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A comprehensive analysis of associations between physical fitness and brain structure in young
adulthood is lacking, and further, it is unclear the degree to which associations between physical
fitness and brain health can be attributed to a common genetic pathway or to environmental
factors that jointly influences physical fitness and brain health. This study examined genotype-
confirmed monozygotic and dizygotic twins, along with non-twin full-siblings to estimate the
contribution of genetic and environmental factors to variation within, and covariation between,
physical fitness and brain structure. Participants were 1065 young adults between the ages of 22
and 36 from open-access Young Adult Human Connectome Project (YA-HCP). Physical fitness
was assessed by submaximal endurance (two-minute walk test), grip strength, and body mass in-
dex. Brain structure was assessed using magnetic resonance imaging on a Siemens 3T customized
‘Connectome Skyra’ at Washington University in St. Louis, using a 32-channel Siemens head coil.
Acquired T1-weighted images provided measures of cortical surface area and thickness, and sub-
cortical volume following processing by the YA-HCP structural FreeSurfer pipeline. Diffusion
weighted imaging was acquired to assess white matter tract integrity, as measured by fractional
anisotropy, following processing by the YA-HCP diffusion pipeline and tensor fit. Following cor-
rection for multiple testing, body mass index was negatively associated with fractional anisotropy
in various white matter regions of interest (all |z| statistics > 3.9) and positively associated with
cortical thickness within the right superior parietal lobe (z statistic = 4.6). Performance-based
measures of fitness (i.e., endurance and grip strength) were not associated with any structural
neuroimaging markers. Behavioral genetic analysis suggested that heritability of white matter
integrity varied by region, but consistently explained >50% of the phenotypic variation. Heri-
tability of right superior parietal thickness was large (~75% variation). Heritability of body mass
index was also fairly large (~60% variation). Generally, 1

2 to 2
3 of the correlation between brain

structure and body mass index could be attributed to heritability effects. Overall, this study
suggests that greater body mass index is associated with lower white matter integrity, which may
be due to common genetic effects that impact body composition and white matter integrity.
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Introduction

Associations between performance-based physical fitness and neuroimaging markers of brain health have been
studied fairly extensively in the context of aging, and to a somewhat lesser extent in the context of childhood
development. Previous studies have shown that physical fitness—most commonly cardiorespiratory fitness—
positively correlates with gray matter thickness or volume in various regions of the cortex in children and older
adults (Gordon et al., 2008;Chaddock-Heyman et al., 2015;Wood et al., 2016;Williams et al., 2017;Esteban-
Cornejo et al., 2019;Cadenas-Sanchez et al., 2020) and with hippocampal volume in older adults (Erickson et
al., 2009;Cole et al., 2020). Other research has shown associations between physical fitness—again typically
cardiorespiratory fitness—and higher diffusion-based white matter integrity (Marks et al., 2011;Tseng et al.,
2013;Oberlin et al., 2015;Ding et al., 2018) or reduced lesion volume in older adults (Sexton et al., 2016).
In children, one study found a weak association between upper-body strength and white matter integrity in
the frontal lobe (Rodriguez-Ayllon et al., 2020).

Relatedly, other research has looked at associations between body composition—most commonly body mass
index (BMI)—and neuroimaging markers of brain health in youth and older adults. Higher BMI has been as-
sociated with smaller gray matter volume in various cortical and subcortical regions in adolescence (Kennedy
et al., 2016) and late adulthood (Ho et al., 2011), with reduced white matter volume in adolescence (Kennedy
et al., 2016), and with lower cerebral white matter integrity in older adults (Marks et al., 2011). Still other
studies have examined large age spans ranging from very early adulthood into older age. These studies, too,
have found that BMI negatively correlated with white matter integrity, especially in midbrain and brain
stem tracts (Verstynen et al., 2012) and subregions of the corpus callosum (Stanek et al., 2011). Altogether,
these findings have been used to argue that improving physical fitness and body composition might improve
brain health, and in turn, promote cognitive performance during development (Chaddock-Heyman et al.,
2015) and reduce cognitive impairment during aging (Erickson et al., 2014).

Analysis of links between physical fitness and body composition with neuroimaging markers of brain health
specifically in early adulthood has been somewhat overlooked, despite acknowledgement that a lifespan
perspective on brain health is warranted, in which risk factors for deterioration in brain health are potentially
present across the lifespan (Moffitt et al., 2016;Williamson et al., 2018;Tucker-Drob, 2019). Evidence for
such associations could provide the grounds for future research that explores whether intervening in young
adulthood to promote fitness and body composition might alter long-term trajectories of brain health into
older age.

The Young Adult Human Connectome Project (YA-HCP) is a large neuroimaging study of approximately
1200 women and men aged 22 to 36 (Van Essen et al., 2013), which offers an excellent data source for
exploring links between physical fitness and body composition with various neuroimaging markers of brain
health. Beyond collecting high-quality multi-model neuroimaging data, the YA-HCP collects behavioral
data in a variety of domains, including physical fitness and body composition (Barch et al., 2013). Previous
studies using the YA-HCP have observed that higher BMI and lower submaximal cardiovascular endurance
are associated with lower integrity within several white matter tracts (Repple et al., 2018;Opel et al., 2019).
Other YA-HCP analyses have shown that BMI correlates with cortical thickness, with the direction (negative
versus positive) depending on the region and hemisphere (Vainik et al., 2018). In a recent study using the
YA-HCP, we failed to observe an association between cortical thickness and either submaximal cardiovascular
endurance or grip strength (Best, 2020). Like other studies in the field, our previous study was limited by
focusing on only one type of brain structure (specifically, cortical thickness), despite knowledge that gray
matter structure is distinct from white matter structure, and even that cortical thickness is genetically and
phenotypically distinct from cortical area (Winkler et al., 2010). As such, it is plausible that fitness and
body composition might have different associations with different structural features of the brain. Further,
although our previous study adjusted for participant height and weight in the regression analyses, BMI was
not considered as an important predictor in its own right, and it is possible for fitness and body composition
to have unique associations with brain structure.

Thus, the current study is motivated in part by the need for a comprehensive analysis involving multiple
aspects of physical fitness and body composition along with various structural measures of brain health within
a single sample with sufficient sample size to appropriately correct for multiple testing while maintaining
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reasonable statistical power. Using data from the YA-HCP, the current study estimated associations between
submaximal cardiovascular endurance, grip strength, and BMI with cortical gray matter thickness and area,
with subcortical gray matter volume, and with white matter fractional anisotropy (FA), a commonly-used
measure of white matter integrity based on the flow of water molecules along white matter tracts (Pierpaoli
et al., 1996). Importantly, the default assumption made in most previous investigations is that associations
between fitness/body composition and brain structure is linear across the range of scores; however, this may
not necessarily be the case. Erickson and colleagues (2010) observed that the strongest association between
physical activity and gray matter volume in older adults was at the highest quartile of physical activity,
suggesting that a relatively large volume of physical activity might be necessary for detection of effects on
brain structure. Whether such non-linear associations are observed for physical fitness or body composition
is unknown, but the relatively large sample and wide distribution of fitness and body composition in the
YA-HCP offers an opportunity to explore this possibility.

Another strength of the YA-HCP is the inclusion of genotype-confirmed monozygotic and dizygotic twin pairs,
along with full-sibling non-twin pairs. Assuming that genetic overlap approximates 100% in monozygotic
twins and 50% in dizygotic and non-twin pairs, behavioral genetic analyses can be conducted to estimate
the heritability and environmental contributions to variation in fitness and brain structure, as well as the
covariation between the two (Grasby et al., 2017). Previous research has found a moderate heritability
contribution to the correlation between cardiovascular endurance and executive function (Best, 2020) and
between BMI and executive function, cortical thickness and medial temporal lobe volume (Vainik et al., 2018).
Research in other samples has shown a moderate heritability contribution to the BMI-executive function
correlation in youth (Wood et al., 2019) and a more modest heritability contribution to the cardiovascular
fitness-intelligence association among young men enlisted for military service (Aberg et al., 2009). Altogether,
these studies suggest at least a modest genetic component to correlations between physical fitness and body
composition, on the one hand, and neuro-cognition, on the other. To follow-up on our primary analyses, the
current study conducted a set of behavioral genetic analyses to estimate the degree to which genetics or the
environment underpin associations identified in the larger sample.

Methods

Study Design and Participants

Participant data were provided by the open-access YA-HCP 1200 Subjects Data Release (Van Essen et al.,
2013). For our primary analyses with the entire sample, 1113 participants had valid Freesurfer-processed 3T
structural MRI data and 1065 participants had valid FSL-processed diffusion imaging of white matter data.
For behavioral genetic analyses, twin zygosity was verified by genotyping. Full-sibling, non-twin pairs were
identified by having identifical mother and father identification numbers, but not being twins. Full-siblings
with an age discrepancy ≥ 5 years were excluded from behavioral genetic analyses.1 For behavioral genetic
analyses involving white matter FA values, data from 134 monozygotic twin pairs, 72 dizygotic twin pairs,
and 290 full-sibling, non-twin pairs were available. For behavioral genetic analyses involving gray matter,
data from 138 monozygotic twin pairs, 78 dizygotic twin pairs, and 313 full-sibling, non-twin pairs were
available.

Participants were healthy adults within the age range of 22 to 36, who were drawn primarily from families
that included twins in Missouri, USA. Families were excluded where individuals within the family had severe
neurodevelopmental disorders (e.g., autism), neuropsychiatric disorders (e.g., schizophrenia) or neurological
disorders (e.g., Parkinson’s disease). Individuals were also excluded if they had illnesses thought to impact
neuroimaging data quality (e.g., high blood pressure or diabetes). Additional details on the participants and
study design can be found elsewhere (Van Essen et al., 2013). Extensive details on all the measures included

1It was possible for a given individual to be included in multiple sibling pairs, as there were families with up to six full
siblings. In such instances, values were averaged across all pairs of the same type (i.e., DZ, MZ, non-twin full-sibling types)
in which the given individual was involved, so as to avoid double-counting individuals. The vast majority of these involved
non-twin, full-sibling pairs.
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in the HCP study can be found at: https://wiki.humanconnectome.org. The original study was approved
by the Washington University institutional review board. All participants provided written informed con-
sent. Approval for this secondary analysis was provided by the institutional review board at Simon Fraser
University (Title: “Genetic Contributions to Cognition and Physical Functioning in Young Adults: Analysis
of the Human Connectome Project Study”; Study no: 2019s0471).

Measures

Demographic and Other Covariate Variables

Age in years, gender, race/ethnicity, years of completed education, and annual total household income were
self-reported. Gait speed (meters per second) was assessed over 4-meters, starting from rest, and was included
to account for variance in the endurance measure due to differences in gait.

Physical Fitness

Participants completed several instruments from the NIH Toolbox for Assessment of Neurological and Be-
havioral Function on the first of the two-day assessment schedule (‘NIH toolbox’). The NIH toolbox includes
psychometrically-validated measures of cognition and behavior, suitable for use across the human lifespan
(Gershon et al., 2013; Reuben et al., 2013; Weintraub et al., 2013). Details on its implementation within
the HCP can be found elsewhere (Barch et al., 2013).

Sub-maximal cardiovascular endurance was assessed by having participants walk as far as possible over a
2-minute period of time, back-and-forth over a 50-ft course. The total distance is recorded. Two trials were
completed, with the faster trial used as the outcome of interest. Full force grip strength is measured with
both hands using a Jamar Plus Digital dynamometer with the elbow bent to 90 degrees and arm against the
trunk. Practice is conducted for each hand. Pounds of force for the dominant hand is used as the outcome
of interest. Both fitness measures have shown good test-retest reliability (Intraclass correlation coefficient
[ICC] ≥ 0.88) and convergent validity (𝑟 ≥ 0.77) with ‘gold standard’ measures of endurance and grip
strength across adulthood (Reuben et al., 2013). Further, although grip strength is a more direct measure
of upper body strength, it also strongly correlates with knee extension performance (𝑟 ≥ 0.77), a measure of
lower body strength, suggesting grip strength may serve as a proxy body strength more generally (Bohannon,
Magasi, Bubela, Wang, & Gershon, 2012). Height was reported in inches and weight was reported in pounds;
these values were converted to body mass index with the following formula: 𝐵𝑀𝐼 = 703 × 𝑤𝑒𝑖𝑔ℎ𝑡(𝑙𝑏𝑠)

ℎ𝑒𝑖𝑔ℎ𝑡(𝑖𝑛)2 .

Structural MRI Data Acquisition and Processing

Gray matter imaging acquisition and processing was conducted by the YA-HCP research team with no
additional processing on the freely-available data. Extensive details on the imaging protocol are found
elsewhere, including details of additional scanning paradigms not included in the current study (Van Essen
et al., 2012;Van Essen et al., 2013). All participants were scanned on a Siemens 3T customized ‘Connectome
Skyra’ at Washington University in St. Louis, using a 32-channel Siemens head coil. Two T1-weighted and
two T2-weighted scans were acquired at a spatial resolution of 0.7 mm isotropic voxels over two sessions.
Each scan was evaluated by a trained rater for overall quality and only good/excellent scans were submitted
to the structural pipelines, which used FreeSurfer 5.1 software and custom steps that combine the T1- and
T2-weighted images for more accurate delineation of white and pial surfaces (Van Essen et al., 2013). Initial
registration to MNI152 space was completed by FSL’s FLIRT tool, followed by nonlinear FNIRT to align
subcortical structures. Cortical surface alignment was achieved using a surface-based registration using
FreeSurfer, separately for each hemisphere. Average cortical thickness and surface area was obtained in 68
regions of interest (ROIs) across the two hemispheres. Additionally, subcortical gray matter volume was
obtained in 14 ROIs in the limbic system.
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Diffusion images were acquired at a spatial resolution of 1.25 mm isotropic voxels during a session including
six runs (each 9 min 50 s in duration). Initial pre-processing of diffusion data was conducted by the YA-HCP
research team and included intensity normalization across runs, ‘TOPUP’ susceptibility-induced distortion
correction, and ‘EDDY’ eddy current and motion correction (Glasser et al., 2013). Subsequent processing
was conducted by the current research team using standard tract-based spatial statistics in FSL (Smith et
al., 2006). Fractional anisotropy (FA) images were registered to the FMRIB58 FA template and averaged
to create a mean FA image. This image was used to create a WM skeleton using an FA threshold of 0.2.
The Johns Hopkins University ICBM-DTI-81 white matter atlas (Mori et al., 2008;Oishi et al., 2008), which
consists of 48 ROIs, was used to mask the WM skeleton and average FA values for every ROI was obtained
per participant.

Statistical Analyses

Analyses were conducted using R version 4.0.2 (r-project.org) using the Rstudio environment (Rstudio.com).
An a priori power calculation was not conducted given that this is a secondary analysis of an existing dataset.
For each analysis the maximum sample size possible was used. The first step was to regress the cortical
thickness and area values, subcortical volumes and white matter FA values on a set of covariates (age, gender,
ethnicity, income, education, gait speed, and intracranial volume) and the physical fitness measures (grip
strength, submaximal endurance, and body mass index). All fitness measures were included together in
the same regression model so as to model their independent associations with the neuroimaging outcomes.
Generalized linear models fit by restricted estimated maximum likelihood were used for these regressions. To
allow for nonlinearity in the association of age and physical fitness with the outcome of interest, restricted
cubic splines were specified with knots located at the 10th, 50th, and 90th percentile values of the age
and physical fitness variables (Harrell, 2019a). A compound symmetry covariance matrix accounted for
the clustering of participants by maternal ID. A separate model was constructed for each outcome. All
predictors were retained in the models regardless of the statistical significance of their Wald test. These
regression models were constructed using rms version 6.0.1 (Harrell, 2019b). Control of the type I error rate
was achieved by first allocating an equal portion of an overall 𝛼 = 0.05 to each of the four outcome domains
(i.e., cortical thickness and area, subcortical volume, and white matter FA) and then to each of the three
key predictors (endurance, strength, and BMI). Next, because outcomes were anticipated to correlate with
one another (i.e., thickness in one region correlates with thickness in another region), the effective number of
independent tests within each outcome domain was calculated using an approach described by Nyholt (cite
Nyholt 2004). Thus, the 𝛼 for the test of a specific predictor and region within a domain was calculated as:

𝛼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = .05
4 × 3 × 𝑡𝑒𝑠𝑡𝑠𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

,

where the estimated number of independent tests was 40.6, 57.8, 52.4, and 10.3 for FA, cortical thickness,
cortical area, and subcortical volume measures, respectively. These corrected two-sided 𝛼 values translated
into a 𝑧 statistic threshold of 3.88 for the FA outcomes, 3.97 for cortical thickness outcomes, 3.95 for cortical
area outcomes, and of 3.54 for the subcortical volumes.

The second step was to estimate the proportion of phenotypic covariance between neuroimaging measures
and physical fitness that can be attributed to heritability versus environmental sources. These analyses were
limited to monozygotic twin, dizygotic twin, and full-sibling non-twin pairs with an age discrepancy of less
than 5 years. Using the package OpenMx (version 2.17.4), a bivariate Cholesky decomposition twin model was
constructed (Grasby et al., 2017). The Cholesky decomposition models specified that phenotypic variation
in neuroimaging and physical fitness could be attributed to heritability variance (A), shared environmental
variance (C), a twin-specific shared environment (T), and non-shared environmental variance (E) (Figure
1). These sources of variation are estimated by assuming that monozygotic twins share 100% of heritability
effects and that dizygotic twins and full-sibling non-twins each share 50% of heritability effects. The shared
environmental effects are equivalent for all three groups; additionally, monozygotic and dizygotic twins have
another shared environmental effect that non-twins do not have. To estimate the heritability and environ-
mental contributions to the correlation between neuroimaging and physical fitness, the observed physical
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fitness variable is also allowed to load onto the latent heritability and environmental (shared, twin-specific,
and non-shared) contributors to neuroimaging variation (Grasby et al., 2017). The result is the estimation
of the variation in neuroimaging and physical fitness, as well as the covariation between neuroimaging and
physical fitness. Prior to being entered into the Cholesky decomposition, neuroimaging and physical fitness
variables were regressed on age (with non-linear restricted cubic spline effects), sex, race, education, annual
income, and the interaction between age and sex in an ordinary least squares regression model (one model
per outcome including all twins together).

Figure 1: Overview of Bivariate Cholesky Decomposition Model

The assumptions of equality of means and variances across twin order and zygosity were tested using the
likelihood ratio test of nested models. A saturated model was fit first, in which all means and variances were
allowed to vary freely across twins and zygosity. Next, means and variances were constrained to be equal
across twin order, and then, across zygosity. Finally, the ACTwE model was estimated. To summarize the
results of this model, standardize estimates and standard errors for each of the labeled paths in Figure 1
(e.g., “a11”) are presented, as well as the proportion of variation or of the cross-trait correlation that can
be attributed to each of the components (i.e., A, C, Tw or E). (Note. Total variance or covariance is the
sum of the A, C, Tw and E components. Covariance can then be converted into a correlation by dividing
by the product of the standard deviation of the cognition measure and the standard deviation of the fitness
measure).

All data used for the current study can be freely obtained by qualified registered researchers here and the
supplemental material and complete R script can be found here.
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Results

Sample Characteristics and Initial Associations

Demographic and physical fitness data on the full sample (i.e., all participants with GM and WM neuroimag-
ing data) are summarized in Table 1. Mean age was roughly 29 years, and sample was 46% male. Nearly 70%
of the sample was non-Hispanic white. Average body mass index fell in the overweight range. Endurance,
and to a lesser extent grip strength, were on average higher than the age-based population norms (mean =
100) on which these measures were validated.

Table 1. Descriptive information on total sample

Overall
n 1065
Age, yrs (mean (SD)) 28.75 (3.67)
Sex, Male = M (%) 490 (46.0)
Race/Ethnicity (%)
Asian or Pacific Islands 64 ( 6.0)
Black/African American 148 (13.9)
Hispanic/Latino 94 ( 8.8)
Non-Hispanic, White 734 (68.9)
Other 25 ( 2.3)
Annual household income (%)
<$10k 72 ( 6.8)
10k-20k 82 ( 7.7)
20k-30k 136 (12.8)
30k-40k 126 (11.9)
40k-50k 106 (10.0)
50k-75k 225 (21.2)
75k-100k 146 (13.8)
>=100k 166 (15.7)
Years of education (%)
11 or less 36 ( 3.4)
12 146 (13.7)
13 65 ( 6.1)
14 131 (12.3)
15 65 ( 6.1)
16 454 (42.7)
17 or more 167 (15.7)
Gait speed (mean (SD)) 1.32 (0.20)
BMI (mean (SD)) 26.40 (5.11)
Endurance (mean (SD)) 108.07 (13.94)
Grip strength (mean (SD)) 103.56 (20.12)

Simple bivariate correlations among age and physical fitness measures are shown in Table 2. Although gait
speed was not a primary measure of interest, it is included as well. Age only weakly correlated with the
other measures; endurance was modestly correlated with gait speed, grip strength and BMI (|𝑟| ∼ 0.2 − 0.4).
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Table 2. Correlations among physical fitness measures and age.

Age Endurance Strength BMI Gait
Age 1 -0.09 -0.09 0.09 0.04

Endurance 1 0.28 -0.35 0.24
Strength 1 0.15 -0.02

BMI 1 -0.09
Gait 1

Physical Fitness and Structural Neuroimaging Markers

White Matter Fractional Anisotropy

Twelve of the possible 48 white matter ROIs were associated with BMI with 𝑧 test statistic that exceeded
the multiplicity-corrected threshold. These ROIs are summarized in Table 3 and are arranged from largest
to smallest |𝑧| statistic. In all cases, greater BMI was associated with lower FA values.

Table 3. Summary of effects of body mass index on white matter fractional anisotropy values

White matter ROI Abbr. Effect S.E. Z stat
Cerebral_peduncle_L CpL -0.0081 0.0011 -7.7

Fornix_cres_L FcL -0.01 0.0016 -6.5
Fornix_cres_R FcR -0.0092 0.0016 -5.9

Cerebral_peduncle_R CpR -0.0063 0.0011 -5.8
Pontine_crossing_tract Pct -0.0074 0.0015 -5

Sagittal_stratum_L SsL -0.0072 0.0015 -4.9
Cingulum_hippocampus_R ChR -0.0094 0.002 -4.7

Retrolenticular_part_internal_capsule_R RpicR -0.0062 0.0014 -4.4
Cingulum_hippocampus_L ChL -0.0082 0.0019 -4.3

Corticospinal_tract_L CtL -0.0073 0.0018 -4.1
Superior_frontooccipital_fasciculus_R SffR -0.0057 0.0015 -3.9

Inferior_cerebellar_peduncle_R IcpR -0.0072 0.0018 -3.9

Marginal plots of the association between BMI and these white matter ROIs are shown in Figure 2 below,
which account for the covariates and other fitness measures. In some instances, the association between
BMI and FA was fairly constant across the range of BMI values (e.g., left and right fornix), whereas in other
instances, the association appeared to dissipate somewhat with more extreme BMI values (e.g., left and right
cerebral penduncle).

Neither endurance nor grip strength had associations with the white matter ROIs with 𝑧 statistics beyond the
threshold. Comprehensive results for all white matter ROIs can be found in section 1 for the supplemental
material.

Gray Matter Structure

Body mass index was positively associated with right superior parietal thickness (see Table 4). As shown
in the marginal plot in Figure 3 this association was strongest as BMI increased from the normal to
the overweight range and then weakened somewhat with more extreme BMI values. No additional fitness
associations with gray matter structure (whether thickness, area, or subcortical volume) had significant 𝑧
statistics. Comprehensive results for all gray matter ROIs can be found in section 2 for the supplemental
material.
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Figure 2: Association between BMI and white matter FA values
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Table 4. Summary of effects of body mass index on GM cortical thickness

Outcome Effect S.E. Z stat
R_Superiorparietal 0.022 0.0047 4.6

2.28
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2.40
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Figure 3: Association between BMI and GM thickness values

Bivariate Behavioral Genetic Analysis of Fitness and Brain Structure

Based on the results of the larger sample, bivariate genetic models were estimated between body mass index
and 12 white matter ROIs and right superior parietal gray matter thickness. The full ACTwE model showed
small estimates with large standard errors for the shared environmental and twin-specific environmental
effects. As has been done in previous research (Wood et al. 2019;Vainik et al. 2018), the loadings and cross-
loadings for these two effect were fixed to zero, resulting in a simpler AE bivariate model. Across brain
regions, this simpler AE model did not result in a worsening in fit according to likelihood ratio tests, and
therefore, is described below. Comparison between ACTwE and AE models and tests for the assumptions
of equality of means and variances can be found in section 3 of the supplemental material.

White Matter Fractional Anisotropy

Initial bivariate correlations across siblings, across traits, and across siblings and traits for the the three
sibling pair types are shown in Figure 4 for the 12 white matter ROIs. These provide a helpful preview to
the formal behavioral genetic analyses presented below. Body mass index was strongly correlated among MZ
twins (𝑟 ∼ 0.61), and was weakly correlated among DZ twins and non-twin siblings (𝑟 ∼ 0.20 − 0.27). This
suggests an important role of heritability in BMI variation. Similarly, white matter FA was most strongly
correlated within MZ twins for all 12 ROIs, also suggesting an important role of heritability for white matter
integrity. Whether DZ twins or non-twin siblings had the next strongest correlation varied by ROI, thereby
suggesting inconsistency with regard to twin-specific versus a more general shared environmental effect.
Cross-trait and cross-trait/cross-sib (‘ct/cs’ in Figure 4) correlations also varied somewhat depending on
the white matter ROI, though in general, the strongest negative correlation was among MZ twins and further,
the cross-trait/cross-sibling correlation was nearly as strong as the cross-trait correlation among MZ twins.
This implies at least some role of heritability in the correlation between BMI and FA values; however, in light
that these correlations are generally quite modest (i.e., at most 𝑟 ∼ −0.30), the absolute role of heritability
is anticipated to be modest.

Standardized estimates and 95% confidence intervals for each of the paths in the bivariate cholesky decom-
position model are provided for each of the 12 white matter ROIs in Figure 5. Following on the correlations
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Figure 4: Phenotypic correlations across siblings and across traits
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described directly above, there were strong heritability loadings on white matter FA variance (path a11) and
BMI variance (a22). Similarly, there were strong, precisely estimated environmental effects for FA variance
(e11) and BMI variance (e22). The point estimate for the genetic cross-loading (a21) was negative and
modest (𝛽 ∼ −0.20); in some instances, the confidence interval for this estimate crossed into positive num-
bers, suggested some uncertainty about the nature of this effect. The point estimate for the environmental
cross-loading (e21) was also quite small, generally smaller in magnitude than the genetic cross-loading. The
confidence interval for this estimate was fairly narrow, but at times crossed into positive numbers.
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Figure 5: Behavioral genetic path estimates for BMI and white matter FA

These standardized estimates were then converted into variances and used to visualize how much of variation
in FA values and BMI could be attributed to each of the four sources. For example, in the AE model, white
matter FA variance is defined as below:

𝑉 𝑎𝑟𝐹𝐴 = 𝑉 𝑎𝑟𝐹𝐴𝐴
+ 𝑉 𝑎𝑟𝐹𝐴𝐸

For white matter FA, each of the variance components is the square of the respective standardized loading
For example,

𝑉 𝑎𝑟𝐹𝐴𝐴
= 𝑎2

11

For BMI, each of the variance components is the sum of the respective squared cross-loading and the squared
endurance-specific standardized loading. For example,
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𝑉 𝑎𝑟𝐵𝑀𝐼𝐴
= 𝑎2

21 + 𝑎2
22

The estimates from the AE model can also be used to partition the phenotypic correlation into A and E
components. For example, the portion of the correlation attributed to heritability can be estimated by first
estimating the covariance:

𝐶𝑜𝑣𝐴 = 𝑎11 × 𝑎21

And then coverting that value into a correlation.

𝐶𝑜𝑟𝐴 = 𝐶𝑜𝑣𝐴
(𝑉 𝑎𝑟𝐹𝐴𝐴

+ 𝑉 𝑎𝑟𝐹𝐴𝐸
) 1

2 × (𝑉 𝑎𝑟𝐵𝑀𝐼𝐴
+ 𝑉 𝑎𝑟𝐵𝑀𝐼𝐸

) 1
2

Proportions of the variances and of correlations are plotted in Figure 6. The decomposition of BMI variance
is roughly identical across models (as expected) and shows that heritability contributed to roughly 50% of
variance. Similarly, heritability contributed to between 50%-78% variance in white matter FA, depending
on the ROI. Environmental factors, by design, explained the remainder of the variance. Covariances were
converted to correlations and are also shown in Figure 6. As expected the total phenotypic correlation
was modestly negative, ranging between -0.20 and -0.25. Generally, heritability accounted for >1

2 of this
correlation. Section 4 of the supplemental material shows the analysis of these 12 white matter ROIs using
the ACTwE model.

Gray Matter Structure

All of the above behavioral genetic analyses were repeated on the right superior pariatal thickness, with
the results summarized in Figure 7. As can be seen across the panels, there was a strong heritability
effect for cortical thickness in addition to BMI (as described above). Analysis of the contributors to the
correlation between BMI and cortical thickness in this region showed small positive effects for heritability
(a21) and environment (e21) with confidence intervals that slightly cross into negative territory (see panel
B). Heritability was estimated to contribute to 74% of variation of the variance in gray matter thickness
and to slighly over 1

2 of the small positive phenotypic correlation (panel C). Section 5 of the supplemental
material shows the analysis of this gray matter ROI using the ACTwE model.

Discussion

In this large study of young adults, we observed that BMI, but not performance-based measures of fitness,
negatively correlated with white matter integrity in various white matter tracts. Except for a single positive
association between BMI and cortical thickness in the right superior parietal lobe, we failed to observe
associations between either physical fitness or BMI with cortical or subcortical gray matter structure.

Body Composition and Neurocognitive Health

These results add to a growing literature associating high BMI and obesity with lower neurocognitive func-
tioning and brain health at various points in the lifespan (Gunstad et al., 2007;Gunstad et al., 2008;Raji et
al., 2010;Kennedy et al., 2016). As expected, our results confirm a previous study that included data from
the YA-HCP that showed that high BMI was associated with widespread reduced white matter integrity
(Repple et al., 2018). The novelty of the current findings is that by also including several structural markers
of gray matter, we observed a fairly selective association between BMI and white matter integrity that does
not extend to gray matter, with the single exception in the right superior parietal lobe. Also, by including
upper-body strength and submaximal cardiovascular endurance as additional predictors of interest, we show
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Figure 6: Variance components for BMI and white matter FA
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Figure 7: Summary of behavioral genetic analyses of BMI and right superior parietal thickness
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that the effects of BMI cannot be explained by these performance-based fitness measures, and further, that
these fitness measures were not uniquely associated with brain structure. Finally, by allowing for nonlinear-
ities in these associations, we observed that in instances in which the association deviated from linear, the
most common pattern was for the slope to be steepest over the range of BMI values representing normal
through overweight (i.e., 18 to 30), after which the slope became shallower. This was most apparent for
white matter in the bilateral cerebral peduncle and bilateral hippocampal portion of the cingulum, and for
the right superior parietal gray matter thickness.

Our findings are consistent with previous studies showing that although there is a negative association
between BMI and white matter integrity throughout the brain, among the strongest statistical signals were
subcortical brain stem pathways, including bilateral cerebral peduncle and pontine cross tract (Verstynen et
al., 2012;Repple et al., 2018). By linking the midbrain to the thalamus, and to the cerebrum more generally,
the cerebral peduncles are critically involved in motor and sensory functions, including motor control and
coordination (Jane et al., 1968). Our findings also support previous studies showing a negative association
between BMI and white matter integrity in the fornix (Stanek et al., 2011;Xu et al., 2013). The fornix carries
projection fibers from the hippocampus and is implicated in higher-order learning and memory (Kantarci,
2014). Decreased fornix FA is observed with increasing age, and in mild cognitive impairment and Alzheimer’s
disease (Kantarci, 2014). We also observed the BMI-FA association in the bilateral hippocampal portion of
the cingulum, which has also been linked to memory functioning (Ezzati et al., 2016) and to Alzheimer’s
disease (Dalboni da Rocha et al., 2020). In light of the association of BMI in midlife with risk of dementia
in late life (Kivimaki et al., 2018), it is possible that these white matter tracts may play some role in
transmitting this effect.

Similar to a previous analysis of YA-HCP data (Vainik et al., 2018), we observed a positive association
between BMI and right superior parietal thickness; however, unlike this previous analysis, we failed to
observe associations within other gray matter regions. Reasons for this discrepancy may include a stricter
significance threshold in the current study that did not detect the weaker effects reported previously and the
larger set of covariates used in the current study, which notably included performance-based physical fitness,
educational attainment, and annual income.

We also failed to observe associations between either submaximal cardiovascular endurance or grip strength
with any of the markers of brain structure, which is inconsistent with a previous analysis of the YA-HCP
data that found an association between endurance and white matter integrity (Opel et al., 2019). However,
the current analysis differed in its analytic approach by including a larger set of covariates and using an ROI-
based, as opposed to a voxel-based, approach to analyzing the associations between BMI and neuroimaging
data. The lack of associations between fitness and brain structure is also inconsistent with other studies
that have explored these associations in youth (Chaddock-Heyman et al., 2015) and older adults (Oberlin
et al., 2015). The inconsistency with the current results could arise for numerous reasons. It is possible
that these associations are weaker during young adulthood as compared to during childhood development
or aging. Previous studies (Chaddock-Heyman et al., 2015;Oberlin et al., 2015) also used superior measures
of fitness (e.g., direct assessment of maximal oxygen uptake during a graded exercise test), which may have
provided better measurement of fitness, and in turn, of the true association with brain structure. It is also
possible that the large sample size of the current study allowed us to avoid detecting false positive findings.
An underappreciated phenomena is that small studies, in which constructs are measured with error (as is
ubiquitous in the behavioral and neurocognitive sciences), are prone to overestimate effect sizes, leading to
false positives, in addition to being prone to failure in detecting effects (Loken and Gelman, 2017). This
is especially true when the publication of research findings is contingent of the findings being statistically
significant. To resolve the inconsistencies of the current study with previous ones, large-sample, lifespan
studies with gold-standard measures of physical fitness are needed; the result will be better estimation of the
associations between fitness and brain structure and determination of how these associations might change
over the life course.
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Behavioral Genetics of Body Composition and Brain Structure

To further explore the nature of the association between BMI and brain structure, our study made use
of the large set of twins and full siblings contained in the YA-HCP. Using behavioral genetic analyses, we
estimated the degree to which variation in BMI and brain structure, and the covariation between BMI and
brain structure, could be explained by heritability—i.e., a set of common genes that directly or indirectly
impact BMI and brain structure—versus environmental effects. The first insight from these analyses was
that a simpler behavioral genetic model, in which variation and covariation was partitioned into genetic
versus environmental effects, fit the data no worse, despite being simpler, than a model which further
apportioned environmental effects into twin-specific effects, more generally sibling shared effects, and non-
shared environmental effects. Others have also found that this simpler model fits (co)variation in BMI and
neurocognition well (Vainik et al., 2018;Wood et al., 2019). This would imply that shared environmental
effects—whether specific to twins or to full siblings more generally—have little consistent contribution to
any connections between BMI and brain structure.

The second insight from these behavioral genetic analyses is that there was a clear heritability effect under-
pinning variation in BMI and the identified brain structures, as well as the covariation between BMI and
these brain structures. Indeed, this heritability effect exceeded the environmental effect across all variance
and correlation estimates (see Figure 6 and Figure 7c) and comports with previous studies that have ob-
served a clear genetic effect on variation in BMI and neurocognition analyzed independently (Friedman et
al., 2008;Elks et al., 2012;Kochunov et al., 2015), as well as in studies that employed bivariate behavioral
genetic analyses similar to the current study (Vainik et al., 2018;Wood et al., 2019).

This heritability effect is the portion of the variance or covariance that can be attributed to an additive
genetic effect after adjusting for the covariates. Although heritability estimates provide some insight as to
how various phenotypes (say, BMI and brain structure) are related, there is still a large degree of ambiguity
about the nature of these associations. This clear heritability effect could reflect a common set of genes
that causally affect both BMI and brain structure, so-called genetic confounding or pleiotropy (Vainik et al.,
2018). If genetic confounding largely accounts for the association between BMI and brain structure, inter-
vening upon either phenotype would be expected to have little impact on the other phenotype. Alternatively,
genetic effects could directly affect one phenotype that in turn, through active selection of environments and
behaviors, impacts the second phenotype (Scarr and McCartney, 1983). If our heritability estimate truly
reflects a cascading effect where genetic effects are transmitted through an intermediary phenotype, there is
evidence in the literature that the cascade could flow in either direction. One possibility is that differences in
brain structure impact obesogenic behaviors through decision-making processes, and in turn, leads to varia-
tion in BMI (Alonso-Alonso and Pascual-Leone, 2007;Lowe et al., 2019). Under this proposed directionality,
it may be helpful to remediate decision-making processes in order to promote healthful behavior or structure
the environment to support healthful behaviors and reduce the reliance of individual decision-making (Hall
and Fong, 2015;Hall, 2016), all with the intent of reducing obesity. Alternatively, BMI might impact brain
structure via cardiometabolic effects, including inflammation and hypertension (Williamson et al., 2018;Rep-
ple et al., 2019). Interventions to reduce BMI might have the added benefit of improving brain structure,
especially white matter integrity, though evidence from clinical trials is lacking (Wassenaar et al., 2019). It
may also be worthwhile to intervene on the cardiometabolic consequences of excess weight. A recent clinical
trial showed that intensive blood pressure treatment reduced the accrual of white matter lesions over time
among hypertensive adults 50 years or older (Nasrallah et al., 2019)

Limitations

The current study has noteworthy limitations and the findings are conditioned on certain untested assump-
tions. The cross-sectional study design prohibits us from understanding the causality or even directionality
of the association between BMI and brain structure. As noted above, even a strong heritability effect is
consistent with various causal models of the studied variables. Our physical fitness and body composition
measures also have limitations. Physical fitness was measured less precisely than gold-standard measures,
such as maximal oxygen uptake during a graded exercise test. BMI was calculated using self-reported height
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and weight. Our behavioral genetic analyses require the untested assumptions that there is no assortative
mating (i.e., individuals are not mating with others with similar BMI or brain structure more than expected
at random) and that the environmental effects are equivalent across sibling pair type.

Conclusions

White matter integrity begins to decline in mid adulthood and it correlates with cognitive performance;
furthermore, loss of white matter integrity and other white matter abnormalities are features of various
dementia subtypes, including Alzheimer’s disease (Wassenaar et al., 2019). Our study adds to a fairly
consistent pattern of findings showing that higher BMI correlates with lower white matter integrity at
various points in the lifespan (summarized in Wassenaar et al., 2019). Most of these previous studies have
examined mid or later adulthood. Along with a small set of previous studies (Aberg et al., 2009;Repple
et al., 2018;Williamson et al., 2018;Opel et al., 2019;Repple et al., 2019), we bring attention to the fact
that modifiable risk factors, such as BMI, correlate with brain health even in young adulthood. Our results
support a lifespan perspective on neurocognitive aging, in which it may be fruitful to intervene many decades
prior to the onset of cognitive impairment to effectively reduce negative impacts of cognitive aging (Moffitt
et al., 2016;Tucker-Drob, 2019).

We also extend the current literature in other ways. By taking a comprehensive approach to analyzing fitness
and body composition with several structural markers of brain health, we show that BMI, but not strength
or endurance, uniquely correlates with white matter integrity, and that there was very limited evidence for
an association with gray matter structure. A final contribution of the current work stems from findings from
our behavioral genetic analyses of twins and full siblings. These analyses confirm previous studies by showing
that heritability contributes to a majority proportion of variation in BMI and brain structure. Furthermore,
we show that generally at least 1/2 of the correlation between BMI and brain structure can be attributed to
heritability. This does not imply that either BMI or brain structure is immutable, but it does improve our
understanding of the etiology of the association between BMI and brain structure.
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