Initial Model for USA CoVID-19 Resurgence

Genghmun Eng

PhD Physics 1978, University of Illinois at Urbana-Champaign geng001@socal.rr.com

September 4, 2020

Abstract

Early CoVID-19 growth obeys: $N\{\hat{t}\} = N_I \exp[+K_o \hat{t}]$, with $K_o =$ $[(\ln 2)/(t_{dbl})]$, where t_{dbl} is the pandemic growth doubling time. Given $N\{t\}$, the daily number of new CoVID-19 cases is $\rho\{t\} = dN\{t\}/dt$. Implementing society-wide Social Distancing increases the t_{dbl} doubling time, and a linear function of time for t_{dbl} was used in our Initial Model: $N_o[t] = \mathbf{1} \, \exp[+K_A \, t \, / \, (1 + \gamma_o t)] \equiv e^{+G_o} \, \exp(-Z_o[t]),$

to describe these changes, where the [t]-axis is time-shifted from the $\{t\}$ -axis back to the pandemic start, and $G_o \equiv [K_A/\gamma_o]$. While this $N_o[t]$ successfully modeled the USA CoVID-19 progress from 3/2020 to 6/2020, this equation could not easily model some quickly decreasing $\rho[t]$ cases ("fast pandemic shutoff"), indicating that a second process was involved. This situation was most evident in the initial CoVID-19 data from China, South Korea, and Italy. Modifying $Z_o[t]$ to allow exponential cutoffs:

 $Z_A[t] \equiv +[G_o / (1 + \gamma_o t)] [\exp(-\delta_o t)] = Z_o[t] \exp(-\delta_o t),$ $N_A[t] = e^{+G_o} \exp(-Z_A[t]),$

resulted in an Enhanced Initial Model (EIM) that significantly improved data fits for these cases.

After 6/2020, many regions of the USA "opened up", loosening their Social Distancing requirements, which led to a sudden USA CoVID-19 Resurgence. Extrapolating the USA $N_o[t] 3/2020-6/2020$ results to 9/2020as an *Initial Model Baseline (IMB)*, and subtracting this *IMB* from the newer USA data gives a *Resurgence Only* function, which is analyzed here. This USA CoVID-19 Resurgence function differs significantly from the $N_o[t]$ IMB functional form, but it was well-modeled by the $N_A[t]$ fast pandemic shutoff function. These results indicate that: (a) the gradual increase in t_{dbl} doubling time from society-wide shut-downs is likely due to eliminating of a large number of population gathering points that could have enabled CoVID-19 spread; and (b) having a non-zero δ_o fast pandemic shutoff is likely due to more people wearing masks more often [with 12 Figures].

1 Introduction

The CoVID-19 pandemic started late in 2019, becoming world-wide in early 2020, with CoVID-19 spread evolving differently in various areas. Many publicly available databases were set up to track the disease, to assist epidemiologists, scientists, and policy makers in visualizing CoVID-19 spread. The widely available *bing.com*¹ CoVID-19 database was used here. These databases underpin model projections, allowing quick evaluation of how different inputs affect the predicted outcome. Our goal was to empirically model a wide range of data with a small number of parameters, where different values for these parameters could span the range of observed CoVID-19 evolution among regions.

The $N{t}$ number of CoVID-19 cases starts with an exponential growth:

$N\{t\} \approx N_I \exp[+K_o t] ,$	[1.1a]
$K = (\ln 2) / t_{m}$	[1.1b]	1

 $\begin{aligned} K_o &\equiv (\ln 2) / t_{dbl} , \qquad [1.1b] \\ dN\{\hat{t}\} / d\hat{t} &= +K_o N\{\hat{t}\} , \qquad [1.1c] \end{aligned}$ where N_I at time $\hat{t} = 0$ is the number of infected people, K_o is a rate constant for how fast an infected person spreads CoVID-19 to others, and t_{dbl} is the pandemic *doubling time*. This is the basis for a large number of **SEIR** (Susceptible, Exposed, Infected, and Recovered or Removed) pandemic models, which are often implemented as systems of local differential equations.

Implementing society-wide measures for non-infected people is inherently a non-local process. How it impacts pandemic spread is often not the main focus of **SEIR** models, which are local. However, when governments mandated *Social* Distancing, starting with shut-down of large-scale gathering places at some t = 0point, the $N{t}$ response was fairly quick. Within days, the t_{dbl} was empirically observed to gradually lengthen, likely due to these shut-downs preventing a large number of people from gathering together and spreading CoVID-19.

Our prior work²⁻³ showed that an *Initial Model*², with a linear function of time for gradual t_{dbl} changes:

$$\begin{split} & N\{\hat{t}\} = N_I \exp[+K_o \hat{t} / (1 + \alpha_S \hat{t})], \\ & \lim_{\hat{t} \to \infty} [N\{\hat{t}\}] = N_I \exp[+K_o / \alpha_S], \end{split}$$
[1.2a][1.2b]

successfully fit a lot of early CoVID-19 pandemic data. More importantly, Eq. [1.2b] showed that this *Initial Model* allows for CoVID-19 pandemic shutoff, prior to infecting the whole population.

An exception was CoVID-19 spread in Italy, having a much faster pandemic shut-off than Eq. [1.2a] predicted. We attributed this to a second CoVID-19 mitigation process that was modeled with a δ_{α} exponential decay time constant: $U_A\{\widehat{t}\} \sim \exp(-\delta_o \widehat{t}),$

[1.3]

where $\delta_o = 0$ is the absence of this second process. Including this second $process^4$ gave an Enhanced Initial Model (EIM), which then successfully modeled CoVID-19 spread in Italy.

While the Initial $Model^{2-3}$ successfully predicted the USA CoVID-19 evolution from March 2020 through early June 2020, widespread "opening-up" of various gathering places (such as *local bars* and *hair and nail salons*) in mid-June 2020 created a large-scale USA CoVID-19 Resurgence.

A new model for USA CoVID-19 Resurgence is developed here. Our prior (3/2020-6/2020) USA CoVID-19 function was used as an Initial Model Baseline (IMB). This IMB was projected out to 9/2020, and subtracted from all followon USA data, to give a Resurgence Only function. As detailed next, the number of USA CoVID-19 Resurgence cases can substantially exceed the expected pre-Resurgence total. More importantly, this CoVID-19 Resurgence was also found to require a $\delta_o \neq 0$ EIM in order to achieve a good data fit.

This $\delta_o \neq 0$ result is similar to the prior analysis of CoVID-19 spread in Italy⁴. The fact that the $\delta_o \neq 0$ *EIM* function is needed to model *Resurgence*, instead of an Eq. [1.2a] *IMB*-type function, helps to identify the CoVID-19 second process. After the *Social Distancing* period of 3/20-6/20, new post-6/20 society-wide recommendations or mandates to wear masks were put in place, which likely gives rise to this faster *Resurgence* pandemic shut-off.

2 Background

Let $N\{\hat{t}\}$ model the total number $N_{data}\{\hat{t}\}$ of CoVID-19 cases in a locality, with $N_{data}\{\hat{t}\}$ having end-points $\{N_I, N_F\}$. Then $N\{\hat{t}=0\} = N_I$, and:

$$N\{\hat{t}\} = \int_{t^*=0}^{t^*=t} \rho\{t^*\} dt^* + N_I, \qquad [2.1a]$$

$$\rho\{t\} = dN\{t\} / dt, \qquad [2.1b]$$

where $\rho\{\hat{t}\}$ is the predicted number of daily new CoVID-19 cases. Early CoVID-19 growth obeys $N\{\hat{t}\} \approx N_I \exp[+K_o \hat{t}]$, with $K_o = [(\ln 2)/t_{dbl}]$, where t_{dbl} is the pandemic doubling time, but if society-wide Social Distancing starts at $\hat{t} = 0$, then t_{dbl} can lengthen for $\hat{t} > 0$. The prior $\hat{t} < 0$ exponential growth phase, before Social Distancing started, is not applicable for estimating Social Distancing parameters.

Our Initial Model for CoVID-19 spread and t_{dbl} lengthening²⁻³ is given in the above Eqs. [1.2a]-[1.2b]. In Eq. [1.2a], different N_I values alter the $\hat{t} = 0$ points. However, all these time axes can be shifted to a new t = 0 point that estimates the CoVID-19 pandemic start:

$$N_o[t] = \mathbf{1} \, \exp[+K_A \, t \, / \, (1 + \gamma_o \, t)] \equiv \exp[+G_o] \, \exp(-Z_o[t]) \,, \qquad [2.2a]$$

$$Z_{o}[t] = +[G_{o} / (1 + \gamma_{o} t)], \qquad [2.2b]$$

$$G_o \equiv \left(K_A \,/\, \gamma_o \right),\tag{2.2c}$$

$$\rho_o[t] \equiv dN_o[t] \,/\, dt \,, \tag{2.2d}$$

along with the boundary conditions that $N_o[t = t_I] \approx N_I$ and $N_o[t = t_F] \approx N_F$ occur over the $(t_F - t_I)$ time interval. The t_I value is set by the prior $\{K_o, \alpha_S\}$ values. Specifically, at $\hat{t} = [-t_I]$, Eq. [1.2b] must give:

$$\mathbf{1} \equiv N_I \, \exp\{+K_o \, [-t_I] \, / \, (1 + \alpha_S \, [-t_I])\} \,, \qquad [2.3]$$

which then individually sets
$$\{t_I, t_F\}$$
 as follows:

 $t_{I} = \ln(N_{I}) / [K_{o} + \alpha_{S} \ln(N_{I})], \qquad [2.4a]$ $t_{F} = \ln(N_{I}) / [K_{o} + \alpha_{S} \ln(N_{I})] + (t_{F} - t_{I}), \qquad [2.4b]$ with the $\{N_{I}, t_{I}, N_{F}, t_{F}\}$ group uniquely determining $\{\overline{K}_{A}, \overline{\gamma}_{o}\}$:

$$\gamma_o = \{ \left[\ln(N_I) / t_I \right] - \left[\ln(N_F) / t_F \right] \} / \left[\ln(N_F) - \ln(N_I) \right], \qquad [2.5a]$$

$$K_A = \lfloor (1/t_I) - (1/t_F) \rfloor / \{ \lfloor 1/\ln(N_I) \rfloor - \lfloor 1/\ln(N_F) \rfloor \}, \qquad [2.5b]$$

which sets the Eq. [2.2b] $Z_o[t]$ function. The total number of cases (N_{max}^o) at the pandemic end, and the long-time tail for $\rho_o[t]$ are each given by:

 $N_o[t \to \infty, Z_o \to 0] \approx 1 \exp[+K_A / \gamma_o] = \exp[+G_o] \equiv N_{\max}^o, \qquad [2.6a]$ $\rho_o[t] = dN_o[t] / dt \approx N_o[t] [G_o \gamma_o / (1 + \gamma_o t)^2] \to N_{\max}^o \{G_o / [\gamma_o t^2]\}. \qquad [2.6b]$ The $\{0 < t < t_I\}$ period, prior to *Social Distancing* start, estimates what the pandemic would have looked like, had *Social Distancing* begun at t = 0.

Using USA CoVID-19 data from $bing.com^1$ from 3/21/2020 through 6/7/2020.

we derived the following *Initial Model Baseline (IMB)* best fit as shown in **Figs. 1-2**, using these parameter values:

pre-	Initial Model	Date or	# Cases or	
Resurgence	Value	Parameter	Value	
t = 0	$0.0 \ days$	3/11/2020	$N_{00} \approx 1$	
$data t_I =$	$9.936 \ days$	3/21/2020	$N_I = 23,710$	
data $t_F =$	$87.936 \ days$	6/7/2020	$N_F = 1,920,628$	
calc. $t_{Peak} =$	$34.936\ days$	4/15/2020	$ig(egin{smallmatrix} ho_o[t_{Peak}]pprox \ {f 30,727/day} \end{pmatrix}$	
$(N_{\max}^o) =$	$4,499,494\ cases$	$Max. \# \ cases$	4,499,494	
calc. $K_o =$	$0.347169 \ /day$	calc. $K_A =$	$2.960744 \ / day$	
calc. $\alpha_S =$	$0.06618 \ /day$	calc. $\gamma_o =$	$0.193267 \ /day$	
$\binom{\left[K_o / \alpha_S\right] +}{\ln(N_I)} =$	15.31948	$\binom{\left[K_A / \gamma_o\right] +}{\ln(N_{00})} =$	15.31945	
. /		,		[2.7]

Shortly after 6/7/2020, many states and cities around the USA "opened up" nearly simultaneously, loosening *Social Distancing* restrictions. This optimistic action led to a sudden USA CoVID-19 Resurgence.

3 Initial Model for CoVID-19 Resurgence

To model CoVID-19 *Resurgence*, the **Figs.** 1-2 *IMB* curve values were subtracted from the new USA data totals. When the total number of CoVID-19 *Resurgence* cases, $\overline{N}_{data}\{\hat{t}'\}$, showed a trend above the *IMB* baseline, then $\{\overline{N}_I, \overline{N}_F\}$ could be used as the $\overline{N}_{data}\{\hat{t}'\}$ data end-points. Let $\overline{N}\{\hat{t}'\}$ model this CoVID-19 *Resurgence* data, so that $\overline{N}\{\hat{t}'=0\}=\overline{N}_I$. Then:

$$\overline{N}\{\widehat{t}'\} = \int_{t^*=0}^{t^*=t^*} \overline{\rho}\{t^*\} dt^* + \overline{N}_I, \qquad [3.1a]$$

$$\overline{\rho}\{\widehat{t}'\} = d\overline{N}\{\widehat{t}'\} / d\widehat{t}', \qquad [3.1b]$$

where $\overline{\rho}\{t'\}$ is the predicted number of daily new CoVID-19 Resurgence cases. Early CoVID-19 Resurgence can obey $\overline{N}\{\hat{t}'\} \approx \overline{N}_I \exp[+\overline{K}_o \hat{t}']$, where $\overline{K}_o = [(\ln 2)/\overline{t}_{dbl}]$ and \overline{t}_{dbl} is the pandemic Resurgence doubling time. Using an Initial Resurgence Model (IRM) that parallels the prior section IMB gives:

$$N\{t'\} = N_I \exp[+K_o t'/(1 + \overline{\alpha}_S t')], \qquad [3.2a]$$
$$\lim_{\widehat{t} \to \infty} [\overline{N}\{\widehat{t'}\}] = \overline{N}_I \exp[+\overline{K}_o/\overline{\alpha}_S]. \qquad [3.2b]$$

The best $\{\overline{K}_o, \overline{\alpha}_S\}$ are set by minimizing the *rms* error between the Eq. [3.2a] function and the measured CoVID-19 *Resurgence* data. In Eq. [3.2a], the $\hat{t}' < 0$ data, where $\overline{N}\{\hat{t}'\} < \overline{N}_I$, are not used to estimate the $\{\overline{K}_o, \overline{\alpha}_S\}$ pandemic

Resurgence parameters. As Eq. [3.2b] shows, this *IRM* allows pandemic shutoff before the CoVID-19 *Resurgence* infects the whole population. In Eq. [3.2a], different \overline{N}_I values alter the $\hat{t}' = 0$ points, but all these time axes can be shifted to a new t' = 0 point that estimates the CoVID-19 *Resurgence* start:

$$\overline{N}_{o}[t'] = \mathbf{1} \exp[+\overline{K}_{A} t' / (1 + \overline{\gamma}_{o} t')] \equiv \exp[+\overline{G}_{o}] \exp(-\overline{Z}_{o}[t']), \qquad [3.3a]$$

$$\frac{Z_o[t'] = +[G_o/(1+\bar{\gamma}_o t')]}{\overline{C}_o = (\overline{K}_o/(\overline{L}+\bar{\gamma}_o t')]},$$
[3.3b]
[3.3c]
[3.3c

$$\overline{O}_{o} = (R_{A}/P_{o}),$$

$$\overline{O}_{o} [t'] = d\overline{N}_{o}[t'] / dt'$$

$$[3.3d]$$

 $\overline{\rho}_o[t'] \equiv dN_o[t'] / dt'.$ Since the $\{\overline{N}_I, \overline{N}_F\}$ data end points span a time interval of $(\overline{t}_F - \overline{t}_I)$, the constraints $\overline{N}_o[t' = \overline{t}_I] = \overline{N}_I$ and $\overline{N}_o[t' = \overline{t}_F] = \overline{N}_F$ determines $\{\overline{K}_A, \overline{\gamma}_o\}$ as follows. Using a method similar to Eq. [2.3] and Eqs. [2.4a]-[2.4b], the best fit $\{\overline{K}_o, \overline{\alpha}_S\}$ values from Eq. [3.2a] set $\{\overline{t}_I, \overline{t}_F\}$:

$$\overline{t}_I = \ln(\overline{N}_I) / [\overline{K}_o + \overline{\alpha}_S \ln(\overline{N}_I)], \qquad [3.4a]$$

$$t_F = \ln(N_I) / [K_o + \overline{\alpha}_S \ln(N_I)] + (t_F - t_I), \qquad [3.4b]$$

with the
$$\{\overline{N}_I, \overline{t}_I, \overline{N}_F, \overline{t}_F\}$$
 group uniquely determining $\{\overline{K}_A, \overline{\gamma}_o\}$:

$$\gamma_o = \left\{ \left[\ln(N_I) / t_I \right] - \left[\ln(N_F) / t_F \right] \right\} / \left[\ln(N_F) - \ln(N_I) \right], \qquad [3.5a]$$

$$\overline{K} = \left[\left(1 / \overline{t}_I \right) - \left(1 / \overline{t}_F \right) \right] / \left[1 / \ln(\overline{N}_I) \right] - \left[1 / \ln(\overline{N}_F) \right] \right\} \qquad [3.5b]$$

 $\overline{K}_{A} = \left[\left(1/\overline{t}_{I} \right) - \left(1/\overline{t}_{F} \right) \right] / \left\{ \left[1/\ln(\overline{N}_{I}) \right] - \left[1/\ln(\overline{N}_{F}) \right] \right\}, \qquad [3.5b]$ which sets the Eq. [3.3b] $\overline{Z}_{o}[t']$ function. The total number of cases $(\overline{N}_{\max}^{o})$ at pandemic end, and the long-term tail for $\overline{\rho}_{o}[t']$ are each given by:

$$\overline{N}_{o}[t' \to \infty, \ \overline{Z}_{o} \to 0] \approx \mathbf{1} \exp[+\overline{K}_{A} / \overline{\gamma}_{o}] = \exp[+\overline{G}_{o}] \equiv \overline{N}_{\max}^{o}, \quad [3.6a]$$
$$\overline{\rho}_{o}[t'] = d\overline{N}_{o}[t'] / dt' = \qquad \qquad [3.6b]$$

$$\overline{N}_o[t'] [\overline{G}_o \overline{\gamma}_o / (1 + \overline{\gamma}_o t')^2] \to \overline{N}_{\max}^o [\overline{G}_o / \{\overline{\gamma}_o (t')^2\}],$$

showing that $\overline{\rho}_o[t'] > 0$. Either $\{K_A, \overline{\gamma}_o\}$ or $\{G_o, \overline{\gamma}_o\}$ can be used as the primary variables. The *IRM* analysis results for the USA CoVID-19 *Resurgence* are shown in **Figs. 3-4**, using the best-fit $\{\overline{G}_o, \overline{\gamma}_o\}$ values. The prior $\{0 < t' < \overline{t}_I\}$ period in **Fig. 3** estimates what the pandemic would have looked like, if *Resurgence Social Distancing* had begun at t' = 0. The best fit parameter values for **Figs. 3-4** are:

Decourse on on	Initial Model	Date or	# Cases or	
nesurgence	Value	Parameter	Value	
t' = 0	$0.0 \ days$	5/31/2020	$\overline{N}_{00} \approx 1$	
$data \ \overline{t}_I =$	$12.72 \ days$	6/13/2020	$\overline{N}_I = 15,650$	
$data \ \overline{t}_F =$	$68.72 \ days$	8/8/2020	$\overline{N}_F = 2,213,058$	
calc. $\overline{t}_{Peak} =$	$66.72 \ days$	8/6/2020	$ig(\overline{ ho}_o[\overline{t}_{Peak}]pprox \ {f 54,866/day}ig)$	
$(\overline{N}_{\max}^{o}) =$	$15, 179, 600 \ cases$	$Max. \# \ cases$	15, 179, 600	
$\overline{K}_o =$	$0.3158\ /day$	$\overline{K}_A =$	$1.82566 \ /day$	
\overline{lpha}_S =	$0.04592\ /day$	$\overline{\gamma}_o =$	$0.11041\ /day$	
${\left({{\left[{\overline{K}_o / \overline{\alpha}_S } \right] + } \atop {\ln \left({\overline{N}_I \right)} } \right)} =$	16.5354	${\left({{\left[{\overline{K}_A / \overline{\gamma}_o } \right]} + } \right) = }$	16.5353	
				[3.7]

Unfortunately, **Fig. 3** shows that the $\overline{\rho}_o[t']$ *IRM* data fit is not that good. The $\overline{\rho}_o[t']$ function has a long tail, which overestimates \overline{N}_{\max}^o , as the maximum number of CoVID-19 *Resurgence* cases at the pandemic end.

4 Enhanced Model: USA CoVID-19 Resurgence

Since the observed $\overline{\rho}_o[t']$ Resurgence data decreases much quicker than the *IRM* prediction, the USA CoVID-19 Resurgence has a fast pandemic shutoff, which is similar to our prior study³⁻⁴ of Italy CoVID-19 data. That Italy data was most successfully modeled by introducing a second process having an exponential decay in time. Generalizing the *IRM* model of Eq. [3.3a] similarly gives this Enhanced Initial Model (EIM) for Resurgence, where $\overline{\delta}_o \neq 0$ in Eq. [4.1c] characterizes this second process:

$N_A(t')$ =	$= 1 \exp[+\overline{G}_o] \exp[-Z_A(t')],$	[4.1a]
$\pi(\mu)$	\overline{Z} [1] II (1) > 0	[4 11]

 $Z_A(t') = Z_o[t'] U_A(t') > 0, \qquad [4.1b]$ $U_A(t') \equiv +\exp(-\overline{\delta}_o t'), \qquad [4.1c]$

$$\overline{Z}_o[t'] = +[\overline{G}_o/(1+\overline{\gamma}_o t')], \qquad [4.1d]$$

$$Z_A(t'=0) \equiv +\overline{G}_o = (\overline{K}_A / \overline{\gamma}_o), \qquad [4.1e]$$

The above Eqs. [4.1a]-[4.1e] have these limits:

 $Z_A(t' \to \infty) \equiv 0, \qquad [4.2a]$ $N_A(t' = 0) = 1 \qquad [4.2b]$

$$N_A(t=0) = 1,$$
 [4.25]
 $U_A(t'=0) \equiv +1,$ [4.2c]

$$U_A(t' \to \infty) \equiv 0, \qquad [4.2d]$$

 $N_A(t' \to \infty) = \mathbf{1} \exp[+\overline{G}_o].$ [4.2e]

For easier data fitting when $\delta_o \neq 0$, the Eq. [4.2b] condition that $N_A(t'=0) = 1$ can be relaxed. Adjusting $N_A(t'=0)$ allows $N_A(t'=\overline{t}_I) = \overline{N}_I$ to be preserved. Then both $\{\overline{t}_I, \overline{N}_I\}$ can be treated as model inputs. The \overline{G}_o prefactor in Eq. [4.1a] can be modified to give:

$$N_A(t') = \mathbf{1} \exp[+\overline{G}_o - \overline{h}_A] \exp[-Z_A(t')], \qquad [4.3]$$

so that h_A can adjust $N_A(t'=0)$, while keeping the same t'=0 point: $N_A(t'=0) = \mathbf{1} e^{-\overline{h}_A}$, [4.4a]

$$N_A(t' = \overline{t}_I) = \mathbf{1} e^{-\overline{h}_A} \exp[+\overline{G}_o] \exp[-Z_A(\overline{t}_I)] \equiv \overline{N}_I.$$
[4.4b]

$$\lim \left[N_A(t') \right] \equiv \mathbf{1} \, e^{-\overline{h}_A} \, \exp[+\overline{G}_o] = \mathbf{1} \, e^{-\overline{h}_A} \, \exp[+\overline{K}_o/\overline{\gamma}_o] = N_A^{\max} \, . [4.4c]$$

Here N_A^{\max} is the total number of CoVID-19 Resurgence cases at the pandemic end for this *EIM* model. Given values for $\{\overline{G}_o, \overline{\gamma}_o, \overline{\delta}_o, \overline{t}_I, \overline{N}_I\}$, Eq. [4.4b] uniquely sets \overline{h}_A via:

$$\overline{h}_A \equiv \overline{G}_o - Z_A(\overline{t}_I) - \ln(\overline{N}_I).$$

$$[4.5a]$$

$$Z_A(t_I) \equiv Z_o(t_I) U_A(t_I) > 0.$$

$$[4.5b]$$

The $N_A(t')$ of Eq. [4.3] then gives this $\rho_A(t')$: $\rho_A(t') \equiv \frac{d}{dt'} N_A(t') = \mathbf{1} \exp[+\overline{G}_o] \frac{d}{dt} \exp[-Z_A(t')] =$

 $P_A(t') \equiv \frac{d}{dt'} N_A(t') = \mathbf{1} \exp[+G_o] \frac{d}{dt} \exp[-Z_A(t')] =$ $+ [N_A(t') Z_A(t')] \{ \overline{\delta}_o + \overline{\gamma}_o / (1 + \overline{\gamma}_o t') \} > 0 .$ [4.6]

for the daily number of new CoVID-19 cases, providing a self-consistent analytic function for $\rho_A(t')$, instead using $\rho_A(t') \approx \Delta N_A(t') / \Delta t'$ as a numerical approximation. For long times, Eq. [4.6] becomes:

 $\rho_A(t') \approx \mathbf{1} \left\{ \overline{\delta}_o \,\overline{G}_o \exp[+\overline{G}_o] \right\} \left\{ \left[1/(1+\overline{\gamma}_o t') \right] \,\exp(-\overline{\delta}_o t') \right\} > 0 \,, \tag{4.7}$

which exhibits a nearly exponentially decaying tail. Minimizing the *rms* error using a *Logarithmic Y-axis* vs linear-time axis gives **Figs. 5-6**, with these best fit parameter values and results:

Log	$EIM \ (\overline{\delta}_o \neq 0)$	Date or	# Cases or
Y-axis	Value	Parameter	Value
t' = 0	$0.0 \ days$	5/30/2020	$\overline{N}_{00} \approx 0.477$
$data \ \overline{t}_I =$	$13.157 \ days$	6/13/2020	$\overline{N}_I = 15,650$
$data \ \overline{t}_F =$	$88.157 \ days$	8/27/2020	$\overline{N}_F = 2,912,774$
calc. $\overline{t}_{Peak} =$	$57.157 \ days$	7/28/2020	$ig(ar{\overline{ ho}}_o[\overline{t}_{Peak}] pprox \ \mathbf{52,301/day} ig)$
$(N_A^{\max}) =$		$Max. \# \ cases$	6,621,180
$\overline{K}_o =$	$0.24152\ /day$	$\overline{K}_A =$	$1.778635 \ /day$
$\overline{\alpha}_S =$	$0.0510\ /day$	$\overline{\gamma}_o =$	$0.108151\ /day$
${\left({\left[{\overline K_o / \overline lpha_S } ight] + } ight) = }$	$\binom{Not}{Applicable}$	$(\overline{G}_o - \overline{h}_A) =$	15.7058
$\overline{h}_A = \ln(\overline{N}_{00}) =$	0.74	$\overline{\delta}_{o}/day$	$0.0081 \ /day$
			[4.8]

The Fig. 6 Logarithmic Y-axis data fit is quite good, as is Fig. 5 when compared to the *IRM* Fig. 3. The faster decaying Fig. 5 $\rho_A(t')$ tail gives a significantly lower prediction for the total number of *Resurgence* cases at the pandemic end. Finally, a similar data fit is shown in Figs. 7-8, except the rms error was minimized using a Linear Y-axis vs linear-time axis for the $\rho_A(t')$ Resurgence data. It has the following best fit parameters, which are similar to the above Eq. [4.8] table results:

Linear	$EIM \ (\overline{\delta}_o \neq 0)$	$Date \ or$	# Cases or
Y-axis	Value	Parameter	Value
t' = 0	$0.0 \ days$	5/31/2020	$\overline{N}_{00} \approx 0.427$
$data \ \overline{t}_I =$	$12.060 \ days$	6/13/2020	$\overline{N}_I = 15,650$
$data \ \overline{t}_F =$	$87.060 \ days$	8/27/2020	$\overline{N}_F = 2,912,774$
calc. $\overline{t}_{Peak} =$	$49.060 \ days$	7/20/2020	$igl(rac{\overline{ ho}_o[\overline{t}_{Peak}] pprox 0 }{50,300 / \mathbf{day}} igr)$
$(N_A^{\max}) =$		$Max. \# \ cases$	5, 143, 380
$\overline{K}_o =$	0.24067	$\overline{K}_A =$	$1.96486 \ /day$
$\overline{\alpha}_S =$	0.0580	$\overline{\gamma}_o =$	$0.12052\ /day$
${\left({\overline{K}_o / \overline{\alpha}_S } \right] + \atop {\ln \left(\overline{N}_I \right)}} =$	$\binom{Not}{Applicable}$	$(\overline{G}_o - \overline{h}_A) =$	15.4532
$\overline{h}_A = \ln(\overline{N}_{00}) =$	0.85	$\overline{\delta}_o =$	$0.0108 \ /day$
			[4.9]

These values form our best estimate for USA CoVID-19 Resurgence. Combining these results with the pre-Resurgence data fit of Figs. 1-2, gives Figs. 9-10 for the full USA CoVID-19 evolution, covering the entire 3/21/2020-8/27/2020 time frame. This final data fit captures virtually all of the shape nuances in the actual data. The predicted final number of USA CoVID-19 Cases at the pandemic end, from Eq. [2.7] and Eq. [4.9] is: $N_{\max}^{TOTAL} = N_{\max}^o + N_A^{\max} = 4,499,494 + 5,143,380 = 9,642,874$. [4.10]

For CoVID-19 in the USA, Fig. 11 plots the ratio of the total number of deaths versus total number of cases (% vs time), based on the bing.com database¹, which gives 2.9325% = (169, 108) / (5, 766, 718), as of 8/27/2020. This value is similar to the IHME 8/27/2020 value⁵ of ~3.1065%, which is shown as a horizontal line on Fig. 11.

Using the slightly higher IHME mortality rate allows our **Fig. 10** predictions

to be compared with the most recent IHME predictions⁵, as shown in Fig. 12. The IHME predictions include the presumption of a 2^{nd} Resurgence, due to factors⁶ of "seasonality and declining vigilance". Each IHME projection shown in Fig. 12 is also an IHME Model average⁵, with the magnitude of their lower and upper bound deviations (not graphed) being < 2.5% by 9/26/2020, increasing to < 42% by 1/1/2021. The IHME 2^{nd} Resurgence assumptions are evident in the upward (+) curvature in all IHME predictions, as compared to the downward (-) curvature of the present Resurgence model, indicating progress to a CoVID-19 pandemic shut-off, assuming NO 2^{nd} Resurgence occurs.

The causes of a 2^{nd} Resurgence could include a large-scale set of new reopenings, creating another rapid rise in CoVID-19 cases, similar to Fig. 9. A follow-on analysis would be needed for this 2^{nd} Resurgence. The possibility of multiple CoVID-19 waves was highlighted early on by the University of Minnesota CoVID-19 team⁷⁻⁸, but each wave was assumed to have **minimal overlap**. Instead, these results, and the IHME projections (which already includes a 2^{nd} Resurgence), support the idea that USA CoVID-19 evolution is likely to have **multiple overlapping** waves of Resurgence.

5 Discussion and Conclusions

The Initial Resurgence Model (IRM) for USA CoVID-19 Resurgence, given by Eqs. [3.3a]-[3.3d] and Eqs. [3.6a]-[3.6b] has the γ_o parameter accounting for the effects of society-wide Social Distancing. Our prior work² showed that the effects of implementing society-wide shut-downs changed the CoVID-19 pandemic evolution within days of the start of its implementation. Thus, the size of γ_o likely reflects the degree to which society-wide large gatherings were eliminated. It is a non-local parameter that is generally not part of the traditional **SEIR** (Susceptible, Exposed, Infection, and Recovered or Removed) pandemic modeling, which are governed by local differential equations.

Our analysis shows that the USA CoVID-19 Resurgence data decreased faster than the IRM model predictions. A similar situation³⁻⁴ was seen in the CoVID-19 pandemic evolution in Italy, which was successfully modeled by introducing a second process:

$$\overline{\rho}_{data}\{\hat{t}'\} \sim \left[\exp(-\overline{\delta}_o \hat{t}')\right],\tag{5.1}$$

which has an exponentially decaying tail. This second process is independent of the gradually changing t_{dbl} doubling time, which gave rise to the IRM $\{\overline{K}_A, \overline{\gamma}_o\}$ parameters.

For USA CoVID-19 Resurgence, an Enhanced Resurgence Model (ERM) was developed to include this second process. This ERM essentially replaces the $\overline{N}_o[t']$ and $\overline{Z}_o[t']$ of Eqs. [3.3a]-[3.3b] with:

$$Z_A[t] = + [\overline{G}_o / (1 + \overline{\gamma}_o t)] \exp(-\overline{\delta}_o t), \qquad [5.2a]$$

$$N_A(Z_A) = [e^{+G_o}] \exp(-Z_A[t]).$$
 [5.2b]

The necessity of using a second process ($\delta_o \neq 0$) to model the USA CoVID-19 Resurgence has a potentially important implication. This δ_o is a second non-local parameter that may not be part of a traditional **SEIR** (Susceptible, Exposed, Infection, and Recovered or Removed) pandemic model. Pre- vs Post-Resurgence, what else changed? The most likely explanation is that δ_o measures the degree to which people wear and wore masks to mitigate and prevent CoVID-19 spread during the Resurgence.

6 List of Figures

Figure 1. Initial Model Baseline (IMB): USA CoVID-19 Projections vs data to 6/7/2020. Predicted Number of Daily CoVID-19 Cases has a peak of 30,727 cases/day on 4/15; with 4,499,494 cases total; and ~5,783 new cases/day at Day 200 on 9/27/2020.

Figure 2. Initial Model Baseline (IMB): USA CoVID-19 Projections vs data to 6/7/2020. Revised bing.com data, circa 5/3/2020, changed all values back to the pandemic start. Initial Model appears to be a good data fit.

Figure 3. Initial Model fit for CoVID-19 Resurgence: USA Data 6/13/20 to 8/8/20. The Fig. 1 IMB has data through 6/7/2020. It was extrapolated to 8/27/2020, then subtracted from the actual data to create Resurgence Only data, which was then fitted using the Initial Model.

Figure 4. USA CoVID-19 Resurgence Only: Data vs Initial Model Fit, 6/13/20 to 8/8/20. Initial Model Baseline (IMB) was subtracted from actual data to set Resurgence Only Data. Resurgence Start Day #1 was set to 6/13/2020 with N = 15,650 cases above IMB.

Figure 5. Enhanced Initial Model (EIM): USA CoVID-19 Resurgence 6/7/20-8/27/20. EIM best fit with $N_A[t] exp(-Z_A[t])$ using enhanced $Z_A[t]$ function with exponential decay term, which significantly improves fit. Best fit uses Logarithmic Y-axis: $\ln(N_A[t])$ vs time.

Figure 6. Enhanced Initial Model (EIM): USA CoVID-19 Resurgence 6/7/20-8/27/20. EIM best fit with $N_A[t] exp(-Z_A[t])$ using enhanced $Z_A[t]$ function with exponential decay term. Datafit minimizes rms error on Logarithmic Y-axis.

Figure 7. Enhanced Initial Model (EIM): USA CoVID-19 Resurgence 6/7/20-8/27/20. EIM best fit with $N_A[t] \sim exp(-Z_A[t])$ using enhanced $Z_A[t]$ function with exponential decay term. Bestfit minimizes error on Linear Y-axis vs time w/ $\mathbf{Y} = dN_A[t]/dt = \text{Daily } \#$ New CoVID-19 cases.

Figure 8. Enhanced Initial Model (EIM): USA CoVID-19 Resurgence 6/7/20-8/27/20. EIM best fit with $N_A[t] exp(-Z_A[t])$ using enhanced $Z_A[t]$ function with exponential decay term. Deviations on Logarithmic Y-axis due to minimizing error using Linear Y-axis as given in Fig. 7.

Figure 9. USA CoVID-19 Totals: *IMB* Plus *EIM* for *Resurgence* 3/21/20-8/27/20. Combination of *Initial Model Baseline* (*IMB*), starting from 3/21/20 [Fig. 1]; plus *Enhanced Initial Model* (*EIM*) for CoVID-19 *Resurgence*, starting from ~6/7/2020 [Fig.7].

Figure 10. USA CoVID-19 Totals: *IMB* Plus *EIM* for *Resurgence* 3/21/20-8/27/20. Combination of *Initial Model Baseline* (*IMB*) from 3/21/20 [Fig. 2];

plus Enhanced Initial Model (EIM) for CoVID-19 Resurgence from $^{6}/_{7}/_{2020}$ [Fig. 8] gives 9,642,874 total at pandemic end.

Figure 11. Net Percent USA CoVID-19 Deaths: Ratio of Total # of USA Deaths to Total # of *bing.com* reported USA CoVID-19 Cases, 3/21/20 through 8/27/2020. Some USA CoVID-19 restrictions lifted $\sim 6/7/2020$ leading to CoVID *Resurgence*; IHME used 3.1065% as of 8/27/20.

Figure 12. Net Predicted USA CoVID-19 Deaths: The 8/27/20 IHME 3.1065% Mortality Rate for USA CoVID-19 cases was applied to Fig. 10 to estimate USA CoVID-19 mortality, assuming NO 2nd Resurgence; enabling comparison to IHME's model, which has 2nd Resurgence effects.

7 References

- 1. www.bing.com/covid: 'Bing COVID-19 Tracker', and https://www.bing.com/covid?form=CPVD07.
- https://www.MedRxiv.org/content/10.1101/2020.05.04.20091207v1, https://doi.org/10.1101/2020.05.04.20091207, "Initial Model for the Impact of Social Distancing on CoVID-19 Spread", Genghmun Eng.
- https://www.MedRxiv.org/content/10.1101/2020.06.30.20143149v1, https://doi.org/10.1101/2020.06.30.20143149, "Orthogonal Functions for Evaluating Social Distancing Impact on Covid-19 Spread", G. Eng.
- https://www.MedRxiv.org/content/10.1101/2020.08.07.20169904v1, https://doi.org/10.1101/2020.08.07.20169904, "Model to Describe Fast Shutoff of CoVID-19 Pandemic Spread", Genghmun Eng.
- https://covid19.healthdata.org/united-states-of-america?view= total-deaths&tab=trend, Institute of Health Metrics and Evaluation (IHME), University of Washington, 9/3/2020.
- https://www.reuters.com/article/us-health-coronavirus-usa/ u-s-coronavirus-deaths-projected-to-more-than-double-to-410000by-january-idUSKBN25V2A7, "U.S. Coronavirus Deaths Projected to More Than Double to 410,000 by January", Daniel Trotta; additional reporting by P. Szekely; editing by H. Goller, 9/4/2020
- K. A. Moore, M. Lipsitch, J. M. Barry, M. T. Osterholm, "Future of the COVID-19 Pandemic: Lessons Learned from Pandemic Influenza". Center for Infectious Disease and Research [CIDRAP], Academic Health Center, University of Minnesota, April 30, 2020, pp. 1-9.
- https://www.yahoo.com/news/coronavirus-may-last-2-years-172805061
 html, "Coronavirus May Last 2 Years, Study Warns. Its 2nd wave could be Worse", Dennis Wagner, USA Today, 5/1/20, 10:07 PM PDT.

Figure 1. *Initial Model Baseline (IMB):* USA CoVID-19 Projections vs data to 6/7/2020. Predicted Number of Daily CoVID-19 Cases has a peak of 30,727 cases/day on 4/15; with 4,499,494 cases total; and ~5,783 new cases/day at Day 200 on 9/27/2020.

Figure 2. *Initial Model Baseline (IMB)*: USA CoVID-19 Projections vs data to 6/7/2020. Revised *bing.com* data, circa 5/3/2020, changed all values back to the pandemic start. *Initial Model* appears to be a good data fit.

Figure 3. *Initial Model* fit for CoVID-19 *Resurgence:* USA Data 6/13/20 to 8/8/20. The **Fig. 1** *IMB* has data through 6/7/2020. It was extrapolated to 8/27/2020, then subtracted from The actual data to create *Resurgence Only* data, which was then fitted using the *Initial Model*.

Figure 4. USA CoVID-19 Resurgence Only: Data vs Initial Model Fit, 6/13/20 to 8/8/20. Initial Model Baseline (IMB) was subtracted from actual data to set Resurgence Only Data. Resurgence Start Day #1 was set to 6/13/2020 with N=15,650 cases above IMB.

Figure 5. Enhanced Initial Model (EIM): USA CoVID-19 Resurgence 6/7/20-8/27/20. EIM best fit with $N_A[t] \sim exp(-Z_A[t])$ using enhanced $Z_A[t]$ function with exponential decay term, which significantly improves fit. Best fit uses Logarithmic Y-axis: $ln(N_A[t])$ vs time.

Figure 6. Enhanced Initial Model (EIM): USA CoVID-19 Resurgence 6/7/20-8/27/20. EIM best fit with $NA[t] \sim exp(-ZA[t])$ using enhanced ZA[t] function with exponential decay term. Datafit minimizes *rms* error on *Logarithmic Y-axis*.

Figure 7. Enhanced Initial Model (EIM): USA CoVID-19 Resurgence 6/7/20-8/27/20. EIM best fit with $N_A[t] \sim exp(-Z_A[t])$ using enhanced $Z_A[t]$ function with exponential decay term. Bestfit minimizes error on Linear Y-axis vs time w/ $Y = dN_A[t]/dt$ = Daily # New CoVID-19 cases.

Figure 8. Enhanced Initial Model (EIM): USA CoVID-19 Resurgence 6/7/20-8/27/20. EIM best fit with $N_A[t] \sim exp(-Z_A[t])$ using enhanced $Z_A[t]$ function with exponential decay term. Deviations on Logarithmic Y-axis due to minimizing error using Linear Y-axis as given in Fig. 7.

Figure 9. USA CoVID-19 Totals: *IMB* Plus *EIM* for *Resurgence* 3/21/20-8/27/20. Combination of *Initial Model Baseline (IMB)*, starting from 3/21/20 [Fig. 1]; plus *Enhanced Initial Model (EIM)* for CoVID-19 Resurgence, starting from ~6/7/2020 [Fig.7].

Figure 10. USA CoVID-19 Totals: *IMB* Plus *EIM* for *Resurgence* 3/21/20-8/27/20. Combination of *Initial Model Baseline (IMB)* from 3/21/20 [Fig. 2]; plus *Enhanced Initial Model (EIM)* for CoVID-19 *Resurgence* from ~6/7/2020 [Fig. 8] gives 9,642,874 total at pandemic end.

Figure 11. Net Percent USA CoVID-19 Deaths: Ratio of Total # of USA Deaths to Total # of *bing.com* reported USA CoVID-19 Cases, 3/21/20 through 8/27/2020. Some USA CoVID-19 restrictions lifted ~6/7/2020 leading to CoVID *Resurgence*; IHME used **3.1065%** as of 8/27/20.

Figure 12. Net Predicted USA CoVID-19 Deaths: The 8/27/20 IHME **3.1065%** Mortality Rate for USA CoVID-19 cases was applied to **Fig. 10** to estimate USA CoVID-19 mortality, assuming **NO** 2nd Resurgence; enabling comparison to IHME's model, which has 2nd Resurgence effects.