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ABSTRACT 

Many popular disease transmission models have helped nations respond to the COVID-19 pandemic by 
informing decisions about pandemic planning, resource allocation, implementation of social distancing 
measures and other non-pharmaceutical interventions. We study how five epidemiological models 
forecast and assess the course of the pandemic in India: a baseline model, an extended SIR (eSIR) model, 
two extended SEIR (SAPHIRE and SEIR-fansy) models, and a semi-mechanistic Bayesian hierarchical 
model (ICM). Using COVID-19 data for India from March 15 to June 18 to train the models, we generate 
predictions from each of the five models from June 19 to July 18. To compare prediction accuracy with 
respect to reported cumulative and active case counts and cumulative death counts, we compute the 
symmetric mean absolute prediction error (SMAPE) for each of the five models. For active case counts, 
SMAPE values are 0.72 (SEIR-fansy) and 33.83 (eSIR). For cumulative case counts, SMAPE values are 
1.76 (baseline) 23.10 (eSIR), 2.07 (SAPHIRE) and 3.20 (SEIR-fansy). For cumulative death counts, the 
SMAPE values are 7.13 (SEIR-fansy) and 26.30 (eSIR). For cumulative cases and deaths, we compute 
Pearson’s and Lin’s correlation coefficients to investigate how well the projected and observed reported 
COVID-counts agree. Three models (SAPHIRE, SEIR-fansy and ICM) return total (sum of reported and 
unreported) counts as well. We compute underreporting factors as of June 30 and note that the SEIR-
fansy model reports the highest underreporting factor for active cases (6.10) and cumulative deaths 
(3.62), while the SAPHIRE model reports the highest underreporting factor for cumulative cases (27.79). 
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1. INTRODUCTION 

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) (1). At the time of writing this paper, it has been identified as 
an ongoing pandemic, with more than 18 million reported cases across 188 countries and territories. The 
disease was first identified in Wuhan, Hubei, China in December 2019 (2). Since then, more than 936,000 
lives have been lost and 20.1 million recoveries have been reported as a direct consequence of the disease. 
Notable outbreaks were recorded in the United States of America, Spain, Italy, Iran, Brazil and India -- 
which was a crucial battleground against the outbreak. The Indian government imposed very strict 
lockdown measures in order to attenuate the spread of the virus. Said measures have not been as effective 
as was intended (3), with India now reporting the largest number of confirmed cases in Asia, and the 
third highest number of confirmed cases in the world after the United States and Brazil (4), with the 
number of confirmed cases crossing the 1 million mark on July 17, 2020. On March 24, the Government 
of India ordered a 21-day nationwide lockdown, later extending it till May 3. This was followed by two-
week extensions starting May 3 and 17 with substantial relaxations. From June 1, the government started 
‘unlocking’ most regions of the country in three unlock phases. In order to formulate and implement 
policy geared toward containment and mitigation, it is important to recognize the presence of highly 
variable contagion patterns across different Indian states (5). There is a rising interest in studying 
potential trajectories that the infection can take in India to improve policy decisions.  

A spectrum of models for projecting infectious disease spread have become widely popular in wake of 
the pandemic. Some popular models include the ones developed at the Institute of Health Metrics (IHME) 
(6) (University of Washington, Seattle) and at the Imperial College London (7). The IHME COVID-19 
project initially relied on an extendable nonlinear mixed effects model for fitting parametrized curves to 
COVID-data, before moving to a compartmental model to analyze the pandemic and generate 
projections. The Imperial College model (henceforth ICM) works backwards from observed death counts 
to estimate transmission that occurred several weeks ago, allowing for the time lag between infection 
and death. A Bayesian mechanistic model is introduced - linking the infection cycle to observed deaths, 
inferring the total population infected (attack rates) as well as the time-varying reproduction number 
!(#). With the onset of the pandemic, there has been renewed interest in multi-compartment models, 
which have played a central role in modeling infectious disease dynamics since the 20th century (8). The 
simplest of compartmental models include the standard SIR (9) model, which has been extended (10) to 
incorporate various types of time-varying quarantine protocols, including government-level macro 
isolation policies and community-level micro inspection measures. Further extensions include one which 
adds a spatial component to this temporal model by making use of a cellular automata structure (11). 
Larger compartmental models include those which incorporate different states of transition between 
susceptible, exposed, infected and removed (SEIR) compartments, which have been used in the early 
days of the pandemic in the Wuhan province of China (12). The SEIR compartmental model has been 
further extended to the SAPHIRE model (13), which accounts for the infectiousness of asymptomatic 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.19.20198010doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.19.20198010
http://creativecommons.org/licenses/by/4.0/


 

5 

 

(14) and pre-symptomatic (15) individuals in the population (both of which are crucial transmission 
features of COVID-19), time varying ascertainment rates, transmission rates and population movement.  

Researchers and policymakers are relying on these models to plan and implement public health policies 
at the national and local levels. New models are emerging rapidly. Models often have conflicting 
messages and it is hard to distinguish a good model from an unreliable one. Different models operate 
under different assumptions and provide different deliverables. In light of this, it is important to 
investigate and compare the findings of various models on a given test dataset. While some work has 
been done in terms of trying to reconcile results from different models of disease transmission that can 
be fit to data emerging from local and national governments (16), more comparisons need to be done to 
investigate how differences between competing models might lead to differing projections. In the context 
of India, such head-to-head comparison across models are largely unavailable. 

We consider five different models of different genre, starting from the simplest baseline model. The 
baseline model we investigate relies on curve-fitting methods, with cumulative number of infected cases 
modeled as exponential process. Next, we consider the extended SIR (eSIR) model (10), which uses a 
Bayesian hierarchical model to generate projections of proportions of infected and removed people at 
future time points. The SAPHIRE (13) model has been demonstrated to reconstruct the full-spectrum 
dynamics of COVID-19 in Wuhan between January and March 2020 across 5 periods defined by events 
and interventions. Using the same model, we study the evolution of the pandemic in India over 4 well-
defined lockdown periods, each with distinct transmission and ascertainment features. Another model 
(henceforth, SEIR-fansy) modifies the SEIR model to account for high false negative rate and symptom-
based administration of COVID-19 tests. Finally, we study the ICM model, which utilizes a semi-
mechanistic Bayesian hierarchical model based on renewal equations that model infections as a latent 
process and links deaths to infections with help of survival analysis. Each of the models mentioned above 
have had appreciable success in being able to satisfactorily analyze and project the trajectory of the 
pandemic in different countries (17),(18),(19).  

In order to fairly compare and contrast the models mentioned above, we study their respective treatment 
of the different lockdown periods imposed by the Government of India. Additionally, we compare their 
projections based on reported data, with special emphasis on how the models deal with (if they do, at all) 
under-reporting and under-detection of COVID-cases, which has been a major point of discussion in the 
scientific community (20).   

The rest of the paper is organized as follows. In Section 2 we provide an overview of the various models 
considered in our analysis. The supplement has detailed discussion on the formulation, assumptions and 
estimation methods utilized by each of the models. We present the findings of our comparative 
investigation of the models in Section 3 and discuss the implications of our findings in Section 4.   
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2. METHODS  

 

2.1. Overview of models 

In this section, we discuss the assumptions and formulation of each of the five models described above. 

 

2.1.a. Baseline model 

Overview: The baseline model we investigate aims to predict the evolution of the COVID-19 pandemic 
by means of a regression-based predictive model (21).  More specifically, the model relies on a 
regression analysis of the daily cumulative count of infected cases based on the least-squares fitting. 
In particular, the growth rate of the infection is modeled as an exponentially decaying process. Figure 
1 provides a schematic overview of this model.  

 

 

Figure 1: Schematic overview of the baseline model. 

 

Formulation: The baseline model assumes that the following differential equation governs the 
evolution of a disease in a fixed population 

&'(#)
&# = λ'(#), (1) 

Input OutputModel
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where '(#) is defined as the number of infected people at time # and λ is the growth rate of infection. 
Unlike the other models described in subsequent sections, the baseline model analyses and projects only 
the cumulative number of infections, and not counts/proportions associated with other compartments. 
The model uses reported field data of the infections in India over a specific time period. The growth rate 
can be numerically approximated from Equation (1) above as 

λ!!, =
'!" − '!"#$
2 ⋅ '!"

. (2) 

 Having estimated the growth rate, the model uses a least-squares method to fit an exponential time-

varying curve to λ!0 , obtained from Equation (2) above. Using projected values of 1!0 , we extrapolate the 
number of infections which will occur in future.  

Implementation: The baseline model described above has been implemented in R using standard 
packages.  

 

2.1.b. Extended SIR (eSIR) model 

Overview: We use an extension of the standard susceptible-infected-removed (SIR) compartmental 
model known as the extended SIR (eSIR) model (10). To implement the eSIR model, a Bayesian 
hierarchical framework is used to model time series data on the proportion of individuals in the infected 
and removed compartments. Markov chain Monte Carlo (MCMC) methods are used to implement this 
model, which provides not only posterior estimation of parameters and prevalence values associated with 
all three compartments of the SIR model, but also predicted proportions of the infected and the removed 
people at future time points. Figure 2 is a diagrammatic representation of the eSIR model.  

 

Figure 2: The eSIR model with a latent SIR model on the unobserved proportions. Reproduced from 

Wang et al., 2020 (10). 
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Formulation: The eSIR model assumes the true underlying probabilities of the three compartments 
follow a latent Markov transition process and require observed daily proportions of infected and removed 
cases as input.  

The observed proportions of infected and removed cases on day t are denoted by 2!" and 2!#, respectively. 
Further, we denote the true underlying probabilities of the S, I, and R compartments on day t by 3!$, 3!", 
and 3!#, respectively, and assume that for any t, 3!$ + 3!" + 3!# = 1. Assuming a usual SIR model on the 
true proportions we have the following set of differential equations 

&3!$

&# = −53!$3!" , (37) 

&3!"

&# = 53!$3!" − 83!" , (39) 

&3!#

&# = 83!" , (3:) 

where 5 > 0  denotes the disease transmission rate, and 8 > 0  denotes the removal rate. The basic 
reproduction number !% ≔ 5/8 indicates the expected number of cases generated by one infected case 
in the absence of any intervention and assuming that the whole population is susceptible. We assume a 
Beta-Dirichlet state space model for the observed infected and removed proportions, which are 
conditionally independently distributed as 

2!"|@&, A ∼ CD#7E1"3!" , 1"(1 − 3!")F (47) 

2!#|@&, A ∼ CD#7E1#3!# , 1#(1 − 3!#)F. (49) 

Further, the Markov process associated with the latent proportions is built as: 

@&|@&'(, A ∼ HIJI:ℎLD#EMN(@&'(, 5, 8)F (5) 

where @& denotes the vector of the underlying population probabilities of the three compartments, whose 
mean is modeled as an unknown function of the probability vector from the previous time point, along 
with the transition parameters. A = (5, 8, @)* , P, M) denotes the whole set of parameters where 1" , 1# and 
M are parameters controlling variability of the observation and latent process, respectively. The function 
N(⋅) is then solved as the mean transition probability determined by the SIR dynamic system, using a 
fourth order Runge-Kutta (RK4) approximation (22). 

Priors and MCMC algorithm: The prior on the initial vector of latent probabilities is set as 
@)~Dirichlet(1 − 2+" − 2+# , 2+" , 2+#), 3%$ = 1 − 3%" − 3%#. The prior distribution of the basic reproduction 
number is lognormal such that Z(!%) = 3.28	(23). The prior distribution of the removal rate is also 
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lognormal such that Z(8) = 0.5436. We use the proportion of death within the removed compartment 
as 0.0184 so that the infection fatality ratio is 0.01	(24). For the variability parameters, the default choice 
is to set large variances in both observed and latent processes, which may be adjusted over the course of 

epidemic with more data becoming available: M, 	1" , 1# 	 ∼iid 	Gamma(2, 	10'.). 

Denoting #% as the last date of data availability, and assuming that the forecast spans over the period 
[#% + 1, b], our algorithm is as follows. 

Step 0. Take d draws from the posterior [@(:&% , A|e(:&%]. 

Step 1. For each solution path f ∈ {1,… ,d}, iterate between the following two steps via MCMC. 

 i. Draw @&
(1) from k@&l@!'+

(3'+), A(3)m, # ∈ {#% + 1,… , b}. 

ii. Draw e&
(1) from ke&l@!

(3), A(3)m, # ∈ {#% + 1,… , b}. 

Implementation: We implement the proposed algorithm in R package rjags (25) and the differential 
equations were solved via the fourth-order Runge–Kutta approximation. To ensure the quality of the 
MCMC procedure, we fix the  adaptation number at 10., thin the chain by keeping one draw from every 
10 random draws to reduce autocorrelation, set a burn-in period of 104 draws to let the chain stabilize, 
and start from 4 separate chains. Thus, in total, we have 2 × 104 effective draws with about 2 × 105  
draws discarded. This implementation provides not only posterior estimation of parameters and 
prevalence of all the three compartments in the SIR model, but also predicts proportions of the infected 
and the removed people at future time point(s).  The R package for implementing this general model for 
understanding disease dynamics is publicly available at https://github.com/lilywang1988/eSIR. 

 

2.1.c. SAPHIRE model 

Overview: This model (13) extends the classic SEIR model to estimate COVID-related transmission 
parameters, in addition to projecting COVID-19 counts, while accounting for pre-symptomatic 
infectiousness, time-varying ascertainment rates, transmission rates and population movements. Figure 

3 provides a schematic diagram of the compartments and transitions conceptualized in this model. The 
model includes seven compartments: susceptible (S), exposed (E), pre-symptomatic infectious (P), 
ascertained infectious (I), unascertained infectious (A), isolation in hospital (H) and removed (R). 
Compared with the classic SEIR model, SAPHIRE explicitly models population movement and introduce 
two additional compartments (A and H) to account for the fact that only ascertained cases would seek 
medical care and thus be quarantined by hospitalization. The model described and implemented here 
relies on the same methodology and arguments as presented by the authors of the SAPHIRE model. The 
only difference is that while the original model analyzed data from China over a time period of December 
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2019 to March 2020 (which constituted the initial days of the pandemic in China), we analyze data from 
India, for the initial period of the pandemic in India. Additionally, the original manuscript adjusted the 
model to account for population movement. With the lockdown in India being severe (several states 
closed their respective borders) and data on population movement not being available, we make no such 
modifications. Additionally, described in greater detail in the subsequent sections, we note that the 
SAPHIRE model returns reported and unreported cumulative COVID-case counts, in addition to 
cumulative counts of the removed compartment. As such, for the purpose of comparisons, the SAPHIRE 
model is used only to study cumulative COVID-case counts, and not active case counts or cumulative 
death counts. The R package for implementing this general model for understanding disease dynamics is 
publicly available at https://github.com/chaolongwang/SAPHIRE. 

Formulation: The dynamics of the 7 compartments described above at time # are described by the set of 
ordinary differential equations 

&o
&# = p −

9o(qr	 + 	qs	 + 	')
t −

po
t , (67) 

&Z
&# =

9o(qr	 + 	qs	 + 	')
t −

Z
H6
−
pZ
t , (69) 

&r
&# =

Z
H6
−
r
H7

−
pr
t , (6:) 

&s
&# =

(1 − J)r
H7

−	
s
H8
−	
ps
t 	, (6&) 

&'
&# =

Jr
H7

−	
'
H8
−	

'
H9
, (6D) 

&u
&# = 	

'
H9

−
u
H:
, (6N) 

&!
&# =

s + '
H8

+
u
H:
	−
p!
t , (6v) 

in which 9 is the transmission rate for ascertained cases (defined as the number of individuals that an 
ascertained case can infect per day), α is the ratio of the transmission rate of unascertained cases to that 
of ascertained cases, J  is the ascertainment rate, H6  is the latent period, H;  is the pre-symptomatic 

infectious period, H8 is the symptomatic infectiousness period, H9 is the duration from illness onset to 

isolation and H: is the isolation period in the hospital.  
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Figure 3: The SAPHIRE model with separate compartments for the latent, unascertained and 

ascertained cases. 

 

Under this setup, reproductive number ! (as presented in the original manuscript) may be expressed as 

! = q9 xHp'+ +
p
ty

'+
+ (1 − J)q9 xHi'+ +

p
ty

'+
+ J9EHi'+ + Hq'+F

'+, (7) 

in which the three terms represent infections contributed by pre-symptomatic individuals, unascertained 
cases and ascertained cases, respectively. The model adjusts the infectious periods of each type of case 
by taking population movement (p/t) and isolation (H9'+) into account. For the case of India, we set 

p	 = 	0.  

Initial states and parameter settings: We set α = 	0.55 , assuming lower transmissibility for 
unascertained cases. Compartment P contains both ascertained and unascertained cases in the pre-
symptomatic phase. We set the transmissibility of P to be the same as unascertained cases, because it has 
previously been reported that the majority of cases are unascertained (26). We assume an incubation 
period of 5.2 days and a pre-symptomatic infectious period H; = 2.3	days. The latent period was H6 =
	2.9	days. Because pre-symptomatic infectiousness was estimated to account for 44% of the total 

infections from ascertained cases (27), we set the mean of total infectious period as EH; + H8F =
H;/0.44	 = 	5.2 days, assuming constant infectiousness across the pre-symptomatic and symptomatic 

phases of ascertained cases – thus the mean symptomatic infectious period was H8 = 2.9 days. We set a 
long isolation period of H: = 30 days, but this parameter has no effect on the model fitting procedure, 

S E P

I

A

H

ROutflow Outflow Outflow

Outflow Outflow
b

b

b
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or the final parameter estimates. The duration from the onset of symptoms to isolation was estimated to 
be H9 = 	7 as the median time length from onset to confirmed diagnosis in periods 1 - 4 respectively. On 

the basis of the parameter settings above, the initial state of the model is specified on March 15. The 
initial number of ascertained symptomatic cases '(0) is specified as the number ascertained cases in 
which individuals experienced symptom onset during 12-14 March. The initial ascertainment rate is 
assumed to be J%	(J% = 2/100) , and thus the initial number of unascertained cases is s(0) =
J%'+(1 − J%)'(0) . r+(0)  and Z+(0)  denote the numbers of ascertained cases in which individuals 
experienced symptom onset during 15–16 March and 17–19 March, respectively. Then, the initial 
numbers of exposed and pre-symptomatic individuals are set as Z(0) = J%'+Z+(0)  and r(0) =
J%'+r+(0), respectively. The initial number of the hospitalized cases u(0) is set as half of the cumulative 
ascertained cases on 8 March since H9 = 7 and there would be more severe cases among the ascertained 

cases in the early phase of the epidemic. 

Likelihood and MCMC algorithm: Considering the time-varying strength of control measures 
implemented in India over the four lockdown periods, the model assumes that the value of 9	(J) 
corresponding to the I!: lockdown period is 98	(J8)	for	I = 1,2,3, 4. The observed number of ascertained 
cases in which individuals experience symptom onset on day # – denoted by ~! – is assumed to follow a 
Poisson distribution with rate λ! = Jr!'+H;'+, with r! denoting the expected number of pre-symptomatic 

individuals on day #. The following likelihood equation is used to fit the model using observed data from 
March 15 (b%) to June 18 (b+). 

�(9+, 9?, 9@, 9., J+, J?, J@, J.) =Ä
e-λt1!

C'

~!!

*(

!D*)

, 

and the model is used to predict COVID-counts from June 19 to July 18.  A non-informative prior of 
Ç(0,2) is used for 9+, 9?, 9@	and	9.. For J+, an informative prior of Beta(7.3, 24.6),	is used, by matching 
the first two moments of the estimate using data from Singapore, as done by the authors of the SAPHIRE 
model. Re-parameterizing J?, J@	and	J. as  

logit(J8) = logit(J8'+) + δ8 	for	I = 2,3,4 

where logit(#) = logE#/(1 − #)F  is the standard logit function. In the MCMC, δ8 ∼ t(0,1)	for	I	 =
	2, 3, 4. A burn-in period of 100,000 iterations is fixed, with a total of 200,000 iterations being run. 

 

2.1.d. SEIR-fansy model 

Overview: One of the problems with applying a standard SIR model in context of the COVID-19 
pandemic is the presence of a long incubation period. As a result, extensions of SIR model like the SEIR 
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model are more applicable. In the previous subsection we have seen an extension which includes the 
‘asymptomatic infectious’ compartment (people who are infected and contributing to the spread of the 
virus, but do not show any symptoms). In this model, we use an alternate formulation by defining an 
‘untested infectious’ compartment for infected people who are spreading infection but are not tested after 
the incubation period. This is necessary because there is a large proportion of infected people who are 
not being tested. We have assumed that after the ‘exposed’ node, a person enters the either ‘untested 
infectious’ node or the ‘tested infectious’ node. The ‘untested’ node mainly consists of the asymptomatic 
people. To incorporate the possible effect of misclassifications due to imperfect testing, we include a 
compartment for false negatives (infected people who are tested but reported as negative). As a result, 
after being tested, an infected person enters either into the ‘false negative’ node or the ‘tested positive’ 
node (infected people who are tested and reported to be positive). We keep separate nodes for the 
recovered and deceased persons coming from the untested and false negatives nodes which are 
‘recovered unreported’ and ‘deceased unreported’ respectively. For the ‘tested positive’ node, the 
recovered and death nodes are denoted by ‘recovered reported’ and ‘deceased reported’ respectively. 
Thus, we divide the entire population into 10 main compartments: S (Susceptible), E (Exposed), T 
(Tested), U (Untested), P (Tested positive), F (Tested False Negative), RR (Reported Recovered), RU 
(Unreported Recovered), DR (Reported Deaths) and DU (Unreported Deaths).  

Formulation: Like most compartmental models, this model assumes exponential times for the duration 
of an individual staying in a compartment. For simplicity, we approximate this continuous-time process 
by a discrete-time modeling process. The main parameters of this model are 5 (rate of transmission of 
infection by false negative individuals), q; (ratio of rate of spread of infection by tested positive patients 

to that by false negatives), qE	(scaling factor for the rate of spread of infection by untested individuals), 
H6 (incubation period in days), HF (mean days till recovery for positive individuals), H! (mean number 
of days for the test result to come after a person is being tested), àG (death rate due to COVID-19 which 
is the inverse of the average number of days for death due to COVID-19  starting from the onset of 
disease times the probability death of an infected individual due to COVID), 1	and	à (natural birth and 
death rates respectively, assumed to be equal for the sake of simplicity), J (probability of being tested 
for infectious individuals), N (false negative probability of RT-PCR test), 5+	7p&	5?'+ (scaling factors 
for rate of recovery for undetected and false negative individuals respectively), â+	and	â?'+  (scaling 
factors for death rate for undetected and false negative individuals respectively). The number of 
individuals at the time point # in each node is governed by the system of differential equations given by 
Equations (8a) – (8i). To simplify this model, we assume that testing is instantaneous. In other words, 
we assume there is no time difference from the onset of the disease after the incubation period to getting 
test results. This is a reasonable assumption to make as the time for testing is about 1-2 days which is 
much less than the mean duration of stay for the other compartments (further, once the person shows 
symptoms for COVID-19 like diseases, they are sent to get tested almost immediately). Figure 4 provides 
a schematic overview of the model.  

 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.19.20198010doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.19.20198010
http://creativecommons.org/licenses/by/4.0/


 

14 

 

 

Figure 4: Schematic diagram for the SEIR-fansy model with imperfect testing and misclassification. 

 

The following differential equations summarize the transmission dynamics being modeled.  

äo
ä# = −5

o(#)
t Eq7r(#) + qHÇ(#) + ã(#)F + 1t − ào(#), (87) 
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äHÇ
ä# = â+àGÇ(#) +

àGã(#)
â?

, (8ℎ) 

äH!
ä# = àGr(#). (8I) 

Using the Next Generation Matrix Method (28), we calculate the basic reproduction number  

!% =
5o%

àH6 + 1
å

qH(1 − J)
1

5+HF
+ â+àG + à

+
q7J(1 − N)
1
HF
+ àG + à

+
JN

5?
HF
+ àGâ?

+ à
ç , (9) 

where o% = λ/µ = 1 since we assume that natural birth and death rates are equal within this short period 
of time. Supplementary Table S1 describes the parameters in greater detail. 

Likelihood assumptions and estimation: Using Bayesian estimation techniques and MCMC methods 
(namely, Metropolis-Hastings method (29) with Gaussian proposal distribution) for estimating the 
parameters. First, we approximated the above set of differential equations using a discrete time 
approximation using daily differences. So, after we started with an initial value for each of the 
compartments on the day 1, using the discrete time recurrence relations we can find the counts for each 
of the compartments at the next days. To proceed with the MCMC-based estimation, we specify the 
likelihood explicitly. We assume (conditional on the parameters) the number of new confirmed cases on 
day # depend only on the number of exposed individuals on the previous day. Specifically, we use 
multinomial modeling to incorporate the data on recovered and deceased cases as well. The joint 
conditional distribution is 

P[rI6J(#), !I6J(#), HI6J(#)|Z(# − 1), r(# − 1)]
= P[rI6J(#)|Z(# − 1), r(# − 1)]. P[	!I6J(#), HI6J(#)|Z(# − 1), r(# − 1)]
= P[rI6J(#)|Z(# − 1)]. P[	!I6J(#), HI6J(#)|r(# − 1)]. 

A multinomial distribution-like structure is then defined 

rI6J(#)|Z(# − 1) ∼ CIp êZ(# − 1),
J(1 − N)
H6

ë , (107) 

!I6J(#), HI6J(#)|r(# − 1) ∼ díL# êr(# − 1), ì
1
HF
, àG , 1 −

1
HF
− àGîë . (109) 

Note: the expected values of Z(# − 1) and r(# − 1) are obtained by solving the discrete time differential 
equations specified by Equations (8a) – (8i). 
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Prior assumptions and MCMC: For the parameter J, we assume a Ç(0,1) prior, while for 5, we assume 
an improper non-informative flat prior with the set of positive real numbers as support. After specifying 
the likelihood and the prior distributions of the parameters, we draw samples from the posterior 
distribution of the parameters using the Metropolis-Hastings algorithm with a Gaussian proposal 
distribution. We run the algorithm for 200,000 iterations with a burn-in period of 100,000. Finally, the 
mean of the parameters in each of the iterations are obtained as the final estimates of 5 and J for the 
different time periods.  

 

2.1.e. Imperial College London model (ICM) 

Overview: Flaxman et al., 2020 introduce a Bayesian semi-mechanistic model for estimating the 
transmission intensity of SARS-CoV-2 (7). The model defines a renewal equation using the time-varying 
reproduction number !! to generate new infections. As a lot of cases in SARS-CoV-2 are asymptomatic 
and reported case data is unreliable especially in early part of the epidemic in India, the model relies on 
observed deaths data and calculates backwards to infer the true number of infections. The latent daily 
infections are modeled as the product of !!  with a discrete convolution of the previous infections, 
weighted using an infection-to-transmission distribution specific to SARS-CoV-2. We implement this 
Bayesian semi-mechanistic model in the context of COVID-19 data arising from India in order to 
estimate the reproduction number over time, along with plausible upper and lower bounds (95% Bayesian 
credible intervals) of the daily infections and the daily number of infectious people. We parametrize !! 
with a fixed effect and a random effect for each week over the course of the epidemic for each state. The 
fixed effect accounts for the variations in !! across India as a whole whereas the random effect allows 
for variations among different states. The weekly effects are encoded as a random walk, where at each 
successive step the random effect has an equal chance of moving upwards or downwards from its current 
value. The model is implemented using epidemia (30), a general purpose R package for semi-mechanistic 
Bayesian modelling of epidemics. Figure 5 represents a schematic overview of the model.  

Formulation: The true number of infected individuals, I, is modelled using a discrete renewal process. 
We specify a generation distribution (31) v  with density v(τ)  as v ∼ Gamma(6.5,0.62).  Given the 
generation distribution, the number of infections I!,3  on a given day	#, and state f is given by the 

following discrete convolution function: 

I!,3 = o!,3!!,3ñIL,3
!'+

LD%

v!'L, (117) 

o!,3 = 1 −
∑ IM,3!'+
MD%

t3
, (119) 
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where the generation distribution is discretized by vN = ∫ v(τ)&NO%.4
N'%.4  for ô = 2,3, …,	 and v+ =

∫ v(τ)&+.4
% τ. The population of state f is denoted by t3 . We include the adjustment factor o!,3  to 

account for the number of susceptible individuals left in the population. 

 

 

Figure 5: Schematic overview of ICM 

 

We define daily deaths, H!,3, for days # ∈ {1, … , p} and states f ∈ {1,… ,d}. These daily deaths are 

modelled using a positive real-valued function &!,3 = ZöH!,3õ that represents the expected number of 

deaths attributed to COVID-19. The daily deaths H!,3	are assumed to follow a negative binomial 
distribution with mean &!,3  and variance &!,3 +	&!,3? /ψ+ , where ψ+	follows a positive half normal 

distribution, i.e.,    

H!,3 ∼ NB	E&!,3, &!,3 +	&!,3? /ψ+F, 	 # = 1,… , p, (127) 

ψ+ ∼ tO(0,5). (129) 

We link our observed deaths mechanistically to transmission(7). We use a previously estimated COVID-
19 infection fatality ratio (IFR, probability of death given infection) of 0.01 together with a distribution 
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of times from infection to death π. To incorporate the uncertainty inherent in this estimate we allow the 
ifrQ	for every state to have additional noise around the mean. Specifically, we assume  

ifrQ∗ ∼ ifrQ ⋅ t(1, 0.1). (13) 

Using estimated epidemiological information from previous studies, we assume the distribution of times 
from infection to death  π (infection-to-death) to be the convolution of an infection-to-onset distribution 
(πS)	(32) and an onset-to-death distribution (24) 

π ∼ Gamma(5.1, 0.86) + Gamma(17.8, 0.45). (14) 

The expected number of deaths &!,3, on a given day #, for state f is given by the following discrete sum 

&!,3 = ifrQ∗ ñIL,3
!'+

LD%

π!'L, (15) 

where IT,3  is the number of new infections on day ü in state f and where, similar to the generation 

distribution, † is discretized via πN = ∫ π(τ)&NO%.4
N'%.4 τ for ô = 2,3, …, and π+ = ∫ π(τ)d+.4

% τ, where π(τ) 
is the density of π. 

We parametrize !!,3 with a random effect for each week of the epidemic as follows    

!!* = !% ⋅ NE−ϵJ(!,3) − ϵ3,J(!,3)N!U!6 F, (16) 

where N(~) = 2 D~¢(~) /(1 + D~¢(~))  is twice the inverse logit function, and ϵJ(!)  and 

£3,J(!,3)N!U!6 	follows a weekly random walk (RW) process, that captures variation between !!,3 in each 

subsequent week.  £J(!) is a fixed effect estimated across all the states and £3,J(!,3)N!U!6  is the random effect 

specific to each state. The prior distribution for !%	(23) was chosen to be   

  
!% ∼ t(3.28,0.5). (17) 

We assume that seeding of new infections begins 30 days before the day after a state has cumulatively 
observed 10 deaths. From this date, we seed our model with 6 sequential days of an equal number of 
infections: I+ = ⋯ = I5 ∼ Exponential(τ'+), where τ ∼ Exponential(0.03). These seed infections are 
inferred in our Bayesian posterior distribution. 

We estimated parameters jointly for all 20 states. Fitting was done with the R package epidemia (30) 
which uses STAN (33), a probabilistic programming language, using an adaptive Hamiltonian Monte 
Carlo (HMC) sample.  
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2.2 Comparing models and evaluating performance 

 

2.2.a Choice of parameters 

In order to implement the models described previously, we make certain assumptions (which are then 
utilized in back-calculations) in order to specify the model parameters. The initial reproduction number 
is fixed at !	 = 	3.28(23). Unless mentioned otherwise, the mean time duration (in days) from infection 
to onset of symptoms is set at H6 = 5.1(34), while that from onset of symptoms to recovery is set at HF =
17.8(13). The infection fatality rate was set at 0.01(24). The initial mean value of the removal rate is 
γ% = 0.5436 and the proportion of death within the removed compartment is 0.01/0.5436	 = 	0.0184.   

 

2.2.b Metrics used for evaluation of models 

Having established differences in the formulation of the different models, we compare their respective 
projections and inferences. In order to do so, we use the same data sources(35),(36) for all five models. 
Well-defined time points are used to denote training (March 15 to June 18) and test (June 19 to July 18) 
periods. 

Using the parameter values specified above along with data from the training period as inputs, we 
compare the projections of the five models with observed data from the test period. In order to do so, we 
use the symmetric mean absolute prediction error (SMAPE) and mean squared relative prediction error 
(MSRPE) metrics as a measure of accuracy. Given observed time-varying data {©!}!D+*  and an analogous 
time-series dataset of projections {r!}!D+* , the SMAPE metric is defined as  

odsrZ(©! , r!) =
100
b ⋅ñ

|r! − ©!|
(|r!| + |©!|)/2

!D*

!D+

, (18) 

and the MSRPE is defined as 

do!rZ(©! , r!). = ™b'+ñì1 −
r!
©!
î
?*

!D+

´
+/?

. (19) 

It can easily be seen that 0	 ≤ odsrZ ≤ 100 , with smaller values of both MSRPE and SMAPE 
indicating a more accurate fit. The baseline model yield projections of reported COVID-cases alone. The 
SAPHIRE and SEIR-fansy models return projections of reported and unreported COVID-cases and 
COVID-deaths separately. Finally, projections from ICM include true counts of COVID-cases (i.e., the 
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sum of reported and unreported cases), in addition to true counts of COVID-deaths. Supplementary Table 

S2 gives an overview of output from each of the models we consider.  

In order to ensure a fair comparison, we compute the prediction error of reported projections from the 
models with respect to the observed data. Since the ICM projections are total counts (sum of reported 
and unreported), we do not include the same in this specific comparison method. For cumulative case 
counts, the model accuracies (SMAPE and MSRPE) are computed for all other models. For active cases 
(and cumulative deaths), accuracies of only the eSIR and SEIR-fansy models may be computed, as no 
other model returns projections for reported active case (and death) counts. Further, we compare (when 
possible) the estimated time-varying reproduction number !(#)  over the four different stages of 
lockdown in India. Specifically, for each lockdown stage, we report the median !(#) value along with 
the associated 95% confidence interval CI. In addition to a systemic comparison of !(#),  we also 
compare the projected active reported cases, cumulative cases and deaths on certain dates (specifically, 
June 30 and July 10) within the test period. The values are presented in Table 2.  

Since we are interested in comparing relative performances of the models (specifically, their projections), 
we define another metric – the relative mean squared prediction error (Rel-MSPE). Given time series 
data on observed cumulative cases (or deaths) {©!}!D+* , projections from a model A {r!W}!D+* , and 
projections from some other model B, {r!X}!D+* , the Rel-MSPE of model B with respect to model A is 
defined as  

!DL − dorZ(C: s) = ™ñê
©! − r!W

©! − r!X
ë
?*

!D+

´
+/?

(20) 

Since the baseline model yields projections of reported cumulative cases alone, we compute Rel-MSPE 
for the other models with respect to the baseline model for reported cumulative cases. Projections from 
ICM represent total (i.e., sum of reported and unreported) cumulative cases and deaths and are left out 
of this comparison of reported counts. For cumulative reported deaths, we compute Rel-MSPE of the 
SAPHIRE and SEIR-fansy and relative to the eSIR model. In addition to comparing the accuracy of fits 
that arise from the different models, we also investigate if projections from the different models are 
correlated with observed data. We use the standard Pearson’s correlation coefficient and Lin’s 
concordance correlation coefficient(37) as summary measures to study said correlation. Rel-MSPE and 
correlation metrics are presented in Table 3. As before, we carry out our comparisons based on the 
reported projections (and not the sum of reported and unreported projections) from the two SEIR models. 
No such consideration has to be made for the other three models. 

Since two models (SAPHIRE and SEIR-fansy) yield both reported as well as unreported counts of active 
or cumulative cases in addition to cumulative deaths, Table 4 reports said counts on two specific dates – 
June 30 and July 10. 
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2.3 Data source 

The data on confirmed cases, recovered cases and deaths for India and the 20 states of interest are taken 
from COVID-19 India (35) and the JHU CSSE COVID-19 GitHub repository (36). In addition to this 
and other similar articles concerning the spread of this disease in India, we have created an  interactive 
dashboard (38) summarizing COVID-19 data and forecasts for India and its states. 
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3. RESULTS 

 

3.1. Estimation of reproduction number 

From Table 2, we compare the mean of the time-varying effective reproduction number !(#) over the 

four phases of lockdown in India. The eSIR model does not return phase-specific values but returns a 

mean value of 2.08 (95% CI: 1.41 to 2.12) over the entire lockdown period. The mean (and 95% CI) 

values returned by the SAPHIRE model is 2.08 (95% CI: 2.05 to 2.11) during phase one of the lockdown, 

1.42 (95% CI: 1.40 to 1.44) for phase two, 1.24 (95% CI: 1.23 to 1.26) for phase three and 1.28 (95% 

CI: 1.27 to 1.29) for the fourth and final lockdown phase. The SEIR-fansy notes that the mean drops from 

4.09 (95% CI: 3.99 to 4.20) during the first phase of lockdown, to 1.72 (95% CI: 1.70 to 1.76) during the 

fourth lockdown phase. The ICM-based mean values fluctuate, from 1.41 (95% CI: 1.12 to 1.77) during 

the first lockdown phase, followed by 1.20 (95% CI: 0.92 to 1.50), then dropping to  1.29 (95% CI: 1.01 

to 1.59) and finally rising to 1.41 again (95% CI: 1.11, 1.77) for the fourth phase of lockdown. In terms 

of agreement of reported values, SAPHIRE, SEIR-fansy and ICM report the highest mean ! for phase 

one of the lockdown. While values reported by SEIR-fansy show a steady decrease over subsequent 

lockdown phases, both SAPHIRE and ICM report a drop in intermediate lockdown phases, followed by 

a rise. While SAPHIRE reports the lowest value of ! for phase three, ICM reports the lowest value of ! 

for phase two. 

 

3.2 Estimation of reported case counts 

From Figure 6 and Figure 9, we note that the eSIR model overestimates the count of confirmed 

cumulative cases – a behavior which gets worse with time. The SAPHIRE, SEIR-fansy and baseline 

models slightly underestimate the count, with the baseline model performing the best, followed closely 

by SAPHIRE. This observation is supported by Table 2 and Table 3 as well – the projections from the 

baseline and SAPHIRE model on two specific dates (June 30 and July 10) are closer to the actual 

observed counts as compared to the other models. Additionally, the SMAPE and MSRPE values 

associated with the baseline model (1.76% and 0.03, respectively) are smaller than the other models. 

Table 2 reveals a consistent behavior of model performance in terms of the SMAPE and MSRPE metrics, 

with the baseline model performing the best (SMAPE: 1.76%, MSRPE: 0.03), followed by the SAPHIRE 

model (SMAPE: 2.07%, MSRPE: 0.05), then the SEIR-fansy model (SMAPE: 3.20%, MSRPE: 0.06) 

and finally, the eSIR model (SMAPE: 23.10, MSRPE: 0.87). Table 3 further reveals a similar comparison 

through Rel-MSPE values (all Rel-MSPE figures reported here are relative to the baseline model). The 

SAPHIRE model performs the best (Rel-MSPE: 3.819), followed by SEIR-fansy (with Rel-MSPE: 

0.579), and finally, the eSIR model (Rel-MSPE: 0.225). All four sets of projections are highly correlated 

with the observed time series – with the baseline, SAPHIRE and SEIR-fansy models having a Pearson’s 
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correlation coefficient of 1 with the observed data, while the eSIR model yields a value of 0.985. Lin’s 

concordance coefficient yields an ordering (from best to worst) of the baseline model (0.991), followed 

by the SAPHIRE model (0.975), the SEIR-fansy model (0.965) and finally, the eSIR model (0.316).  

Comparing confirmed active case counts across models, from Figure 7 and Figure 10, we note a similar 

behavior, with the eSIR model consistently overestimating counts, while the SEIR-fansy model performs 

the best – Table 2 and Table 3 support this observation. The projection from the SEIR-fansy model are 

the closest to the actual observed values on June 30 and July 10. The eSIR model is much further off the 

mark. In terms of prediction accuracy, the SEIR-fansy model has an SMAPE value of 0.72% and an 

MSRPE value of 0.02. For eSIR model, those values are at 33.83% (SMAPE) and 1.55 (MSRPE).  

 

3.3. Estimation of reported death counts 

From Figure 8 and Figure 11, we note that the eSIR and SEIR-fansy models almost always overestimate 

the confirmed cumulative death counts. The eSIR model exhibits the poorest performance of the four 

models considered here – projecting an exponentially growing death count, whereas the observed data 

and projections from the SEIR-fansy model shows a linear-like trend. From Table 2 and Table 3, the 

SMAPE and MSRPE values, along with comparison of projections with observed data reveal that the 

SEIR-fansy model is the more accurate (SMAPE: 7.13%, MSRPE: 0.19) as compared to the eSIR model 

(SMAPE: 26.30%, MSRPE: 1.07). Relative to the eSIR model, the Rel-MSPE values of the models 

reveal that the SEIR-fansy model performs better (Rel-MSPE: 7.61). Judging by values of Pearson’s 

correlation coefficient, both sets of projections are highly correlated with the observed data. Lin’s 

concordance coefficient yields an ordering of SEIR-fansy (0.742), followed by eSIR (0.206). 

 

3.4. Estimation of unreported case and death counts 

From Table 4, we observe that the SEIR-fansy model projects the maximum count of active cases and 

cumulative deaths on June 30 and July 10, followed by the ICM. The relative ordering of projections is 

reversed for cumulative cases, with the ICM projecting maximum case counts, followed by the SEIR-

fansy model and finally, the SAPHIRE model.     Comparing underreporting factors (total 

counts/observed counts), we note that the factors remain fairly comparable over time (June 30 vs July 

10). For active case counts and cumulative death counts, the factor is higher for SEIR-fansy   as compared 

to ICM.  For cumulative case counts, SAPHIRE has the highest factor, followed by ICM and finally, 

SEIR-fansy.  
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4. DISCUSSION 

In this comparative paper we have described five different models of various stochastic structures that 

have been used for modeling SARS-Cov-2 disease transmission in various countries across the world. 

We applied them to a case-study in modeling the full disease transmission of the coronavirus in India. 

While simulation studies are the only gold standard way to compare the accuracy of the models, here we 

were uniquely poised to compare the projected case-counts against observed data on a test period. We 

learned several things from these models. While the estimation of the reproduction number is relatively 

robust across the models, the prediction of daily active number of cases does show variation across 

models. The largest variability across models is observed in predicting the “total” number of infections 

including reported and unreported cases.  The degree of underreporting has been a major concern in India 

and other countries(34). On two specific dates (June 30 and July 10), for cumulative case counts, we 

estimate the underreporting factors to be 27.79 and 26.74 respectively from the SAPHIRE model, 7.74 

and 7.53 respectively from SEIR-fansy and 9.15 and 7.67 respectively from ICM. Similarly, for 

cumulative death counts, SEIR-fansy yields underreporting factors 3.62 on June 30 and 3.99 on July 10, 

while ICM notes that the underreporting factor is approximately 2.00 for both dates. With a 

comprehensive exposition and a single beta-testing case-study we hope this paper will be useful to 

understand the mathematical nuances and the differences in terms of deliverables for the models. 

 

There are several limitations to this work. First and foremost, all model estimates are based on a scenario 

where we assumed no change in either interventions or behavior of people in the forecast period. This is 

not true as there is tremendous variation in policies across Indian states in the post lock-down phase. We 

did observe regional lockdowns that were enacted in the forecast period. None of our models tried to 

capture this variability. Second, the five models we compare are a subset of vast amount of work that has 

been done in this area, particularly models that incorporate age-specific contact network and 

spatiotemporal variation. Finally, an extensive simulation study would be the best way to assess the 

models under different scenarios but we have restricted our attention to India. Finally, we only report 

point estimates and have not compared the uncertainty estimates from each model which also play a key 

role in our choice.  
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Table 1: Overview of models studied. 

 

(1)	%!: time of crossing 50 confirmed cases – March 12, 2020. %": June 18, 2020. %#: June 18, 2020.  
(2) &(')(): susceptible-(exposed)-infected-removed.  
(3) MCMC: Markov chain-Monte Carlo. 
(4) Hamiltonian Monte Carlo. 
 
 
 
 
 
 

Name of model Comments Input(s) and output(s) Parameter(s) and estimation 

Baseline 
(Bhardwaj, R. 2020) 

Curve-fitting model.  
Cumulative number of infected cases 
modeled as exponential process, with 
growth rate *. 

Daily time series of number of infected 
individuals from %! till %"1 (as input) and 
from %" to %#2 (as output).  

Time varying growth rate of infection is estimated from input and 
modeled using least-squares regression. Maximum likelihood 
approach used for estimation.  

eSIR 
(Wang, L. et al., 2020)  

Extension of the standard SIR2 
compartmental model. 

Daily time series data on proportion of 
infected and recovered individuals from %! 
till %"1 (as input) and from %" to %#2 along 
with posterior distribution of parameters 
and prevalence values of the three 
compartments in the model (as output). 

,	and - control transmission and removal rates respectively. .	and / 
control variability of observed and latent processes respectively. 
Estimation involves implementing MCMC3 methods for a 
hierarchical Bayesian framework. 

SAPHIRE 
(Hao, X. et al., 2020) 

Extension of the standard SEIR2 
compartmental model. 

Daily time series data from %!  till %"1 on 
count of infected individuals (as input) and 
count of infected and removed individuals 
from %"  to %# 2 along with posterior 
distributions of parameters (as output). 
Unreported cases are also presented.  

See Section 2.1.c for details on parameters. Estimation involves 
implementing MCMC3 methods for a Bayesian framework. 

SEIR-fansy 

(Bhaduri, R., Kundu, R. et al., 
2020) 

Another extension of standard SEIR2, 
accounting for the possible effect of 
misclassifications due to imperfect testing. 

Daily time series data from %!  till %"1 on 
proportion of dead, infected and recovered 
individuals (as input) and from %"  to %#2 
along with posterior distributions of 
parameters and prevalence values of 
compartments in the model (as output). 
Unreported cases and deaths are also 
projected. 

See Supplementary Table S1 for details on parameters. Estimation 
involves implementing MCMC3 methods for a hierarchical Bayesian 
framework. 

ICM 
(Flaxman et.al., 2020) 

Renewal equation used to model infections 
as a latent process. Deaths are linked to 
infections via a survival distribution. 
Accounts for changes in behavior and 
various governmental policies enacted.  

Daily time series data from %!  till %"1 on 
count of dead individuals (as input) and 
from  %"  to %#  (as output). Posterior over 
infections, deaths and various parameters.  
Infections include both symptomatic and 
asymptomatic ones. 

See Section 2.1.e for details on parameters.  
Estimation is done via HMC4 using STAN. 
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Table 2: Comparison of projections and prediction accuracies of the models under consideration. 

 

 

Model 

Baseline eSIR SAPHIRE SEIR-fansy ICM 

Es
tim

at
ed

 m
ea

n 
re

pr
od

uc
tio

n 
nu

m
be

r 
0 

[9
5%

 C
I]

 

Lockdown 1.0 
(March 25 – April 14) - 

2.08 
[1.41, 2.12] 

2.08 
[2.05, 2.11] 

4.09 
[3.99, 4.20] 

1.41 
[1.12, 1.77] 

Lockdown 2.0 
(April 15 – May 3) - 1.42 

[1.40, 1.44] 
2.40 

[2.37, 2.45] 
1.20 

[0.92, 1.50] 

Lockdown 3.0 
(May 4 – May 17) - 1.24 

[1.23, 1.26] 
1.78 

[1.75, 1.83] 
1.29 

[1.01, 1.59] 

Lockdown 4.0 
(May 18 – May 31) - 1.28 

[1.27, 1.29] 
1.72 

[1.70, 1.76] 
1.41 

[1.11, 1.77] 

M
od

el
- w

ise
 c

om
pa

ri
so

n 
of

 p
re

di
ct

ed
 a

nd
 

co
nf

ir
m

ed
 C

O
V

ID
-

co
un

ts
 

Active cases on June 30: 220,544 
(on July 10: 284,212) - 384,480 

(811,430) - 218,688 
(289,004) - 

Cumulative cases on June 30: 
585,481  

(on July 10: 820,916) 

568,564 
(790,089) 

819,030 
(1,649,776) 

568,074 
(774,693) 

552,797 
(762,742) - 

Cumulative deaths on June 30: 
17,411  

(on July 10: 22,146) 
- 25,596 

(49,326) - 19,342 
(27,432) - 

M
od

el
-w

ise
 c

om
pa

ri
so

n 
of

 p
re

di
ct

io
n 

ac
cu

ra
cy

 
us

in
g 

SM
A

PE
 (M

SR
PE

) 

Active cases - 33.83 
(1.55) - 0.72 

(0.02) - 

Cumulative cases 1.76 
(0.03) 

23.10 
(0.87) 

2.07 
(0.05) 

3.20 
(0.06) - 

Cumulative deaths - 26.30 
(1.07) - 7.13 

(0.19) - 
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Table 3: Comparison of relative performance and correlation with observed data of projections of the models under consideration. 

Observed data 
(confirmed) Metric 

Model 

Baseline eSIR SAPHIRE SEIR-fansy ICMe 

Cumulative cases 

Rel-MSPEa 1 0.225 3.819 0.579 - 

Pearson’s correlation 
coefficientb 1 0.985 1 1 - 

Lin’s concordance 
coefficientb 0.991 0.316 0.975 0.965 - 

Cumulative deaths 

Rel-MSPEc - 1 - 7.605 - 

Pearson’s correlation 
coefficientd - 0.978 - 0.999 - 

Lin’s concordance 
coefficientd - 0.206 - 0.742 - 

 
a. For cumulative reported cases, Rel-MSPE is defined relative to projections from the baseline model.  
b. For cumulative reported cases, the correlation coefficients of the projections are compared with respect to observed data.  
c. For cumulative reported deaths, Rel-MSPE is defined relative to projections from the eSIR model.   
d. For cumulative reported deaths, the correlation coefficients of the projections are compared with respect to observed data.  
e. The ICM model returns total (reported + unreported) case and death counts, so we leave it out of our comparisons.  
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Table 4: Projected total (sum of reported and unreported) counts of cases (active and cumulative) and deaths (cumulative) from the SAPHIRE, SEIR-fansy and ICM models. 

Projected total 
counta 

Projection from model on June 30  

(and July 10) Observed total 
countb 

Underreporting factorc on June 30 

(and July 10) 

SAPHIRE SEIR-fansy ICM SAPHIRE SEIR-fansy ICM 

Active cases - 
1,345,325 

(1,773,330) 

798,204 

(794,218) 

220,544 

(284,212) 
- 

6.10 

(6.24) 

3.62 

(2.79) 

Cumulative cases 
16,270,126 

(21,947,569) 

4,532,027 

(6,178,763) 

5,354,425 

(6,297,897) 

585,481  

(820,916) 

27.79 

(26.74) 

7.74 

(7.53) 

9.15 

(7.67) 

Cumulative deaths - 
63,112 

(88,378) 

34,771 

(44,231) 

17,411  

(22,146) 
- 

3.62 

(3.99) 

2.00 

(2.00) 
 

a. Projected total count includes both reported as well as unreported values. 
b. Observed total count represents only reported values. 
c. Defined as projected total/observed reported counts, where total is the sum of reported and unreported cases. 
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FIGURES 

Figure 6: Comparison of projected and observed reported cumulative cases from June 19 to July 19 for 
India, using training data from March 15 to June 18. 

 

Figure 7: Comparison of projected and observed reported active cases from June 19 to July 19 for 
India, using training data from March 15 to June 18. 
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Figure 8: Comparison of projected and observed reported deaths from June 19 to July 19 for India, 
using training data from March 15 to June 18. 
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Figure 9: Scatter plot and marginal densities of projected and observed reported cumulative cases 
from June 19 to July 19 for India, using training data from March 15 to June 18. 
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Figure 10: Scatter plot and marginal densities of projected and observed reported active cases from 
June 19 to July 19 for India, using training data from March 15 to June 18. 
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Figure 11: Scatter plot and marginal densities of projected and observed reported deaths from June 19 
to July 19 for India, using training data from March 15 to June 18. 
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Supplementary Table S1: Summary of initial values and parameter settings for application of the SEIR-fansy model in the context of COVID-19 data from India. 

Parameters Settings Description 

! Time-varying Rate of infectious transmission by infected individuals with false negative test results.  

"! 0.5 Ratio of rate of spread of infection by patients who test positive, to rate of spread of infection by patients 
who get false negative resultsa. 

"" 0.7 Scaling factor for the rate of spread of infection by untested individualsa. 

## 5.1 Incubation period (in days). 

#$ 17.8 Recovery time (in days) for infected individuals.  

#% 0 Waiting time (in days) for test result for tested individuals. 

$& 0.0562 Death rate attributable to COVID-19b. 

%, $ 3.95 × 10'( Natural birth and death rates, respectivelyb. 

. Time-varying Probability of being tested for infectious individuals. 

/ 0.30 Probability of a false negative RT-PCR diagnostic test result. 

!), !* 0.6 (0+) and 0.7 (0,) Scaling factors for rate of recovery for undetected and false negative individuals respectivelye. 

1), 1* 0.3 (2+) and 0.7 (2,) Scaling factors for death rate for undetected and false negative individuals respectivelyf. 

a. 3-	 < 	1		represents the scenario where individuals who test positive are infecting susceptible individuals are a lower rate than infected individuals with false negative test 
results.	3/ 	< 	1 is assumed as U mostly consists of asymptomatic or mildly symptomatic cases who are known to spread the disease at a much lower rate than those with 
higher levels of symptoms. 

b. Equal to the inverse of the average number of days for death starting from the onset of disease, times the probability of death of an infected individual. Natural birth and 
death rates are assumed to be equal for simplicity.  

c. 0+ < 1, 	0, < 1 are assumed, since the recovery rate is slower for individuals with false negative test results as compared to those who have been hospitalized. The condition 
of untested individuals is not as severe as they consist of mostly asymptomatic people. Consequently, they are assumed to recover faster than those with positive test results.  
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d. 2+ < 1, 	2, < 1 are assumed. The death rate for those with false negative test results is assumed to be higher than those with positive test results, since the former are not 
receiving proper treatment. For untested individuals, the death rate is taken to be lesser because they are mostly asymptomatic. As a result, their survival probability is much 
higher. 

 

Supplementary Table S2: Overview of projected COVID-counts for each model considered. 

Type of count projected 

COVID-counts 

Cumulative 

COVID-cases 

Active 

COVID-cases 

Cumulative 

COVID-deaths 

Reported Baseline, eSIR, SAPHIRE, SEIR-fansy eSIR, SEIR-fansy eSIR, SEIR-fansy 

Unreported SAPHIRE, SEIR-fansy SEIR-fansy SEIR-fansy 

Total  

(reported + unreported) 
SAPHIRE, SEIR-fansy, ICM SAPHIRE, SEIR-fansy, ICM SEIR-fansy, ICM 
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