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Abstract

Objective
Patient information can be retrieved more efficiently in electronic medical record
(EMR) systems by using machine learning models that predict which information
a physician will seek in a clinical context. However, information-seeking
behavior varies across EMR users. To explicitly account for this variability, we
derived hierarchical models and compared their performance to non-hierarchical
models in identifying relevant patient information in intensive care unit (ICU) cases.

Materials and Methods
Critical care physicians reviewed ICU patient cases and selected data items
relevant for presenting at morning rounds. Using patient EMR data as predictors,
we derived hierarchical logistic regression (HLR) and standard logistic regression
(LR) models to predict their relevance.

Results
In 73 pairs of HLR and LR models, the HLR models achieved an area under the
ROC curve of 0.81, 95% CI [0.80, 0.82], which was statistically significantly
higher than that of LR models (0.75, 95% CI [0.74-0.76]). Further, the HLR
models achieved statistically significantly lower expected calibration error (0.07,
95% CI [0.06-0.08]) than LR models (0.16, 95% CI [0.14-0.17]).

Discussion
The physician reviewers demonstrated variability in selecting relevant data. Our
results show that HLR models perform significantly better than LR models with
respect to both discrimination and calibration. This is likely due to explicitly
modeling physician-related variability.

Conclusion
Hierarchical models can yield better performance when there is physician-related
variability as in the case of identifying relevant information in the EMR.

Keywords: Electronic medical records, Information-seeking behavior, Machine
learning, Physician variability, Hierarchical modeling
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1 Introduction

A key source of frustration with electronic medical record (EMR) systems stems from the inability
to retrieve relevant patient information efficiently [1, 2, 3, 4]. Current EMR systems do not possess
sophisticated search capability nor do they prioritize patient information relative to the clinical task at
hand [5, 6]. The inability to identify relevant patient information can lead to poor care and medical
errors [7, 8, 9]. Further, in complex clinical environments, such as the intensive care unit (ICU), large
quantities of data per patient accumulate rapidly [10], which can exacerbate information retrieval
challenges. EMR systems that prioritize the display of relevant patient information are therefore
needed to minimize the time and effort that physicians spend in identifying relevant information.

Various solutions have been proposed for effective prioritization and display of patient information
in EMR systems [11, 12, 13, 14], most of which are based on rules that have been developed to
customize and organize the display of patient information. In contrast to rule-based approaches, we
developed and evaluated a data-driven approach called the learning EMR (LEMR) system in a prior
study [15, 16]. The LEMR system tracks physician information-seeking behavior and uses it to learn
machine learning models that predict which information is relevant in a given clinical context. Those
predictions are used to highlight the relevant data in the EMR system to draw a physician’s attention.

However, information-seeking behavior has been shown to vary across individual physicians as well
as across EMR system user types such as physicians, nurses, and pharmacists [1, 5]. In this study, we
use hierarchical models to explicitly model this variability because such models have been shown to
be useful when the data are collected from subjects with different behaviors [17]. In particular, we
compare the performance of hierarchical logistic regression models and standard logistic regression
models in predicting relevant patient information in a LEMR system.

The remainder of this paper is organized as follows. In the Background section, we review the LEMR
system, briefly describe hierarchical models, and describe prior work on physician-related variability.
In the Methods section, we describe the data collection and preparation, the experimental details, and
the evaluation measures. We present the results of the experiments in the Results section, and close
with Discussion and Conclusion sections.

2 Background

In this section, we provide brief descriptions of the LEMR system, hierarchical models, and past
studies that have examined physician-related variability.

2.1 The LEMR system

The LEMR system uses a data-driven approach to prioritize patient information that is relevant in
the context of a clinical task [15, 16]. The system uses machine learning to automatically identify
and highlight relevant patient information for a specified task, for example, the task of summarizing
a patient’s clinical status at morning rounds in the ICU. In ICU morning rounds, the clinical team
reviews pertinent information and the status of each patient; for each patient, one team member
reviews information in the EMR system and orally presents a summary of the patient’s clinical
status to the team. Reviewing and identifying relevant patient information, called pre-rounding,
is time-consuming and laborious. The goal of the LEMR system is to use machine learning to
automatically identify and highlight the relevant information required for a given clinical task such as
pre-rounding. The predictive models of the LEMR system are derived using the information-seeking
behavior of physicians when they search for relevant information in the EMR in the context of the
clinical task. In particular, eleven critical care physicians reviewed the EMRs of ICU patients and
marked the information that was relevant to pre-rounding, and predictive models were developed
from this data.

2.2 Hierarchical models

Hierarchical models, also known as multilevel models, are useful in modeling hierarchically structured
data because they can capture variability at different levels of the hierarchy [17]. For example, consider
predicting the mortality rate in a hospital with several units, such as critical care, general medical
care, and emergency care. The data has a two-level hierarchical structure with the hospital at the
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first level and the units at the second level of the hierarchy. The overall mortality rate at the hospital
level is obtained by combining the unit-level mortality rates in some fashion. A hierarchical model
explicitly estimates the variability of the mortality rates across the units and uses those estimates to
derive the hospital level mortality rate, which can result in a better estimate of the overall mortality
rate compared to using non-hierarchical models.

In a similar fashion, the information-seeking data used to develop the LEMR models has a two-level
hierarchical structure, where the top level corresponds to data that denote the entire population
of physician reviewers and the bottom level corresponds to data that denote individual physicians.
For specific patient information such as serum creatinine, its relevance is expected to differ across
physician reviewers. A hierarchical model of the LEMR data explicitly captures this variability that
is likely to be useful in deriving more accurate predictive models.

2.3 Physician-related variability

Physician-related variability in healthcare outcomes has been of interest for decades, going back
to the 1970s with studies reporting the effects of geographic location on clinical outcomes such as
mortality and length of stay [18]. In particular, variation in individual physician characteristics and
practice styles has been recognized as a source of variability in clinical outcomes after adjusting for
the health status of patients and the quality of healthcare services [5, 19, 20, 21, 22, 23, 24, 25]. For
example, variability in cesarean section rates has been attributed to physician practice style after
controlling for patient characteristics and risk factors, status of the medical facility, and physician
years of experience [25]. A study concluded that variability across individual physicians may impact
the quality of preference-sensitive critical care delivery [20]. A recent study analyzed physician
search patterns in the EMR and uncovered considerable variation in information-seeking behavior
[5]. In general, hierarchical modeling has been applied in various clinical settings to account for
physician-related variability where the data has a hierarchical structure and can be grouped by a
variety of factors such as country, state, or hospital site [26, 27, 28, 29, 30, 31, 32].

3 Method

In this section, we first describe the dataset and the data preparation steps. Then we describe the
experimental methods including the development and evaluation of predictive models.

3.1 Dataset

One-hundred seventy-eight ICU patient cases with a diagnosis of either acute kidney failure (AKF;
ICD-9 584.9 or 584.5; 93 cases) or acute respiratory failure (ARF; ICD-9 518.81; 85 cases) were
selected randomly from patients who were admitted between June 2010 and May 2012 to an ICU
at the University of Pittsburgh Medical Center. Eleven critical care medicine physicians reviewed
the patient cases in the LEMR system and for each patient indicated which patient information was
relevant to the task of pre-rounding in the ICU.

The dataset consists of two sets of variables including the predictor variables (or predictors) and
target variables (or targets) that we now describe in detail. Predictor variables include demographics,
admitting diagnosis, vital signs, ventilator settings, input and output measurements, laboratory test
results, and medication administration data. A few variables such as demographics and admitting
diagnosis are static, that is, their values do not change during the ICU stay, while the remaining
variables, which constitute the majority of the predictors, are temporal and have multiple values
during the ICU stay. For example, age (in years) is a static predictor variable while blood urea
nitrogen (BUN) is a temporal predictor variable as it is usually measured multiple times during an
ICU stay.

Target variables include any data in the EMR, such as vital signs, ventilator settings, input and
output measurements, laboratory test results, and medication administration data that a physician
may annotate as relevant for the task of pre-rounding. A target variable can take either relevant or
not relevant values. As an example, for a patient with AKF, BUN = relevant denotes that BUN was
measured for the patient and was sought, found, and annotated by a physician as relevant. If BUN
was measured for the patient but was not sought by a physician, then the target is denoted as BUN =
not relevant. A target variable may be missing too; for example, when BUN is not measured for the
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patient, it would not be available for a physician to seek and find. We developed a predictive model
for each target variable such as BUN that predicts whether it is relevant in a particular patient. To
develop a BUN model, we used all predictor variables described in the previous paragraph and used
only data in which the BUN target was not missing.

The difference between predictor and target variables is in the values they take; i.e., a target variable
takes values of either relevant or not relevant, whereas a predictor variable’s values are the measured
values that are recorded in the EMR. For example, when BUN is a predictor, it takes numeric values in
milligrams per deciliter (mg/dL) unit1, whereas as a target variable, it takes a value of either relevant
or not relevant. Consequently, a model for predicting whether or not BUN is relevant may contain
numeric values for BUN as a predictor variable.

3.2 Data preparation

We transformed the dataset into a representation that is amenable to the application of machine
learning methods. In particular, for each temporal predictor variable we generated between 4 to 36
features (feature expansion in Figure 1).

The number of features for a temporal predictor was based on (1) the data domain of the predictor
variable (e.g., medication administration or laboratory result) and (2) the type of the predictor variable
(e.g., nominal or continuous). For example, for each medication variable we generated four features
including an indicator of whether the drug is currently prescribed, the time elapsed between first
administration and the current time, the time elapsed between the most recent administration and
the current time, and the dose at the most recent administration. For each laboratory test result, vital
sign, and ventilator setting, we generated up to 36 features including an indicator of whether the
event or measurement ever occurred, the value of the most recent measurement, the highest value, the
lowest value, the slope between the two most recent values, and 30 other features. More details on
the feature expansion are given in [33].

The dataset consisted of 178 patient cases and 1,864 raw predictor variables. Feature expansion
resulted in a total of 30,770 features. Since the dimensionality of the data was high, we reduced the
number of features (feature reduction in Figure 1) by removing those features where the values were
missing in every patient case, had the same value for every case (i.e., had zero variance), or the values
were duplicates of another variable. Feature reduction resulted in a total of 6,935 features.

We selected as target variables 73 EMR data items that had been annotated as relevant (positive) in 9
or more patient cases. Table A1 in Appendix C contains the list of target variables along with the
number of cases in which each target variable was relevant, as well as the number of cases where the
target variable was available for selection (i.e., the value was not missing).

3.3 Experimental methods

3.3.1 Predictive models

An HLR model is a generalization of a standard logistic regression model in which the data is
clustered into groups and the model intercept and coefficients can vary by group [17]. Figure 2 shows
the structure of a 2-level HLR model in which the LEMR data is clustered into groups of patient
cases reviewed by each physician. Parameters at the lower level represent the physician-level models
for the 11 physician reviewers, and parameters at the upper level represent the model for the entire
population of physician reviewers (i.e., population-level model). For a more detailed description of
HLR models see Appendix A.

We developed HLR predictive models for each of the selected 73 targets. Each predictive model of a
target variable is formulated as a binary classification problem where the model learns to identify
cases in which the target variable is relevant. To investigate the utility of HLR over non-hierarchical
models, we used LR as baseline models in which the physician identifier was included as an indicator
variable. We implemented the HLR models using the brms package [34] in R, which uses No-U-Turn
Sampler (NUTS) (as an extension of the Hamiltonian Monte Carlo algorithm) to estimate the posterior
distribution of model parameters. In our experiments, we set the NUTS sampler to use 4 Markov

1Note that BUN may have been measured multiple times for a patient case and therefore, take several numeric
values. We summarize these values as a fixed-length vector as described in the Data preparation section.
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Figure 1: Steps in preparing the predictor variables. (a) presents the predictor variables for
two example patients as measurements with one row per day. The colors represent data do-
mains; D=demographics, M=medication administrations, L=laboratory test results, V=vital signs,
VS=ventilator settings, IO=input/output, and other=other domains. (b) shows the result of expanding
the temporal predictor variables (total = 1,848) to features (total = 30,770). This step flattens the data
so that a patient that is represented by multiple rows is now represented by a single row. * denotes
that the number of expanded predictors differs depending on the predictor value type (e.g., nominal or
continuous). (c) shows the features after feature reduction, in which the number of features is reduced
to 6,935s. † indicates that the number of features may be different for each variable in the domain.

Figure 2: A 2-level HLR model for LEMR data. The lower level represents physician-level intercepts
(αi) and coefficients (βi) where i = 1, ..., 11 denotes the physician identifier. The upper level
represents the intercept and coefficients (α, β) for the population-level model.
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chains; each chain included 400 iterations of sampling where the first 200 were used to calibrate the
sampler. A total of 4× 200 = 800 posterior samples for each HLR model parameter were obtained.
LR models were implemented using the glmnet package in R [35].

3.3.2 Cross validation

Each model was trained and evaluated independently in a stratified 10-fold cross validation setting. At
each iteration of the cross validation, the patient cases were randomly split into a training set (9 folds)
and a test set (1 fold), while preserving the original distribution of the target variable. Hyperparameter
tuning and data preprocessing such as imputing missing values and feature selection were performed
during cross validation. More details are described in Appendix B.

3.3.3 Performance measures

We measured the predictive performance of each model with the area under the receiver operating
characteristic (ROC) curve (AUROC), area under the precision-recall curve (AUPRC), and expected
calibration error (ECE) [36]. AUROC is a measure of model discrimination and varies from 0.5
and 1, where 0.5 denotes an uninformative model and 1 represents perfect discrimination. AUPRC
summarizes the precision-recall curve where precision (or positive predictive value) and recall (or
sensitivity) values at different thresholds are plotted as a curve. The AUPRC varies from 0 to 1 is and
is commonly used in binary classification problems when the data is imbalanced (i.e., when cases
with one label are more prevalent than cases with the other label).

ECE is a measure of model calibration. In a perfectly calibrated model, outcomes with predicted
probability correspond to a fraction of positive cases in the data. ECE is derived from the probability
calibration curve [37] where the sorted predicted probabilities are partitioned into bins; in each bin i,
calibration error is defined as the absolute difference between the mean of predicted probabilities (pi)
and the fraction of positive outcomes (oi). ECE is the weighted average of the calibration errors over
all bins:

ECE =
k∑
i=1

wi|pi − oi| (1)

where wi denotes the fraction of cases that fall into bin i. Lower ECE denotes a better calibrated
model.

4 Results

We report the variability across the physician reviewers and then report the results of the predictive
performance of LR and HLR models from three perspectives: overall, per-target, and per-physician.
Table 1 summarizes the physician characteristics and the number of patients that each physician
reviewed within the two diagnostic groups, AKF and ARF.

4.1 Variability in information-seeking behavior

We define a descriptive statistic called average relevance proportion (ARP) to measure the
information-seeking behavior of each physician reviewer. An ARP value for a physician is de-
fined as the average proportion of EMR data items that the physician sought as relevant. We
calculated the ARP values over the 73 EMR data items that were used as target variables. Figure 3
shows the physician ARP values separately for each of the diagnostic groups. Each circle denotes
the ARP value for the corresponding physician on the x-axis and each error bar represents a 95%
confidence interval (CI) for an ARP value. In the ARF diagnosis group, the ARP CIs for physicians
1, 7, and 8 do not overlap with those of the other physicians, which indicates a potential variability in
information-seeking behavior between these physicians and the rest. Similar variability is observed
in the AKF group, where the ARP CIs of physicians 1, 3, 7, and 8 differ from those of the other
physicians.
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Table 1: Years of ICU experience for each physician and the number of patient cases each physician
reviewed.

Physician identifier Years of ICU experience # Cases reviewed (#ARF, #AKF)

1 < 1 15 (8, 7)
2 1 15 (10, 5)
3 3 12 (5, 7)
4 < 1 17 (8, 9)
5 1 15 (9, 6)
6 1 15 (7, 8)
7 2 22 (10, 12)
8 1 20 (11, 9)
9 1 16 (8, 8)
10 2 16 (8, 8)
11 7 15 (9, 6)

Figure 3: Per-physician ARP values over 73 target variables. A blue circle denotes the ARP value
and an error bar denotes a 95% CI. The panel on the left is for ARF cases and the panel on the right
is for AKF cases.

4.2 Overall performance

The overall performance of each model family (LR and HLR) was calculated by concatenating
the predictions for all 73 target variables into a single vector and using that vector to compute the
performance metrics. Table 2 reports the AUROC, AUPRC, and ECE for the LR and HLR models
across all 73 target variables. For AUROC values, the 95% CI and p-value were calculated using
Delong’s method [38, 39]. The 95% CI for AUPRC values was derived using the logit intervals
method [40] and the p-value was calculated using the Wald z-test. For ECE values, we set k = 100
in Equation 1 and obtained a vector of 100 calibration errors to compute 95% CIs and a t-test p-value.
Figure 4a shows the overall ROC and calibration curves for LR and HLR models. Note that for the
calibration curves, we set the number of bins to k = 10 for better visibility.

Table 2: Overall AUROC, AUPRC, and ECE for LR and HLR models over all 73 target variables and
across all physicians. Higher AUROC and AUPRC show better discrimination power while lower
ECE denotes better probability calibration. The best values for each metric are in boldface.

Measure LR HLR p-value
AUROC 0.75 (0.74-0.76) 0.81 (0.80-0.82) < 0.001
AUPRC 0.665 (0.663-0.667) 0.763 (0.762-0.765) < 0.001

ECE 0.16 (0.14-0.17) 0.07 (0.06-0.08) < 0.001
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Figure 4: (a) ROC, precision-recall, and calibration curves over all 73 target variables across all
physicians. For the calibration curves, the closer a curve is located to the dotted diagonal line, the
more calibrated the corresponding approach is. (b) Distribution of AUROC, AUPRC, and ECE
values for 73 models. Forward-slash hatches in blue represent the distributions for HLR models
and backslash hatches in orange denote the distributions for LR models. The AUROC and AUPRC
distributions for HLR models are right-skewed relative to the LR models, which show that HLR
models generally have better discrimination power. The distribution of ECE values of HLR models is
left-skewed relative to the LR models, which means that HLR models are generally better calibrated
than LR models. (c) AUROC, AUPRC, and ECE values for each physician reviewer over all 73
models. The values for HLR models are shown in blue and the values for LR models are shown in
orange. The AUROC and AUPRC values are higher for HLR models than for LR models, except for
the AUROC value for physician 1. All the ECE values are lower for HLR models, which mean that
HLR models are better calibrated than the LR models.

4.3 Per-target performance

For per-target performance, we computed the predictive performance for each target variable, which
resulted in vectors of AUROC, AUPRC, and ECE values each with a length of 73, for each model
family (LR and HLR). Distributions of per-target performance measures are shown as histograms
in Figure 4b for each model family. Histograms of the two model families are overlaid for better
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comparison. Additional details are provided in Table A1 in Appendix C where AUROC, AUPRC,
and ECE values are reported for each target variable.

4.4 Per-physician performance

For per-physician performance, we computed the predictive performance for each physician, which
resulted in 11 AUROC, AUPRC, and ECE values for each model family (LR and HLR). Figure 4c
presents the per-physician bar plots of the performance measure values; the bars for HLR and
LR models are displayed side by side for better comparison. Per-physician calibration curves are
presented in Figure A1 in Appendix C.

5 Discussion

Our results show that HLR models perform better than LR models when predicting which information
a physician will seek in a future patient case. Moreover, the ECE results show that HLR models are
generally better calibrated than LR models. In general, the more calibrated the probabilities are that
are output by a predictive model, the higher the expected utility of the decisions that will be made
using that model; in the case of the LEMR system, those decisions involve which information is
worthwhile to highlight in the EMR of a given patient.

Although most physician reviewers had similar years of ICU experience, we observed a considerable
degree of variability in information-seeking behavior across physicians in terms of ARP values.
Because the study patients were selected to have a similar level of complexity, patient cases are
unlikely to be the source of this variability. Controlling for physicians’ years of experience in LR
models was not as effective in improving predictive performance as estimating individual physician
variability using the HLR models. This shows the advantage of HLR models over standard models in
the presence of unexplained variability.

The per-physician performance measures in Figure 4c show that HLR models learn physician-specific
models that perform better in terms of both discrimination and calibration. Although HLR models fit a
separate model for each physician, the inherent regularization in these models prevents overfitting. In
particular, as population and physician-specific parameters are estimated at the same time, a pooling
effect occurs that prevents a physician-specific model from overfitting when the sample size is small.

Furthermore, HLR models allow for a detailed investigation at the physician level because each
physician model has its own set of parameters. Figure 5 demonstrates a few instances of the detailed
information that can be obtained from an HLR model. Each panel in Figure 5 represents the
distributions of a model parameter in an HLR model for each physician and for all physicians as a
whole. Investigating the physician-specific parameters can lead to a better understanding of factors
that influence a physician’s information-seeking behavior.

6 Limitations

One limitation of this study was the relatively modest amount of annotated data. Having experts
review and annotate data is an expensive and time-consuming task in many domains, especially in
medicine. It takes many hours for a physician to review and annotate a small number of patient
cases in the EMR, which makes it challenging to collect large amounts of annotated data in the
LEMR system. Due to this limitation, the number of positive samples for most target variables
was modest. As a result, we derived models for only 73 target variables out of 865 available target
variables. Nevertheless, this restriction can be addressed by using scalable data collection methods.
For example, a scalable solution based on eye-tracking technology has been proposed to automatically
identify information that physicians seek in the EMR [41].

Despite the advantage of HLR models in terms of performance, they have two major drawbacks. First,
HLR models by default assign equal weights to physicians with different level of experience and as
a result, these models can be biased toward less experienced physicians if they have reviewed the
majority of cases. One solution is to move the bias toward the experienced physicians by increasing
the proportion of cases reviewed by them; however, estimating the optimal proportion requires further
studies with more data. The second drawback of HLR models is the added complexity due to the
additional per-level parameters. This complexity creates new challenges in parameter estimation and
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Figure 5: Examples of variation among physicians as seen from the values of the coefficients of a
specific predictor variable. Each panel shows estimates of the coefficients of a predictor variable in
an HLR model. A circle denotes the median value and the bar denotes the 80% credible interval for
the posterior distribution of the model parameter.

interpretation. Compared to LR models, training HLR models requires more computing power and
there are more hyperparameters to tune, including the choice of prior distributions.

7 Conclusion

Displaying large quantities of patient information in EMR systems with little prioritization can
adversely influence the decision-making process of physicians and compromise the safety of patients.
A data-driven solution was recently proposed as a learning EMR (LEMR) system that uses machine
learning to identify and prioritize relevant data in the EMR for physicians. The current study improves
the performance of LR models by using HLR models.

We trained 2-level HLR models that simultaneously learn physician-specific models at one level and
a population model at another level. We evaluated the discrimination and calibration performance of
HLR models in identifying relevant data items in the EMR. Our results show that HLR models perform
significantly better than LR models. Moreover, we demonstrated that HLR models provide details
about the physician-specific models that can be used to investigate physicians’ information-seeking
behaviors in the EMR system.
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Appendix

A Hierarchical logistic regression (HLR) models

Hierarchical logistic regression (HLR) models are a generalization of standard logistic regression
(LR) models in which distinct logistic regression models are fit at different levels of hierarchically
structured data [17]. In the context of the LEMR system, we define an HLR model as follows (a
boldface character represents a matrix or vector of parameters or values). Let D = {X,y} be a
LEMR data set whereX denotes a set ofN patient cases in the EMR, each withK predictor variables
including demographics, medication administrations, laboratory test results, and vital signs. Let y
represent an EMR data item for N patient cases with binary values of relevant and not relevant. The
data is reviewed by J physicians, each reviewing nj cases such that

∑J
j=1 nj = N . We formulate an

HLR model as follows:

y ∼ Binomial(p, N),

p = logit−1(β0 + βX + φ0 + φZ)
(2)

βk ∼ Normal(0, σ2
β), j = 1, ..., J

φkj ∼ Normal(0, σ2
φ), k = 0, ...,K

(3)

σφ ∼ HalfCauchy(0, τφ) (4)
where β0 and β are population-level intercept and coefficients, and φ0 and φ denote physician-level
intercept and coefficients. Z corresponds to the physician-level design matrix, which is a sparse
expansion ofX with N rows and J ×K columns, splittingX into J segments. Below is a simple
example ofX and Z matrices with N = 5 patients reviewed by J = 2 physicians (colored in blue
and red) and K = 3 predictor variables:

X =


0 0 1
0 1 0
1 1 0
0 1 1
1 1 0

 , Z =


0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 1 1 0


In Equation 3, βk and φk denote the coefficients of the kth predictor variable (k = 0 denotes the
intercept) for the population and physician j’s models, and are assumed a priori to be centered at 0
with standard deviations σβ and σφ, respectively. We define the prior for σφ as a Cauchy distribution
with scale parameter τφ, and restrict it to positive values (hence the half Cauchy). σβ and τφ are
the model hyperparameters and are tuned in the model training phase. Markov chain Monte Carlo
(MCMC) methods are used to estimate the parameters’ posterior distributions. MCMC methods draw
samples sequentially from the posterior distribution and improve the draws at each step to better
approximate the distribution.

B Cross validation details

Each model was trained and evaluated independently in a stratified 10-fold cross validation setting.
The following preprocessing steps were applied to the training and test sets at each iteration:

1. Imputation. Missing values in predictor variables were imputed by the median or mode for
continuous and discrete variables, respectively. The imputed value was derived from the
training set and applied to both the training and test sets.

2. Feature selection. We used supervised univariate feature selection to reduce the number of
features before deriving models. In particular, we used analysis of variance (ANOVA) and
Fisher’s exact tests (significance level = 0.01) for continuous and binary predictor variables,
respectively. We limited the predictors to a maximum of 100 variables. The feature selection
was performed on the training set and then applied to both the training and test sets.
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3. Feature standardization. Continuous predictor variables were rescaled to be centered at zero
and have a unit standard deviation. We calculated the mean and standard deviation statistics
from the training set and used them to standardize both training and test sets.

Each model was trained on the training set and evaluated on the test set. Model hyperparameters
were tuned in an inner stratified 3-fold cross validation of the training set. In particular, for HLR
models, we selected the best values of the hyperparameters (i.e., σβ and τφ in Equations 3 and 4
above) from the set of values {0.01, 0.1, 1, 5, 10}. For LR models, LASSO regularization was used
and the optimal regularization parameter (λ) was chosen from an automatically generated sequence
of 100 values as described in [35].

C Tables and figures

Table A1: Performance of predictive models for 73 target variables. Higher AUROC and AUPRC
denotes better discrimination and lower ECE denotes better calibration. Relevant/Available: number
of cases in which the target variable was annotated as relevant over number of cases for which the
target variable was measured in the EMR and was available for annotation. Domain: IO=input/output,
L=laboratory test result, M=medication, V=vital sign, VS=ventilator setting.

Target variable Domain
Relevant/ AUROC AUPRC ECE
Available HLR LR HLR LR HLR LR

acetaminophen M 12/68 0.67 0.51 0.31 0.22 0.14 0.2
albumin L 19/107 0.86 0.84 0.49 0.54 0.07 0.08

albuterol ipratropium M 15/59 0.71 0.87 0.49 0.77 0.15 0.08
ALT (SGPT) L 23/104 0.78 0.71 0.57 0.45 0.11 0.17

ammonia L 12/39 0.65 0.51 0.47 0.35 0.14 0.26
ampicillin sulbactam M 9/20 0.57 0.48 0.55 0.6 0.39 0.47

anion gap L 19/111 0.87 0.75 0.69 0.54 0.08 0.08
aspirin M 15/45 0.63 0.7 0.54 0.71 0.13 0.17

AST (SGOT) L 25/106 0.71 0.6 0.47 0.36 0.13 0.19
band cell count L 13/81 0.69 0.72 0.38 0.39 0.13 0.09
base solution M 50/81 0.63 0.62 0.73 0.65 0.2 0.22
bicarbonate L 103/167 0.79 0.7 0.83 0.8 0.11 0.14

bicarbonate (HCO3), arterial L 11/102 0.63 0.74 0.19 0.35 0.09 0.06
bilirubin, direct L 16/82 0.75 0.6 0.64 0.27 0.1 0.16
bilirubin, total L 36/103 0.82 0.78 0.65 0.66 0.13 0.17

blood urea nitrogen (BUN) L 114/166 0.76 0.66 0.83 0.8 0.14 0.16
calcium L 41/155 0.76 0.79 0.56 0.54 0.11 0.1

central venous pressure (CVP) V 31/103 0.76 0.59 0.63 0.38 0.11 0.24
chlorhexidine topical M 20/86 0.88 0.81 0.71 0.63 0.13 0.11

chloride L 106/167 0.85 0.77 0.88 0.81 0.09 0.11
dextrose 5% in water M 17/46 0.63 0.55 0.6 0.46 0.29 0.33

docusate M 9/47 0.85 0.82 0.66 0.59 0.15 0.08
famotidine M 26/77 0.75 0.7 0.57 0.55 0.12 0.19

fentanyl M 18/83 0.66 0.59 0.41 0.39 0.14 0.22
fraction of inspired oxygen (FiO2) VS 95/142 0.72 0.69 0.83 0.81 0.13 0.18

furosemide M 28/66 0.65 0.66 0.57 0.56 0.15 0.25
glucose L 114/164 0.66 0.64 0.8 0.81 0.17 0.2

hemoglobin L 123/156 0.76 0.57 0.9 0.82 0.08 0.16
heparin M 38/97 0.68 0.71 0.52 0.6 0.14 0.24

hydrocortisone M 10/20 0.35 0.28 0.44 0.4 0.3 0.54
input/output (I/O) IO 81/167 0.8 0.74 0.83 0.72 0.13 0.14

INR L 62/118 0.7 0.65 0.7 0.63 0.1 0.22
insulin aspartate (Novolog) M 11/27 0.36 0.36 0.34 0.36 0.45 0.45

insulin glargine (Lantus) M 13/21 0.35 0.21 0.6 0.48 0.37 0.6
insulin regular (Humulin R, Novolin R) M 36/77 0.61 0.55 0.65 0.56 0.21 0.34

ionized Ca L 30/122 0.72 0.62 0.49 0.35 0.11 0.23
lactate L 50/109 0.73 0.68 0.72 0.59 0.1 0.21

lactulose M 9/16 0.92 0.67 0.95 0.74 0.19 0.33
lansoprazole M 9/34 0.73 0.65 0.55 0.47 0.2 0.24
levetiracetam M 9/16 0.93 0.79 0.94 0.88 0.24 0.22
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lorazepam M 9/37 0.35 0.43 0.34 0.26 0.34 0.25
magnesium L 73/163 0.77 0.72 0.71 0.65 0.13 0.13
metoprolol M 19/57 0.52 0.43 0.36 0.35 0.24 0.38

metronidazole M 16/28 0.67 0.59 0.76 0.67 0.22 0.33
midazolam M 9/51 0.62 0.59 0.3 0.3 0.14 0.19

mixed venous oxygen saturation (SvO2) V 9/39 0.64 0.47 0.54 0.32 0.21 0.23
mode VS 71/140 0.75 0.66 0.73 0.66 0.11 0.2

neutrophils L 24/146 0.75 0.68 0.39 0.35 0.09 0.13
norepinephrine M 17/35 0.51 0.47 0.48 0.56 0.25 0.35

oxygen saturation (SaO2), arterial V 103/166 0.77 0.73 0.83 0.78 0.15 0.15
pantoprazole M 16/42 0.79 0.81 0.73 0.69 0.15 0.15

partial pressure of carbon dioxide (PaCO2), arterial L 31/130 0.69 0.64 0.41 0.32 0.09 0.21
partial pressure of oxygen (PaO2), arterial L 30/129 0.85 0.7 0.68 0.41 0.08 0.16

PEEP VS 9/22 0.84 0.87 0.8 0.87 0.26 0.17
pH, arterial L 46/129 0.67 0.63 0.54 0.44 0.17 0.22
phosphate L 69/160 0.77 0.74 0.75 0.62 0.13 0.19

piperacillin tazobactam M 24/47 0.81 0.67 0.85 0.67 0.2 0.27
platelets L 116/156 0.8 0.65 0.89 0.83 0.08 0.17

potassium L 120/167 0.73 0.67 0.87 0.84 0.12 0.15
potassium chloride M 28/125 0.84 0.78 0.66 0.58 0.07 0.09

propofol M 17/42 0.45 0.5 0.49 0.45 0.34 0.35
PTT L 15/101 0.57 0.63 0.24 0.25 0.13 0.16

respiratory rate (RR) V 121/167 0.7 0.64 0.85 0.82 0.15 0.2
senna M 10/43 0.8 0.85 0.55 0.55 0.17 0.12

sodium (Na) L 128/167 0.72 0.57 0.89 0.81 0.11 0.24
sodium chloride 0.9% M 65/144 0.62 0.57 0.56 0.53 0.19 0.28

temperature V 144/167 0.72 0.57 0.91 0.88 0.09 0.18
troponin L 10/60 0.48 0.42 0.17 0.16 0.23 0.22

tube status VS 38/123 0.62 0.59 0.52 0.4 0.17 0.15
vancomycin M 36/71 0.61 0.54 0.64 0.53 0.22 0.31

vancomycin, trough L 13/41 0.46 0.62 0.37 0.48 0.28 0.19
ventilator status VS 15/124 0.87 0.83 0.63 0.52 0.07 0.05

white blood cell count (WBC) L 132/156 0.72 0.59 0.91 0.87 0.09 0.14
Average 0.7 0.64 0.62 0.56 0.16 0.21
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Figure A1: Calibration curves for per-physician models. Based on ECE values, HLR models are
better calibrated than LR models for all physicians.
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