures with an increasing number of convolutional layers were 

trained to predict the values of 16 standardized radiomic features from real and synthetic PET images of tumors, and 

tested. In addition, several ImageNet-pretrained advanced networks were tested. A total of 4000 images were used 

for training, 500 for validation, and 500 for testing. 

Results: Features quantifying size and intensity were predicted with high accuracy, while shape irregularity and 

heterogeneity features had very high prediction errors and generalized poorly. For example, mean normalized 

prediction error of tumor diameter with a 5-layer CNN was 4.23 ± 0.25, while the error for tumor sphericity was 

15.64 ± 0.93. We additionally found that learning shape features required an order of magnitude more samples 

compared to intensity and size features. 

Conclusions: Our findings imply that CNNs trained to perform various image-based clinical tasks may generally 

under-utilize the shape and texture information that is more easily captured by radiomics. We speculate that to 

improve the CNN performance, shape and texture features can be computed explicitly and added as auxiliary 

variables to the networks, or supplied as synthetic inputs. 
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INTRODUCTION 

Quantitative pattern analysis in radiological images can be used to assess tumor phenotype as well as micro- and 

macro-environmental conditions (1). For example, larger and more heterogeneous tumors as measured from positron 

emission tomography (PET) and computed tomography (CT) images have been found to be generally more 

aggressive and more resilient to treatment (2, 3, 4), while more irregular tumor shapes have been associated with a 

lower probability of complete response (5). In addition, tumor-specific texture characteristics can be used for 

automated lesion detection and segmentation (6, 7). Given these findings, there have been considerable efforts to 

develop novel pattern analysis methods for medical imaging of cancer and other diseases (8, 9, 10, 11). 

Two distinct approaches have emerged: radiomics and deep learning. Radiomics-based methods utilize 

hand-crafted features that are intended to capture various properties of the tumor, e.g. its shape and texture (1, 12, 

13). Various radiomic features have been found to be significant predictors of disease-free survival and response to 

therapy (14-17). Deep learning methods in medical imaging typically utilize convolutional neural networks (CNN) 

trained in an end-to-end fashion, with images serving as inputs and clinical metrics as targets. In the process of 

training, relevant low- and high-level image features become automatically and implicitly encoded in the layers of 

the network (18). Thus, deep learning methods eliminate the need for feature design and selection, and can 

potentially forego the need for image segmentation (16). 

Recent reports of human-level cancer detection performance by CNNs (19-22) may suggest that emphasis 

in method development should be placed on deep learning, rather than radiomics. According to the universal 

approximation theorem (23, 24), hand-crafted radiomic features represent a subset of functions that CNNs can 

approximate, seemingly obviating the practice of using explicit radiomics for predictive tasks. The problem, 

however, is that the theorem does not provide any bounds on the required number of neurons to approximate a 

function: the necessary number of CNN layers or nodes to match the power of a hand-crafted feature may well be 

impractical. Sample complexity is another concern: the number of samples required to learn a particular feature may 

be unrealistic, or vary substantially between the features, leading to significant biases in learning of different kinds 

of information (e.g. texture versus shape) (25). Thus, in some scenarios, it may be more efficient and effective to use 

radiomic features instead of neural networks. 

In the present work, we directly test the ability of CNNs to learn hand-crafted and standardized radiomic 

features, and measure the sample complexity for different features. To that end, we train simple CNN architectures 
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with a progressively larger number of convolutional layers (up to nine), and several advanced ImageNet-pretrained 

architectures, to predict the explicitly-computed values of radiomic features. A poor prediction accuracy for a 

particular feature would imply that common CNN architectures may be unable to effectively capture and use the 

corresponding type of information (for a given number of samples and network size). Training and testing are done 

using 2 sets of real 2D PET images comprised of lymphoma and head and neck cancer lesions, as well as 2 sets of 

synthetic 2D and 3D lesion images. 

 

MATERIALS AND METHODS 

Acquired Images 

Images of real tumors were extracted from two datasets. The first dataset was obtained locally and contained whole-

body 18F-fludeoxyglucose (FDG) PET/CT volumes of patients with primary mediastinal B-cell lymphoma who were 

treated with R(rituximab)-CHOP. Collection of human imaging data was approved by the University of British 

Columbia - BC Cancer Research Ethics Board (UBC BC Cancer REB), and all subjects gave informed written 

consent. A total of 126 volumes from 69 unique subjects were available for the study, acquired on a GE Discovery 

690 scanner at baseline, mid-, and post-treatment (after 3-6 chemotherapy cycles). The injected activity ranged from 

~280 to ~450 MBq and the PET scans were performed 60 minutes after the injection. The images were 

reconstructed iteratively with point spread function modeling, but without time-of-flight modeling (GE “VPHDS” 

reconstruction). The axial dimensions of reconstructed images were 192×192, with isotropic voxel size (3.64 mm)3. 

The voxel intensities were normalized to represent the standardized uptake values (SUVs). In all images, primary 

tumors were manually delineated in 3D by a nuclear medicine physician. 

 The second dataset was obtained from the publicly-available HECKTOR challenge (head and neck tumor 

segmentation and outcome prediction), which includes 224 FDG PET/CT images of patients with head and neck 

cancer acquired at multiple centers (https://www.aicrowd.com/challenges/miccai-2021-hecktor). The images from 

this dataset were re-sampled to have the same voxel size as the lymphoma dataset. 

The number of volume images in both datasets was insufficient to robustly train 3-dimensional CNNs. 

Thus, we generated corresponding much larger sets of real 2D images (and masks) by slicing the tumor volumes 

with regularly-spaced axial, sagittal, and coronal planes. The slicing planes were 2 voxels apart in each dimension. 

The resulting full-size slices were cropped to the size 48×48 pixels (without interpolation), such that the lesion 
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centroid was located in the center of the cropped image. After excluding images where the lesion area was less than 

50 pixels and the maximum SUV was less than 3.0, this yielded 2008 2D lesion images of lymphoma and 1432 

images of head and neck cancer. Random rotations were added to these images to produce two distinct 2D datasets 

for the study, each consisting of 5000 real images and lesion masks. 

 

Synthetic Images 

Since the real 2D lesion images were extracted from a relatively small number of distinct subjects, the amount of 

non-redundant information in real datasets may be relatively limited. Thus, we employed two additional sets of 2D 

and 3D synthetic lesion images that were generated procedurally in-silico. In addition to being fully independent, 

synthetic images offer the advantage of having a more uniform background (i.e., unlike with real images, no other 

objects besides the lesion were present in the synthetic images). 
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We will describe our image synthesis methodology using the 2D case for brevity; in the 3D case, all aspects 

of methodology were symmetrically extended into the third dimension. First, a binary region representing the mask 

of the lesion was generated. To create a variety of mask shapes and sizes, a stochastic region growth algorithm was 

used, starting from 1 to 3 seeds that were randomly placed within a binary 48×48-pixel image; using a random 

number of initial seeds increased the variance of shape features, as confirmed in a post-hoc analysis. A random 

number (300-550) of region growth iterations was applied (Fig. 1a), and the resulting image was morphologically 

closed to remove small holes inside the mask. 

The lesion texture was created by generating a random Perlin pattern (26) and masking it using the 

generated mask. The pixel intensities were set to represent PET SUVs, and were scaled to vary between SUVmin, 

 

FIGURE 1.  (A) Illustration of the region growth process utilized to generate random lesion shapes. (B) Examples 

of (left) acquired images of lymphoma and (middle) head and neck cancer tumors in comparison to (right) synthetic 

lesion images with different lesion intensities, shapes, and textures. The resolution and noise in synthetic images 

were matched to those of lymphoma images. The plotted synthetic and real images have the same dimensions 

(48×48 pixels) and isotropic pixel size (3.64 mm)2. 
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chosen randomly between 2 and 7 for each image, and SUVmax, chosen randomly between 9 and 30; SUV values in 

the background were set to 1.5. Magnitude-independent Gaussian noise (sigma = 0.15 SUV units) was added 

everywhere in the image, and spatial Gaussian smoothing (sigma = 0.85 pixels or 3.1 mm) was applied to the entire 

simulate resolution blurring. The isotropic pixel size (3.64 mm)2, resolution, and noise values were set to match 

those of the clinical images acquired at our center. 

TABLE 1. Radiomic features computed from the real and synthetic 2D images and their statistics. 

  Real images (Lymphoma)  Synthetic images 

Feature name  Median  
(Q1, Q3) (min, max)  Median  

(Q1, Q3) (min, max) 

  Intensity features    

Maximum  15.689 
(11.081, 20.334) (1.887, 40.003)  16.948 

(12.509, 21.276) (6.839, 28.301) 

Mean  8.398 
(5.705, 10.759) (1.121, 24.158)  11.026 

(8.563, 13.405) (4.859, 18.918) 

Variance  8.252 
(3.534, 16.048) (0.026, 78.698)  5.645 

(2.683, 9.871) (0.597, 29.730) 

COV  0.337 
(0.285, 0.402) (0.067, 0.915)  0.212 

(0.184, 0.242) (0.107, 0.425) 

  Shape features - size    

Area  2769.166 
(1391.208, 4968.600) (119.246, 14680.557)  6121.315 

(4213.373, 8347.248) (808.226, 13236.351) 

Convex area  3497.835 
(1647.192, 6181.809) (119.246, 17474.762)  7282.917 

(5031.320, 9954.918) (833.931, 16724.832) 

Max diameter  88.864 
(61.018, 116.537) (13.124, 199.005)  116.537 

(97.942, 136.294) (38.003, 195.343) 

Perimeter  207.373 
(123.394, 307.312) (29.120, 972.379)  381.879 

(308.195, 457.694) (99.422, 690.074) 

  Shape features - irregularity    

Sphericity  0.797 
(0.704, 0.861) (0.341, 0.968)  0.694 

(0.653, 0.734) (0.448, 0.899) 

Elongation  0.604 
(0.479, 0.731) (0.126, 1.000)  0.746 

(0.657, 0.826) (0.322, 0.997) 

Solidity  0.892 
(0.776, 0.941) (0.187, 1.000)  0.846 

(0.818, 0.870) (0.617, 0.969) 

Extent  0.613 
(0.509, 0.684) (0.102, 0.846)  0.589 

(0.551, 0.626) (0.393, 0.789) 

  Texture features    

Contrast  17.045 
(12.408, 23.094) (0.916, 67.663)  8.586 

(7.327, 10.148) (4.025, 23.464) 

Energy  0.006 
(0.005, 0.008) (0.003, 0.528)  0.008 

(0.007, 0.011) (0.004, 0.044) 

Homogeneity  0.362 
(0.327, 0.404) (0.228, 0.996)  0.439 

(0.413, 0.465) (0.297, 0.605) 

Entropy  7.803 
(7.433, 8.070) (2.216, 8.791)  7.371 

(7.112, 7.590) (5.518, 8.225) 

Intensity features are in SUV units, Area and Convex area are in mm2, Max diameter and Perimeter are in mm. Texture 
features were computed from the gray-level co-occurrence matrix (GLCM). 
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The SUV values and lesion sizes in the synthetic images were set to be similar to those in the real 

lymphoma images (Fig. 1b). A total of 5000 synthetic images were generated per each of 2D and 3D datasets. 

 

Radiomic Features 

A set of 16 intensity, shape, and texture features, as defined by the Image Biomarker Standardization Initiative 

(IBSI) (27), was selected for this study. The features and their statistics computed from the real images of lymphoma 

and synthetic 2D images are given in Table I. In both datasets, all 5000 images were used to compute the statistics. 

The choice of features was based on their simplicity, interpretability and frequency of use in research and clinical 

practice. 

As per IBSI, the 4 intensity features describe first order pixel value statistics. The coefficient of variation 

(COV), often used as a measure of lesion heterogeneity (3, 28), was computed as the ratio of the standard deviation 

to the mean. 

The shape features include 4 descriptors of size and 4 descriptors of the shape irregularity. These features 

do not take into account the pixel intensities or their spatial distributions. Convex area was defined as the area of the 

convex envelope of the mask. Solidity is the ratio of lesion’s area to the convex area. Extent was defined as the ratio 

of lesion’s area to that of the axis-aligned bounding rectangle. 

Texture features are represented by 4 second-order Haralick features computed from the gray level co-

occurrence matrix (GLCM, 2.5D, merged); the pixel intensities were quantized using the constant bin number 

technique (32 bins). The ISBI-recommended constant bin size method was not used to minimize the interaction 

between the lesion intensity and texture.  The voxel dimensions were specified to be isotropic for GLCM 

computation. 

Table I demonstrates that the values features extracted from the synthetic images all fall within the min–

max ranges of corresponding features computed from real lymphoma images. All features except perimeter and 

sphericity were computed using the IBSI-compliant SERA radiomics software (29, 30). All features were extracted 

within lesion masks without image re-sampling. The masks were pre-processed to contain a single connected region 

without holes. The intensity features were computed using the original SUV units, and texture features used 

uniformly-discretized voxel intensities, with minimum and maximum intensities mapped to 1 and 32, respectively. 
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For the 2D and 3D image sets, all features were calculated in 2D and 3D, respectively (i.e. using the native image 

dimensionality).   

 

 

Tested Neural Net Architectures 

We trained and tested several standard convolution-nonlinearity-pooling (CNP) architectures with an increasing 

number of convolutional layers. The hyper-parameters of the networks are specified in Table II, where the CN-2D-X 

abbreviations denote different CNP networks, and X is the number of convolutional layers; each convolutional layer 

consisted of 8 filters. The “Num. features” column contains the number of flattened features entering the final dense 

layer. The rectified linear unit (ReLU) nonlinearity was used throughout each CNP network, and max-pooling was 

used as the downsampling operation. After the flattening layer, all networks included one dense layer with 16 nodes, 

followed by a regression output layer. All parameters were trained. Since the number of max-pooling layers, 

flattened features, and dense layer nodes were fixed, the number of trainable parameters depended solely on the 

number of convolutional layers. In all convolutional filters, isotropic kernels of the size 5×5 were used; the kernel 

size of max-pooling layers was 2×2. The 3D CNP networks had the same structure as the 2D CNP networks. 

TABLE 2. Parameters of the standard CNP and advanced ImageNet CNNs. 

Standard CNP networks 

Network Num layers (Conv. layers) Layer structure Trainable parameters Num. features 

CN-2D-3 3 (9) c-m-c-m-c-m-f-d-r 11,649 512 

CN-2D-5 5 (11) cc-m-cc-m-c-m-f-d-r 14,865 512 

CN-2D-7 7 (13) ccc-m-cc-m-cc-m-f-d-r 18,081 512 

CN-2D-9 9 (15) ccc-m-ccc-m-ccc-m-f-d-r 21,297 512 

Advanced networks 

Network Num. layers Total parameters Trainable parameters Num. features 

MobileNetV2 155 2,259,265 1,281 1,280 

NASNetMobile 769 4,270,773 1,057 1,056 

DenseNet201 707 18,323,905 1,921 1,920 

Xception 132 20,863,529 2,049 2,048 

InceptionV3 311 21,804,833 2,049 2,048 

InceptionResNetV2 780 54,338,273 1,537 1,536 
Layers: c – convolution, m – max pooling, f – flattening, d – dense, r – regression layer. 
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Additionally, several advanced ImageNet-pretrained CNN architectures were tested that included non-

standard computation blocks and connections (Table II). The network graphs, weights, and biases were downloaded 

from the TensorFlow pre-trained model repository. The total number of parameters ranged from ~2M to ~54M. The 

pre-trained head (dense layers) of each network was removed, and a single new regression layer was added and 

trained, with the rest of the network frozen. The resulting number of trainable parameters was between 1057 and 

2049, depending on the number of flattened features after the last convolutional layer. The networks were 

implemented in Python using the Keras module within TensorFlow v.2.2. 

 

Neural Net Training 

Inputs to CNP and advanced networks were the real or synthetic SUV images, and target variables were the 

normalized values of radiomic features. The features were normalized by subtracting the mean and dividing by one 

standard deviation. One feature was tested at a time, i.e. each network only had one regression output. The networks 

were trained in end-to-end using the AdaGrad algorithm, with the base learning rate set to 0.01, decay rate set to 0, 

and initial accumulator value set to 0.1. The minimized loss function was the mean absolute error between predicted 

and ground truth values of radiomic features. Training was performed for 200 epochs, in mini-batches of 32 images. 

Out of 5000 in each dataset, 4000 were used for training, 500 for validation, and 500 for testing. 

 

Test Procedures and Metrics 

Test sets of 500 images were used to assess the efficacy of CNP and advanced networks in learning radiomic 

features. Two metrics were used to quantify prediction error: 1) the normalized mean absolute error (nMAE): 

𝑛𝑀𝐴𝐸 =
100%
𝑁

∑ +𝑦-
./01 − 𝑦-+3

-45

𝑝𝑅𝑎𝑛𝑔𝑒(𝑦-)
 (1) 

where N is the number of test samples, yi is the true feature value, yipred is the predicted feature value, and pRange is 

the percentile range (2.5–97.5); 2) Spearman’s correlation coefficient ρ between the ground truth and network-

predicted feature values. The values of nMAE and ρ were computed on the test sets, for all tested datasets, features, 

and networks, as reported below. 
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To analyze the sample complexity for different features, we trained the CNP networks using different 

numbers of synthetic 2D image samples, ranging from 100 to 4500. The test loss and the difference between the 

training and test loss (i.e. train-test generalization) were measured as functions of the number of samples. 

Two additional tests were performed on the synthetic 2D dataset to aid the interpretation of results: 1) binary masks 

were tested as CNN inputs to investigate the effect of contrast on learning of shape features; 2) a dataset with fixed 

 

FIGURE 2.  Radiomic feature prediction errors (nMAE) for the 2D CNP networks. (A) Data obtained with real 

lymphoma images. (B) Data obtained with real head and neck cancer images. (C) Data obtained with synthetic 

lesion images. The mean values and standard deviations were measured using 5 independent training trials. 
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lesion size was tested to prevent networks from using size as a proxy for shape. We briefly report the results of these 

auxiliary tests. 

 

RESULTS 

Feature Prediction Errors From Real and Synthetic Images 

Radiomic feature prediction errors on the lymphoma, head and neck, and synthetic test sets are plotted in Figures 2a, 

2b, and 2c, respectively, for 2D CNP networks. The plots demonstrate a similar ranking of errors in real and 

synthetic images. In all datasets, the lowest values of nMAE were measured with size features (Area, Convex area, 

Max diameter, Perimeter), and with the Mean and Maximum intensity. This shows that the lesion intensity and size 

were the easiest features to learn for the CNNs. On the other hand, the prediction errors were 3-4 times higher for 

the shape irregularity features — Sphericity, Solidity, Elongation, and Extent. Notably, while Area and Convex area 

were predicted with high accuracy, their ratio defined as Solidity was predicted poorly. 

 

FIGURE 3.  Predicted feature values from lymphoma images (normalized, y-axes) plotted against true feature 

values (normalized, x-axes) in the test set of 500 samples, for the CN-2D-5 network. The identity line is plotted in 

solid black color. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 11, 2022. ; https://doi.org/10.1101/2020.09.19.20198077doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.19.20198077


Results obtained with 3D CNP networks and 3D synthetic images exhibit similar trends (available in 

Supplemental Figure 1 and Supplemental Table 1). The intensity and size features were predicted with relatively low 

errors, while shape features were predicted with high errors. 

Representative scatter plots of true versus predicted feature values, obtained with real lymphoma images 

and the CN-2D-5 network, are plotted in Fig. 3. The scatter plots demonstrate that the high nMAE values for shape 

irregularity features did not originate from outliers or biases. Indeed, the data points for Sphericity and Solidity are 

substantially more scattered around the identity line compared to features like the Maximum intensity, Area, and 

Contrast. The same was observed in the corresponding scatter plots for synthetic images (not shown). 

Generally, features predicted from real images had higher errors than those predicted from synthetic 

images. This likely reflects a more limited information content in the real 2D datasets (originating from a limited 

number of unique subjects). A related finding is that with real images the test errors generally increased with 
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additional convolutional layers, implying the CNNs were overfitting the training data (Figs. 2a and 2b). In contrast, 

with synthetic images the prediction performance either improved, or remained the same with added convolutional 

layers (Fig. 2c). 

Having confirmed that we observe the same trends in the real and synthetic datasets, with the latter yielding 

lower feature prediction errors, we only use the synthetic 2D images in the rest of the analysis. 

 

Spearman’s Correlation Coefficients 

Spearman’s rank correlation coefficients ρ between predicted and true feature values for 2D CNP networks are listed 

in Table III; greater values correspond to better prediction performance. The given mean values and standard 

deviations were measured using 5 independent CNN training trials. Where omitted, the standard deviation was less 

TABLE 3. Spearman’s correlation coefficients (ρ) between predicted and true feature values (2D CNP networks). 

Feature name CN-2D-3 CN-2D-5 CN-2D-7 CN-2D-9 

Intensity features 

Maximum 0.99 1.00 1.00 1.00 

Mean 0.99 1.00 1.00 1.00 

Variance 0.98 0.98 0.98 0.98 

COV 0.86 ± 0.03 0.88 ± 0.01 0.89 ± 0.01 0.91 ± 0.02 

Shape features - size 

Area 1.00 1.00 1.00 1.00 

Convex area 0.99 0.99 0.99 1.00 

Max diameter 0.97 0.98 0.98 0.98 

Perimeter 0.97 0.98 0.98 0.98 

Shape features - irregularity 

Sphericity 0.65 ± 0.03 0.68 ± 0.04 0.66 ± 0.13 0.54 ± 0.07 

Elongation 0.82 ± 0.05 0.89 ± 0.03 0.91 ± 0.02 0.92 ± 0.01 

Solidity 0.58 ± 0.04 0.67 ± 0.04 0.65 ± 0.04 0.62 ± 0.09 

Extent 0.69 ± 0.04 0.75 ± 0.03 0.69 ± 0.04 0.73 ± 0.04 

Texture features 

Contrast 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.02 

Energy 0.83 ± 0.02 0.85 ± 0.01 0.86 ± 0.02 0.86 ± 0.01 

Homogeneity 0.90 ± 0.01 0.91 ± 0.01 0.92 ± 0.01 0.92 ± 0.01 

Entropy 0.84 ± 0.03 0.88 ± 0.02 0.85 ± 0.01 0.86 ± 0.03 
The three lowest (worst) values in each column are highlighted in bold. 
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than 0.01. The relative standing of features in terms of ρ was similar to that of nMAE: Sphericity, Solidity, and 

Extent had distinctly and significantly lower ρ values compared to other features. The findings were similar when an 

extended set of 36 features was examined (available in Supplemental Table 2).  

 

Train and Test Loss Analysis 

To further investigate the high prediction errors for the shape irregularity features, training and test losses were 

inspected as functions of the training epoch. For illustration, training and test losses for the CN-2D-5 network 

trained on synthetic data are plotted in Fig. 4. After 200 epochs, the test loss had converged for all tested features. 

The fastest convergence (i.e. achieved in a fewest number of epochs) was observed with Maximum/Mean intensity, 

Variance, and size-related features such as Area and Volume. Features quantifying shape irregularity and COV had 

the slowest convergence. 

With the shape irregularity features (Sphericity, Solidity end Extent), there was also a marked difference 

between the training and test losses. The relatively high training loss for these features indicates that the networks 

were less effective at approximating the respective functions. On the other hand, the even higher test loss indicates 

that the networks did not generalize well from the training to test sets. 

 

FIGURE 4.  Training and test losses plotted against the training epoch for the CN-2D-5 network. The mean and 

standard deviation of loss values from 5 independent training trials are plotted. 
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Sample Complexity Analysis 

The generalization capacity of a CNN can be assessed from the difference between the training and test loss; sample 

complexity represents the number of training samples required to achieve good generalization in a broad sense. We 

measured the train-test loss difference with the CN-2D-3 network (simplest network tested) for a representative 

group of features, using various numbers of synthetic training images (Fig. 5). 

The graphs demonstrate the significantly different sample complexities for different features. In the 

extreme case, to achieve the same level of generalization, Area required ~100 samples, and Sphericity required 3900 

samples. Note that the corresponding test loss values for Area and Sphericity were 0.3 and 0.6, respectively, i.e. a 

similar generalization capacity between two features does not imply a similar prediction error. 

 

Additional Tests with CNP Networks 

Using binary masks as inputs to the CNP networks (instead of SUV images) to predict the shape features resulted in 

the reduction of nMAE by approximately 20% for the Sphericity, Solidity and Extent features. The relative 

prediction errors for these features remained to be the highest. 

 

FIGURE 5.  Left: difference between the train and test loss plotted against the number of training samples; arrows 

indicate the same value of the difference for Area and Sphericity. Right: test loss plotted against the number of 

training samples. Arrows indicate the values of test loss for Area and Sphericity achieved at the same level of 

generalization. The mean and standard deviations of loss values from 10 independent trials are plotted. 
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When the lesion size was set to be constant in the synthetic images (though new dataset generation), the 

errors of shape feature predictions were similar to those plotted in Fig. 2. This may indicate that, when predicting 

shape features, our networks did not utilize any possible correlations between the lesion shape and size. 

Increasing the convolutional kernel sizes in the CNP networks resulted in a worse performance by 

approximately 20%, compared to the results shown in Figure 2. We varied the AdaGrad step size between 1 and 

0.0001, and the results were found to be similar. Likewise, using a smaller (16) or larger (64) batch size did not 

change the results significantly. 

 

Advanced Networks 

Radiomic feature prediction errors obtained with the synthetic 2D images and advanced networks are plotted in 

Fig. 6. The intensity and size features were predicted with higher errors compared to the CNP networks trained from 

 

FIGURE 6.  Feature prediction errors (nMAE) obtained with the advanced networks on synthetic lesion images. 

The mean values and standard deviations were measured using 3 independent trials of the regression layer 

training. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 11, 2022. ; https://doi.org/10.1101/2020.09.19.20198077doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.19.20198077


scratch. Advanced networks with a greater number of trainable parameters or layers did not produce lower 

prediction errors. On the contrary, the intensity features were predicted best with the MobileNetV2 network, which 

had the fewest number of parameters. Inspection of the true-vs-predicted value scatter plots (not shown) confirmed 

that the high prediction errors were distributed uniformly among the test samples and not originate from a few 

outliers. 

The standard deviations of errors with the advanced networks were markedly lower compared to those of 

the CNP networks, due to the frozen parameters being constant between different trials. Likewise, the training and 

test loss of advanced networks converged on average within the first 20 epochs, much faster compared to the CNP 

networks. We found that the test loss closely followed the training loss with most features, although the difference 

between the training and test losses was again greater with the shape irregularity features. 

TABLE 4. Spearman’s correlation coefficients (ρ) between predicted and true feature values (Advanced networks).  

Feature 
name MobileNetV2 NASNetMobile DenseNet201 Xception InceptionV3 InceptionResNetV2 

 Intensity features 

Maximum 0.95 0.84 0.94 0.88 0.88 ± 0.01 0.9 

Mean 0.96 0.84 0.94 0.87 0.86 0.89 

Variance 0.93 0.83 0.93 0.87 0.86 0.89 

COV 0.85 0.83 0.88 0.83 0.80 ± 0.01 0.86 
 Shape features - size 

Area 0.98 0.97 0.99 0.96 0.94 0.95 

Convex area 0.98 0.97 0.98 0.96 0.94 0.95 

Max diameter 0.96 0.94 0.95 0.93 0.91 0.93 

Perimeter 0.96 0.95 0.97 0.95 0.92 0.94 
 Shape features - irregularity 

Sphericity 0.72 0.7 0.72 0.74 0.66 ± 0.01 0.70 ± 0.01 

Elongation 0.62 ± 0.01 0.31 ± 0.01 0.51 ± 0.01 0.45 0.48 ± 0.01 0.5 

Solidity 0.71 ± 0.01 0.7 0.71 0.7 0.63 0.68 ± 0.01 

Extent 0.74 ± 0.01 0.65 ± 0.01 0.68 ± 0.01 0.64 0.61 ± 0.01 0.55 ± 0.01 
 Texture features 

Contrast 0.84 0.83 ± 0.01 0.86 0.8 0.80 ± 0.01 0.83 

Energy 0.8 0.79 0.81 0.77 0.73 ± 0.01 0.80 ± 0.01 

Homogeneity 0.88 ± 0.01 0.86 0.89 0.84 0.84 ± 0.01 0.88 ± 0.01 

Entropy 0.84 0.81 0.85 0.8 0.77 0.83 ± 0.01 
The three lowest (worst) values in each column are highlighted in bold. 
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Spearman’s rank correlation coefficients ρ between predicted and true feature values for the advanced 

networks are given in Table IV. The given mean values and standard deviations were measured using 3 independent 

trials of the regression layer training. Where omitted, the standard deviation was less than 0.01. The ranking of 

features and networks in terms of ρ was similar to that obtained with nMAE. 

 

DISCUSSION 

We have directly quantified the relative expressive power of standard CNN architectures with respect to 

standardized intensity, shape, and texture features commonly used in oncological imaging. In two real and two 

synthetic datasets, we found that features quantifying lesion size as well as maximum and mean intensities exhibited 

lowest prediction errors. On the other hand, features quantifying shape irregularity had highest prediction errors, and 

generalized poorly from the training to test sets. Given that tumor shape has been found to be a significant predictor 

of clinical outcomes (5, 31), this finding may bear significant implications for the use of CNNs in clinical prediction 

tasks. For example, CNNs that are trained to predict progression-free survival from tumor images, may 

preferentially learn to leverage the intensity and size information, while the shape-irregularity information may be 

under-utilized. 

In addition to standard CNNs trained end-to-end, we tested several ImageNet pre-trained advanced 

networks that were fine-tuned on our data. We found that all radiomic features predicted by advanced networks had 

high errors, higher than those obtained with standard CNNs, implying that radiomics-related information is poorly 

represented in the high-level feature output layers of ImageNet pre-trained networks. The errors were highest for the 

shape features, mirroring findings with the standard CNNs. Based on these observations, we conclude that simple 

CNNs trained end-to-end on domain-specific images should capture radiomic features better than advanced 

networks pre-trained on large image sets like ImageNet. This likely happens because the latter layers in advanced 

CNNs become over-specialized when trained to classify ImageNet images: the best performance among the 

advanced networks was obtained with MobileNetV2, which was the simplest network in terms of the number of 

layers and parameters. 

Sample complexity analysis showed that intensity and size metrics required around 100-500 training 

samples to achieve good train-test generalization. On the other hand, shape irregularity features required around 

2000-4000 training samples. Hence, a relatively large number of examples is required for CNNs to capture the 
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shape-related information from the images. In contrast, medical imaging studies that use CNNs often have far fewer 

than 1000 training samples — typically the number of samples is on the order of 100 or less, particularly for PET 

studies (according to the Cancer Imaging Archive, https://www.cancerimagingarchive.net) (32). In studies with tens 

or hundreds of samples, CNNs may only be able to implicitly learn “easier” features related to the intensity and size 

(image augmentation may help to alleviate this issue). 

We hypothesize that high prediction errors for some features may be attributed to two factors. First, the 

tested networks lacked direct ability to capture global context, which may be important for capturing global shape 

properties. Designing and using CNNs that can capture the global context and have larger perceptive fields may lead 

to a better implicit learning of shape properties. Second, the high prediction errors could have originated from the 

limited ability of CNNs to approximate ratio-type features or functions (such as COV, sphericity, solidity and 

extent). For example, solidity is a ratio of area and convex area, both of which were predicted with a much lower 

error compared to solidity. Including a non-standard division operation in the network graph, or adding the 

reciprocal image as an input, may improve prediction performance. Alternatively, features with high prediction 

errors can be added explicitly as auxiliary variables to the dense layers in the “heads” of the networks, or as 

additional input channels. We propose that making these modifications to existing and previously published models 

for image-based diagnosis may improve the performance of the models. An interesting direction of future research is 

to compare the performance of standard and radiomics-augmented neural networks in tasks that predict clinical 

metrics or outcomes. 

Among other findings, there was an unexpectedly small improvement in the prediction error with added 

network depth. It is of interest to explore how the width of the network, i.e. the number of filters or channels in the 

convolutional layers, affects prediction errors: shallower and wider CNNs may perform as well or better than deeper 

networks in medical imaging applications. Recent theoretical studies suggest that the expressive power of neural 

networks grows faster with added depth than with added width (33, 34). However, this may or may not apply to 

functions that represent low-level image features. 

A limitation of our study is that the tests were performed only on PET images, real and synthetic. However, 

we believe that our findings, particularly with shape features, should generalize to other modalities (since shape 

analysis does not utilize pixel intensities). It is of particular interest to reproduce our experiments on CT and MRI 

images, where larger datasets are available.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 11, 2022. ; https://doi.org/10.1101/2020.09.19.20198077doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.19.20198077


 

 

CONCLUSIONS 

Our work shows that conventional CNNs architectures readily learn first-order intensity and size-related radiomic 

features from less than 500 samples. On the other hand, features describing tumor heterogeneity (e.g. COV) and 

shape irregularity are difficult to learn, and require an order of magnitude more samples; the capacity of CNNs to 

learn texture features is intermediate. Therefore, CNNs may not be as effective as explicit radiomic features at 

capturing certain tumor properties. This is in fact more strongly the case for CNNs pretrained on image sets like 

ImageNet. In our view, the use of explicit radiomics and traditional machine learning techniques may not be 

properly discarded in favor of existing CNNs when it comes to medical image analysis, as the strengths of these two 

approaches appear to be complementary: a combination of the two approaches or appropriate next-generation deep 

networks are likely to produce improved results. 
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