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ABSTRACT 
 
The role of the environment and climate in the transmission and case-fatality rates of SARS-
CoV-2 is still being investigated. Elevation and air quality are believed to be significant factors 
in the current development of the pandemic, but the influence of additional environmental 
factors remain unclear.  
 
In this study, we explored the relationship between the cumulative number of infections and 
mortality cases with climate (temperature, precipitation, solar radiation, water vapor pressure, 
wind), environmental data (elevation, NDVI, PM2.5 and NO2 concentration), and population 
density in Peru. Using the data from confirmed cases of infection from 1287 districts and 
confirmed cases of mortality in 479 districts, we used Spearman's correlations to assess the 
correlation between environmental and climatic factors with cumulative infection cases, 
cumulative mortality and case-fatality rate. We also explored district cases by the ecozones of 
coast, sierra, high montane forest and lowland rainforest.  
 
Multiple linear regression models indicate elevation, mean solar radiation, air quality, 
population density and green cover are influential factors in the distribution of infection and 
mortality of SARS-CoV-2 in Peru. Case-fatality rate was weakly associated with elevation. Our 
results also strongly suggest that exposure to poor air quality is a significant factor in the 
mortality of individuals with SARS-CoV-2 below the age of 30.  
 
We conclude that environmental and climatic factors do play a significant role in the 
transmission and case-fatality rates in Peru, however further study is required to see if these 
relationships are maintained over time.  
 
Introduction 
 
As SARS-CoV-2 has spread around the world in a few months, several groups of investigators 
have started to look into the different factors that could be related to the distribution of the 
infection and the severity of the disease. The incidence of infection in different countries and 
cities suggests that several factors influence the rate of infection, which are not only related to 
the virus and the immune system. In the case of Peru, the cities that have the most cases are 
generally located near the coast and have poor air quality throughout the year 
(https://www.datosabiertos.gob.pe/). In addition, population density seems to be a key factor in 
the spread of the virus, where overcrowded cities increase the probability of contact with 
infected individuals, increasing the number of infection and mortality cases in a short amount of 
time. Therefore, population density should be taken into account when analyzing different 
cofactors SARS-CoV-2 distribution.  
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Although more studies are necessary, the rate of infection and the severity of the diseases seems 
different for people living in cities at high altitudes, where not only hipoxia is a major factor, 
but other factors such as air quality, solar radiation, and population density, could play a role in 
SARS-CoV-2 person-to-person transmission. Arias-Reyes et al. (2020) suggested that there 
exists less rate of infection at high altitude possibly due to a lower level of expression of ACE2 
compared to sea level. This observation is important, particularly since SARS-CoV-2 uses 
ACE2 as a point of infection for the cells (Ren et al., 2020). Yao et al. (2020) explored the rate 
of SARS-CoV-2 infection across China, and concluded that there was no correlation between 
temperature, UV and the rate of infection. However, they recommended future studies using 
more complex models and environmental factors. Finch et al., (2016) explored the role of 
pollution exposure in the development of different diseases, where heart and respiratory 
diseases indicated a detrimental role of pollution on the endothelial integrity, and the changes in 
the levels of Endothelin I could be observed in people that were exposed to air pollution.(Briet 
et al. 2007 ) 
 
Environmentals factors related to  mechanics of different virus spread have been studied by 
several groups, before the pandemic. Pica et al. (2012) studied the environmental factors related 
to the spread of seasonal influenza and concluded that some meteorological factors play a 
central role in the person-to-person transmission of the virus, besides the sociodemographic 
factors. It is well known that UV radiation can decontaminate surfaces and air, and UV 
incidence increases at higher elevations and cities will have different exposures depending on 
their location. Kowalsky et al. (2009) demonstrated that the UV light can destroy a bacteries, 
many viruses and fungi, but additional studies are necessary to understand the impact of UV on 
SARS-CoV-2 in the natural environment.  
 
Understanding all the factors that are related to the spread of SARS-CoV-2 will be an important 
part of public policy, particularly towards the implementation of focalized quarantines in cities 
and districts where the cases of infection are high. Therefore, this study aims to explore the 
different cofactors that could increase or decrease the possibility of person-to-person 
transmission of SARS-CoV-2. The main objectives of this study was to explore the relationship 
between SARS-CoV-2 infection and mortality cases, case-fatality rates with a set of climate 
(temperature, precipitation, solar radiation, water vapor pressure, and wind), environmental data 
(elevation, NDVI, PM2.5 and NO2 concentration), and population density in Peru. We also 
divide the distribution of infection, mortality and case-fatality rates by four ecozones (coast, 
sierra, high montane forest and lowland rainforest) and subset mortality cases by age groups and 
gender.   
 

Methods 
 
We obtained SARS CoV 2 confirmed cases by district, of the 1873 districts in Peru, from 
official reports provided by the Peruvian Ministry of Health (MINSA), through an official 
government open data portal (https://www.datosabiertos.gob.pe/). We used the cumulative 
number of confirmed cases of infection from 1287 districts and confirmed cases of mortality in 
479 districts,  where at least 1 confirmed case was registered as of June 27, 2020 (Figure 1). The 
first case of SARS CoV 2 was registered on March 5, 2020. Under this criteria, the number of 
positive SARS CoV 2 cases analyzed were 263,743 and 7,877 deaths by June 27, 2020. 
Available data of infection included date of confirmation, while data on mortality included age, 
sex, and date registered. The first confirmed case of SARS CoV 2 in Peru was on March 6, 
2020. Infection and mortality values were log-transformed to meet statistical assumptions in 
relation to residuals and added 1 to avoid taking the logarithm of 0 (Liu et al, 2020; Xie and 
Zhu, 2020; Zhu et al., 2020).  
 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.16.20196170doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.16.20196170


We also assessed case-fatality rates, which implies the severity of the condition by estimating 
the proportion of cases that die of a given condition (Segovia-Juarez et al., 2020). The case-
fatality rate was estimated by dividing the number of cause-specific deaths among the incidence 
cases by the total number of incident cases*100 (CDC, 2019)  
 
We labeled districts based on four ecozones, including coast, sierra, high montane forest and 
lowland rainforest, which was originally developed based on elevation and biogeography and 
used in national and international reporting, and have a significant effect on agricultural activity, 
population density, population connectivity and other socioeconomic activities (MINAM, 
2016).  
 
Climate and environmental data 
 
A set of climate metrics were obtained from WorldClim version 2.1 (Fick & Hijmans, 2017), 
which presents a historical baseline from the years 1979 to 2000 and includes monthly 
temperature, rainfall, wind speed, and solar radiation. Satellite-based environmental data was 
obtained from a variety of satellite sensors that detect environmental variables, including 
elevation, vegetation cover, and air quality. Vegetation cover was estimated through NDVI 
(Normalized Difference Vegetation Index), a commonly used spectral index used to quantify 
green cover, including agricultural extent, forest cover, and green cover in urban settings. We 
infer air quality through the metrics of two health-relevant air pollutants, which include 
particulate matter at 2.5 μm (PM2.5) and nitrogen dioxide (NO2). Population density was 
obtained from the WorldPop model of population density (people km−2) for Peru adjusted to 
match official United Nations population estimates for the year 2020 (www.worldpop.org). 
Further details on climate data and satellite-based environmental data are provided in the online 
supplementary material. 
 
Data analysis 
 
We extracted the  zonal statistics by district (i.e. average value per district polygon) of each of 
the climate, remotely sensed and population density layers using ArcPro (verison 2.2). We used 
SPSS 25.0 (IBM, USA) for all statistical analysis of the extracted values. We used the one-
sample Kolmogorov-Smirnov parametric test to evaluate the distribution of residuals obtained 
for each district from each of the original 36 data layers used. Covariance within the subsets of 
climate and environmental variables were estimated with Spearman's Rho correlation, where 
correlation of the order of 0.9 or larger were determined to have a high covariance. As a result, 
the final reduced data set used in this study were 21 data layers, including 14 climatic layers, 6 
environmental layers and the population density model (Table 1). The climatic layers included 4 
temperature, 4 rainfall, 2 solar radiation, 2 wind speed and 2 water vapor metrics. All 6 
environmental layers and the population density model had a relatively low level of covariance 
and were kept for further analysis. The climate and environmental data were also normalized 
(following Zhu et al., 2020), due to the different units used in each variable, through the 
following method: 
 

X = Xn – Xan/Sn         (1) 
 
Where X is the normalized data, Xn is the raw data for the variable, Xan is the mean value of the 
raw data, and Sn is the standard deviation of Xn. 
 
We used stepwise linear regression to explore the association of climatic and environmental 
variables with the log-transformed data of cumulative number of confirmed cases of infection 
and confirmed cases of mortality, across Peru and within ecozones. The number of cases were 
used as dependent variables, and the environmental and climatic were selected as independent 
variables. The resulting statistically significant predictive models use one or multiple variables 
that best explain the dependent variable. The adjusted R2 from model fitting indicates the 
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percentage of all factors that explain the distribution of cases and the magnitude of the 
standardized β reflects the influence of the corresponding variable in the predictive model. 
Collinearity diagnostics, resulting from the regression, were also used to identify model 
variables that were highly correlated. Significant differences between means were evaluated 
using one-way ANOVA followed by a Tukey test. 
 
Results 
 
The district of San Juan de Lurigancho, of the department of Lima and in the coastal ecozone, 
had the most number of confirmed infected cases  and case fatalities of SARS-CoV-2, with 
13,724 total infections and 394 fatalities, up until the date of the data obtained for this study. 
The average number of confirmed cases of infection and fatalities was 205 (SD ± 938) and 16.4 
(SD ± 42.2) per district, respectively. Across ecozones, the number of registered male fatalities 
was 5,601 (71.1%) and females was 2,276 (28.9%). The average age of total male fatalities was 
64.2 (SD ± 15.6) and females was 66.3 (SD ± 15.9). There was also a significant difference 
between ecozones for mean age of fatalities (F = 5.64, p<0.001) and female only cases (F = 
6.03, p<0.001), but not in male only cases (F = 1.46, p=0.224). We found no significant 
difference between the mean case-fatality rates by ecozones (F = 0.34, p=0.80; Table 2).  
 
Correlation analysis indicated a positive correlation of total infections with PM2.5 (� = 0.449) 
and a negative correlation with elevation (� = –0.476), where the number of infections 
correlates with increased air pollution, while there are less number of infections with elevation 
Figure 2). Similarly, correlation analysis indicated a high positive correlation coefficient 
between mean tropospheric NO2 (� = 0.497, p<0.001), PM2.5 (� = 0.506; p<0.001) and 
registered mortality across sexes and in the male population with � = 0.504 and � = 0.486, 
respectively.  
 
In stepwise linear regression model fitting, the three most important parameters that explain the 
distribution of cumulative number of infections across the country (R2 = 0.46; p-value = 0.038) 
were NDVI (β = –0.392), elevation (β = –0.311), and mean solar radiation (β = –0.244)(Table 
3). The negative correlation indicates a decrease in the cumulative number of infections, with an 
increase in surrounding green cover (NDVI). In addition, the cumulative number of infections 
decreases with increasing elevation and increasing mean solar radiation. Within each ecozone, 
parameters importance change indicating the importance of population density (β = 0.474) in 
the coast, NDVI (β = –0.359) in the sierra, maximum NO2 (β = 0.352) in high montane forest, 
and elevation (β = –0.441) in lowland rainforest.  
 
Model fitting for cumulative mortality cases across the Peru indicated the negative correlation 
of NDVI (β = –0.299), elevation (β =  –0.245), and mean solar radiation (β =  –0.230), and the 
positive correlation with mean NO2 (β = 0.237) and population density (β = 0.215) (Table 4). 
Population density was the most influential factor for mortality in the coastal ecozone, lowland 
rainforest, and male and female mortality across the country. It is worth noting that adjusted R2 
indicated that the models included at least 28% of the factors that affect the difference in 
mortality.  
 
Regarding age groups, mean NO2 was the most influential factor of difference of mortality for 
individuals with an age range of 0 to 17 (β = 0.654) and 18 to 29 (β = 0.422) (Table 5). 
Population density was the most influential factor for the remaining age ranges of 30 to 49 (β =  
0.306), 50 to 70 (β = 0.483), and above 80 (β = 0.309). However, it is worth noting that mean 
NO2 was indicated as an influential factor for mortality for the age ranges of 30 to 49 (β =  
0.236) and above 80 (β = 0.258).    
 
A positive correlation from model fitting was found between case fatality rates and elevation (β 
= 0.318), although a relatively low explanatory factor (R2 = 0.12; p-value = 0.015) compared to 
most predictive models performed in this study (Table 6). Indeed, case fatality rate models had 
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the lowest R2, although statistically significant (p < 0.05), compared to models for infection and 
mortality. Elevation was the most influential factor for the coast (β = 0.281), sierra (β = 0.303), 
and high montane forest (β = 0.466). Mean diurnal range was the main factor for case fatality 
rates in high montane forests (β = 0.466) and the only climate variable to appear as a factor for 
model fitting in this study.  
 
Discussion 
 
Our study found that several environmental factors are influential in the cumulative number of 
SARS-CoV-2 infection and mortality, with particular factors having apparently significant roles 
in specific scenarios. Generally, the cumulative number of infections is reduced with increased 
elevation and solar radiation, but other factors such as poor air quality and population density 
have significant roles. Surprisingly, NDVI, as a measure of green cover and socioeconomic 
level in urban settings, was a strong predictive factor of SARS-CoV-2 infection (Table 3). 
Previous studies have found that more affluent suburbs in Peru tend to be less populated, have 
more green space that reflects higher property values (Duarte-Garcia et al., 2018), and therefore, 
residents may be more likely to have access to private health measures that could decrease rates 
of infection in the longer term.  
 
Once we separate infection and mortality by ecozones, the influence of environmental factors is 
similar to looking at Peru as a whole, with a few notable exceptions. Solar radiation is a much 
more influential factor in the Sierra, where there are strong geographic patterns particularly in 
the south, and UV radiation is known to be strong in these drier environments (Figure 2). If we 
take into account the UV radiation as a possible factor that could decrease the survival of the 
virus in the air, this could account for the decrease of infected people in the sierra and in the 
south of the country. 
 
Mean NO2 concentration is an overriding factor for the cumulative number of mortality for ages 
below 30. Higher mean NO2 concentration is indicative of anthropogenic activity, such as fossil 
fuel consumption and biomass burning, which occur in more population dense districts, but it is 
only moderately correlated with population density in Peru. Mean NO2 concentration in 2019 
was highest in the metropolitan cities of Lima, Arequipa and the small southern city of 
Moquegua, where NO2 density of above 250 µmol m−2 were found year round. Seasonal high 
concentrations, due to agricultural and other biomass burning, are found in cities in the Amazon 
basin during the dry season. The overall detrimental effects of air pollution on the health and 
mortality within populations, in accordance to type and length of exposure is known (Carey et 
al, 2013), along with other studies exploring its effects on the current pandemic (Fattorini and 
Regoli, 2020). 
 
Unlike male mortality, we found a significant difference in the mean age of women who died 
across ecozones in Peru, with a higher average age for women in the Sierra. To our knowledge, 
this is the first study to indicate the multiple factors that seem to influence female mortality, 
including a negative correlation with elevation and mean solar radiation, but a larger positive 
correlation with population density, NDVI and mean NO2 density. Female mortality from 
SARS-CoV-2 is lower than males in all the countries possibly due to the expression of the 
ACE2 (angiotensin�converting enzyme 2) receptor regulated by female hormones. However, 
protection is lost in older women, as the levels of  hormones decrease. The probability of 
infection in older women becomes similar to their male counterpart, but there is still a higher 
rate of fatalities in men than women independent of age (Jin Jiam-Min et al, 2020). 
  
Our study also found elevation to be an influential factor in case fatality rate for the coast, 
sierra, high montane forest, lowland rainforest, and the country as a whole when looking at the 
data at the district level. This is contrary to the findings Segovvia-Juarez et al. (2020), which 
studied cases at the provincial level, instead of the district level, and found that the case fatality 
rate was not modified by elevation. Our analysis indicates a rather weak but statistically 
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significant correlation. However, we acknowledge that further studies still need to be conducted 
to see if this relationship continues throughout the course of the pandemic.  
 
The limitations of this study are indicative of the asymptomatic nature of SARS-CoV-2 for 
many patients. It is currently unclear the magnitude of underestimation occurring at the present 
time and accurate numbers may not become available until widespread molecular testing is 
performed. Also, news reports indicate that the cumulative number of mortality may also be 
significantly underestimated due to the lack of testing and patient care in overwhelmed urban 
and rural hospitals, particularly during the peaks of SARS-CoV-2 infection.  
 
In conclusion, elevation is one of several factors that has determined the number of infections 
and mortality. Other significant factors include population density, air quality, solar radiation 
and NDVI, as a measure of both green cover and socioeconomic level. Poor air quality was the 
single most important factor to determine mortality below the age of 30. We also found that 
case fatality rate is modified, albeit weakly, by elevation, which is contrary to previously 
published findings. As more data becomes available, this study can be replicated to see if the 
relationship between  SARS-CoV-2 and climatic and environmental factors are maintained over 
time.  
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Table 1 Description of the variables selected for statistical modeling.  
 

Data Source Temporal 
resolution 

Spatial 
resolution 

Climatic variables 
   

Annual mean temperature WorldClim 1970–2000 1 km 

Mean diurnal temperature range  WorldClim 1970–2000 1 km 

Temperature seasonality WorldClim 1970–2000 1 km 

Temperature annual range WorldClim 1970–2000 1 km 

Annual precipitation WorldClim 1970–2000 1 km 

Precipitation of Wettest Month WorldClim 1970–2000 1 km 

Precipitation seasonality WorldClim 1970–2000 1 km 

Precipitation of warmest quarter WorldClim 1970–2000 1 km 
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Solar radiation (mean)  WorldClim 1970–2000 1 km 

Solar radiation (standard deviation)  WorldClim 1970–2000 1 km 

Water vapor pressure (mean) WorldClim 1970–2000 1 km 

Water vapor pressure (standard deviation) WorldClim 1970–2000 1 km 

Wind speed (mean) WorldClim 1970–2000 1 km 

Wind speed (standard deviation) WorldClim 1970–2000 1 km 

Environmental variables 
   

Elevation SRTM 2000 90 m 

NDVI (mean) MODIS 2019 500 m 

PM 2.5 (mean) MERRA-2 2019 62 km 

Tropospheric NO2 (mean) Sentinel-5P 2019 500 m 

Tropospheric NO2 (maximum) Sentinel-5P 2019 500 m 

Population density  WorldPop 2020 1 km 

 
 
 
 
 
 
 
Table 2 Difference between mean age ± SE of fatalities in districts within different ecozones. 
Min-max represents the range of age and n is the number of cases.  
 
 

Ecozone 
    

Cases Coast Sierra High montane 
forest 

Lowland 
rainforest 

1-way ANOVA 
p-value 

Cumulative fatalities 65.1 ± 0.2 66.5 ± 0.7 62.3 ± 1.3 62.8 ± 0.8 < 0.001 

   min-max 0–101 16–97 1–99 2–95 
 

   n 4737 423 192 390 
 

Male fatalities 64.4 ± 0.3 64.7 ± 0.9 62.5 ± 1.4 62.8 ± 1.0 0.224 

   min-max 0–101 16–97 1–90 6–95 
 

   n 3091 281 138 274 
 

Female fatalities 66.4 ± 0.4 70.0 ± 1.2 61.6 ± 2.7 62.8 ± 1.6 < 0.001 

  min-max 0–100 25–95 1–99 2–92 
 

  n 1646 142 54 116 
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Table 3 Predictive models of the relationship of cumulative case infection and environmental 
and climatic variables.  

Dependent Predictors Standardized β R2 Adj. R2 p-value 

Cumulative inf. NDVI –0.392 0.46 0.46 0.04 

 

Elevation –0.311 
   

 

Radiation mean –0.244 
   

 

NO2 max 0.171 
   

 

NO2 mean 0.057 
   

 

PM2.5 0.129 
   

 

Pop. density 0.150 
   

 

Wind mean –0.081 
   

 

Radiation (SD) –0.077 
   

Coast Pop. density 0.474 0.35
0 

0.34 0.03 

 

Elevation –0.199 
   

 

PM2.5 0.163 
   

Sierra NDVI –0.359 0.50 0.50 0.02 
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Radiation mean –0.272 
   

 

Elevation –0.244 
   

 NO2 mean 0.191    

 PM2.5 0.171    

 Pop. density 0.131    

 Wind SD –0.077    

High montane 
rainforest 

NO2 max 0.325 0.40 0.39 <0.001 

 PM2.5 0.266    

 Elevation –0.253    

Lowland 
rainforest 

Elevation –0.441 0.37 0.35 0.001 

 

Pop. density 0.327 
   

 
 
Table 4 Predictive models of the relationship of mortality across and within ecozones and 
environmental and climatic variables.  
 

 Predictors Standardized β R2 Adj. R2 p-value 

Cumulative mortality NDVI –0.299 0.48 0.48 <0.001 

 Elevation –0.245    

 NO2 mean 0.237    

 Radiation mean –0.230    

 Pop. density 0.215    

Male Pop. density 0.250 0.46 0.45 <0.001 

 NDVI –0.245    

 NO2 mean 0.229    

 Elevation –0.223    

 Radiation mean –0.200    

Female Pop. density 0.379 0.33 0.33 0.015 

 NO2 mean 0.191    

 Elevation –0.136    

Coast Pop. density 0.502 0.37 0.36 <0.001 

 PM2.5 0.335    
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Sierra Elevation –0.274 0.51 0.50 0.005 

 NDVI –0.273    

 Pop. density 0.253    

 NO2 mean 0.193    

 Radiation mean –0.162    

High montane rainforest NO2 max 0.576 0.55 0.53 0.003 

 PM2.5 0.139    

Lowland rainforest Pop. density 0.548 0.30 0.28 <0.001 

 
 
 
 
 
 
Table 5  Predictive models of the relationship of age of mortality and environmental and 
climatic variables.  
 

Age range Predictors Standardized β R2 Adj. R2 p-value 

0 to 17 NO2 mean 0.654 0.43 0.40 <0.001 

18 to 29 NO2 mean 0.422 0.18 0.16 0.001 

30 to 49 Pop. density 0.306 0.28 0.27 0.004 

 

NO2 mean 0.236 
   

 

Elevation –0.14 
   

50 to 79 Pop. density 0.483 0.28 0.27 0.034 

 

Elevation –0.14 
   

≥ 80 Pop. density 0.309 0.36 0.35 0.046 

 

NO2 mean 0.258 
   

 

PM2.5 0.164 
   

 

Solar radiation 
mean 

–0.113 
   

 
 
 

Table 6 Predictive models of the relationship of case fatality rates and environmental and 
climatic variables.  
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 Predictors Standardized β R2 Adj. R2 p-value 

Peru Elevation 0.318 0.12 0.12 0.015 

 

NDVI 0.106 
   

Coast Elevation 0.281 0.08 0.06 0.022 

Sierra Elevation 0.303 0.12 0.11 0.029 

 

NDVI 0.117 
   

High montane forest Elevation 0.466 0.22 0.20 <0.001 

Lowland rainforest Mean diurnal range 0.460 0.21 0.19 0.002 
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Figure 1 a) Cumulative number of confirmed infected cases per district, b) modeled population 
density (people km−2) for the year 2020, c) maximum tropospheric NO2 density (µmol m−2) for 
2019, and d) mean solar radiation (kJ m−2 day−1). Outlines in a) and b) are district boundaries, 
while outlines in c) indicate departmental boundaries and d) (left to right) the coast, sierra, high 
montane forest and lowland rainforest ecozones.  
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Figure 2 Spearman's correlation between climatic and environmental factors and the cumulative 
cases of infection, case-fatality rate (CFR) and mortality. The color gradient indicates 
correlation coefficients, where darker red indicates a correlation approaching 1 and a darker 
blue indicates a correlation approaching –1. Statistical significance were * p<0.05, ** p <0.01, 
and ***p<0.001. 
 
 
 

ON-LINE DEPOSITORY 
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Ecozones 
 
For the purposes of our study, the ecozones originally categories as “selva alta accessible” 
(accessible high jungle) and “selva alta dificil” (difficult high jungle) were merged to high 
montane forest ecozone. Similarly, the hydromorphic zone was merged with the lowland 
rainforest ecozone.  
 
Climate data  
 
A set of climate metrics were obtained from WorldClim version 2.1 (Fick & Hijmans, 2017). 
These metrics are derived from monthly climatologies, which include monthly temperature, 
rainfall, wind speed, and solar radiation. These monthly climatologies were developed using a 
series of global and country networks of weather stations and represent a historical baseline 
from the years 1979 to 2000. The data is interpolated into monthly climate metrics at a 1 km 
spatial resolution and at the global scale. Eleven temperature and eight precipitation metrics 
were used, which represent measures of annual means and seasonality. Three wind speed and 
three solar radiation metrics were also used, which include annual mean, annual standard 
deviation and annual maximum. The total number of climate layers initially available for this 
study was 29 before they were reduced to avoid collinearity 
 
Environmental data  
 
Environmental data was obtained from a variety of satellite sensors that detect environmental 
variables, including elevation, vegetation cover, and air quality. We used the Shuttle Radar 
Topography Mission (SRTM) digital elevation data at the native 90 m spatial resolution. 
 
To quantify vegetation cover, we used the MODIS (Moderate Resolution Imaging 
Spectroradiometer) Terra 16-day NDVI (Normalized Difference Vegetation Index) product to 
calculate the mean NDVI value over Peru for the year 2019. NDVI is a widely used spectral 
index that is highly correlated with vegetation and has a range of value from +1 to –1, where 
values close to +1, indicate dense green vegetation, and values close to 0 indicate barren ground 
or artificial surfaces. NDVI values of Peruvian rainforests or well irrigated agricultural plants 
would approach a value of 1, while cities with mostly artificial surfaces and very few urban 
trees or gardens would have an average value closer to zero.  
 
We infer long term exposure to air pollution through the metrics of two health-relevant 
pollutants, which include particulate matter at 2.5 μm (PM 2.5) and nitrogen dioxide (NO2). 
Mean PM 2.5 (dust column mass density in kg m-2) was obtained from the MERRA-2 (Modern-
Era Retrospective analysis for Research and Applications version 2) using the  the Goddard 
Earth Observing System Model, Version 5 (GEOS-5) with its Atmospheric Data Assimilation 
System (ADAS), version 5.12.4, which was available through NASA´s Giovanni application (v. 

4.34; https://giovanni.gsfc.nasa.gov/). We used the native spatial resolution of 0.5 ✕ 

0.625° (approximately 3,850 km2) and the annual mean for the year 2019. Tropospheric NO2 
density (µmol m−2) for 2019 was obtained from the Copernicus Sentinel-5P satellite, which 
holds the TROPOspheric Monitoring Instrument (TROPOMI). We used the native spatial 
resolution of 7 km and metrics of annual mean and maximum value for the year 2019, which 
was obtained through Google Earth Engine.  
 
The total number of environmental data layers assessed for this study was 6, which were 
assessed for collinearity through Superman´s Rho correlation and stepwise linear regression 
collinearity diagnostics.  
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