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Abstract—We construct a recursive Bayesian smoother,
termed EpiFilter, for estimating the effective reproduction
number, R, from the incidence of an infectious disease in
real time and retrospectively. Qur approach borrows from
Kalman filtering theory, is quick and easy to compute, gen-
eralisable, deterministic and unlike many current methods,
requires no change-point or window size assumptions. We
model R as a flexible, hidden Markov state process and ex-
actly solve forward-backward algorithms, to derive R esti-
mates that incorporate all available incidence information.
This unifies and extends two popular methods, EpiEstim,
which considers past incidence, and the Wallinga-Teunis
method, which looks forward in time. This combination
of maximising information and minimising assumptions,
makes EpiFilter more statistically robust in periods of low
incidence, where existing methods can struggle. As a result,
we find EpiFilter to be particularly suited for assessing the
risk of second waves of infection, in real time.

Key-words: Bayesian filters, reproduction numbers, epi-
demic models, COVID-19, infectious diseases.

INTRODUCTION

During an unfolding epidemic, one of the most com-
monly available and useful types of surveillance data is
the daily (or weekly) number of new infected cases. This
time-series of case counts, also known as the incidence
curve, not only measures the epidemic size and burden,
but also provides information about trends or changes in
its transmissibility [[1], [2]]. These trends are captured by
the time-varying effective reproduction number, denoted
R, at time s, which defines how the number of secondary
cases generated per primary case varies across the dura-
tion of the outbreak [3]. When R > 1 we can expect and
prepare for growing incidence, whereas Rs < 1 signifies
that the epidemic is being controlled [4]].

Inferring changes in R given an observed incidence
curve is therefore crucial, both to understanding trans-
missibility and to forecasting upcoming case loads, espe-
cially in an ongoing epidemic, where it can help inform
policymaking and intervention choices [1]], [5]. Real-time

and retrospective R estimates have been used to char-
acterise rates and patterns of spread in various diseases
such as malaria [6] and Ebola virus disease [7]] and have
already proven valuable across the COVID-19 pandemic,
providing updating synopses of global transmission [J]]
or evidencing the impact of implemented control actions
(e.g. lockdowns and social distancing) [9], [[1O].

Many of the studies that aim to infer Ry either apply
the Wallinga-Teunis (WT) method [2] or the Cori et al
method, known as EpiEstim [11]. Both methods take
complementary viewpoints on how incidence data inform
on IR, and hence have diverse use-cases. The WT method
reconstructs the average number of new cases caused by
infectious individuals at s and so requires incidence data
beyond time s for its estimate, which is called the case
reproduction number. It is better suited for retrospective
analyses [12]. Alternatively, EpiEstim infers how past
infections propagate to form the incidence observed at s,
only requiring data prior to time s. EpiEstim is preferred
for real-time investigations and its R estimate is termed
the instantaneous reproduction number [3].

While both methods provide useful and important es-
timators of transmission, they are not perfect. Two main
limitations exist. First, each suffers from data censoring
or edge-effects [3]. Because the WT method is forward-
looking i.e. depends on data later than s, its estimates are
right censored when s is close to the last observed time
point [12]. In contrast, EpiEstim looks backward in time
and suffers edge-effects when s is near the first observed
time point [11]. Estimates in the vicinity of the start and
end of the incidence time-series are therefore unreliable
under EpiEstim and the WT method, respectively.

Techniques have been proposed to limit this unreliabil-
ity [5], [14]], but the problem is intrinsic, and inevitable
near the actual start and end times of an epidemic, where
there is necessarily no or scarce data. This leads into
the second key limitation: inference in periods of small
incidence. This presents a fundamental challenge for any
R, estimation approach and effectively creates additional
edge-effects. When few or no case counts are available to

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.


https://doi.org/10.1101/2020.09.14.20194589
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.09.14.20194589; this version posted September 18, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license . 2

Incidence curves (counts from /; to 1)

Epidemic model (generalisable)

Observation model

4 PR} APEestim optimises k State space model
£ I; PR, R, ;™) P, | R 17
:‘3 PR, |I) l P(Rzlllt)
%1 114 | / Markov diffusion Renewal process
I t
3
; ' Set grid R; € X and initialise p;
=PR,| [}
N Ps Rl A Data used EpiFilter algorithm (mse optimal)
FU s s
2 I Forward pass (compute p,):
T [ PR, 1) PR, 1) .
£ ! Predict step: use state model and p,_;
= I
= I | Gives prediction: p, = P(R;| If‘l)
1 1 >
r.= PR |I') " Correct step: use observation model
s s 1 is
t 4 =P®RID 4 =Py ;=T Updates to: p, o P(I, | R. [ p,
-
& [
= | P®R 1) | PR 1) Backward pass (compute q):
a : Use (; = p; and state model to form F
¢ i ; ; > qs = F(qs+1’ Ps> Ps+15 I]:D(Rs+l | Rs’ If))

Time (days 1 < s <)

= q,~ x prP(R)™!

Fig. 1: EpiFilter algorithm. We summarise the construction of EpiFilter and compare its use of information to
that of EpiEstim and the WT method. Left panels show that EpiEstim and the WT method consider complementary
parts of the incidence curve, I? (blue dots), to be informative about the reproduction number R, while EpiFilter
makes use of the entire curve. Red windows indicate the portions of the curve that inform on R under a window
of size k as in [L1]], while blue windows show the portions involved in constructing the main posterior distributions
in this work: pg, rs and qs. Right panels outline the main assumptions (the model box) and computations (the
algorithm box) necessary for realising EpiFilter, which allow us to obtain the most informative (and minimum mse)
posterior distribution qs. See the main text for the specific equations employed in our implementation [[13l].

constrain inference, methods are largely driven by their
inherent prior distributions and assumptions, which can
result in misleading and unreliable estimates [[11[], [[15].
Understanding how to best mediate the trade-off between
prior assumptions and data when incidence is small is of
both statistical and epidemiological importance.

Following a period of low incidence, two outcomes are
possible: either the epidemic continues to exhibit small
or zero case counts until it goes extinct or a resurgence in
infections, also termed a second wave, occurs. Decipher-
ing, in real time, which of these conditions is likely is a
key challenge for infectious disease epidemiology given
the limited information available at low incidence [16].
Better inference of transmission under these conditions is
currently considered central to designing data-informed
COVID-19 intervention exit or relaxation strategies [17].
With many countries now facing potential second waves
in this pandemic, estimating fluctuations in transmission

during suspected epidemic troughs could be essential to
achieving sustained control [10].

Here we present and develop a novel method, termed
EpiFilter, for reliably estimating R in real time, which
ameliorates the above limitations. We take an engineer-
ing inspired approach and construct an exact, recursive
and deterministic (i.e. EpiFilter produces the same output
for fixed input data and requires no Monte Carlo steps)
inference algorithm that is quick and easy to compute
both across an unfolding outbreak and in retrospect. Our
method solves what is called the smoothing problem in
control engineering [13]]. This means we compute R
estimates that formally integrate both forward and back-
ward looking information. This unifies the WT method
and EpiEstim, and nullifies their edge-effect issues.

Further, EpiFilter only makes a minimal Markov as-
sumption for R, which allows it to avoid the strong prior
window size and change-point assumptions that existing
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methods may apply to infer shifts in transmission [11],
[9]. Using simulated and empirical data, we show that
EpiFilter accurately tracks changes in Rg and provides
reliable one-step-ahead incidence predictions. Moreover,
we find that EpiFilter is appreciably more robust than
even optimised versions of EpiEstim [14], if performing
real-time inference in periods of low incidence and be-
tween epidemic waves. We illustrate the practical utility
of EpiFilter on the COVID-19 incidence curve of New
Zealand, which exhibits a potential second wave.

Our method, which is outlined in Fig. [T} provides a
straightforward yet formally optimal (in mean squared
error [18]]) solution to real-time and retrospective R es-
timation. Because it couples minimal prior assumptions
with maximum information extraction, it more gracefully
handles periods with scarce data. Hopefully our approach
will serve as a useful inference tool for investigating the
risk of second waves of infection in COVID-19 and other
epidemics. An implementation of EpiFilter is available
at https://github.com/kpzoo/EpiFilter and its mechanics
are explored and validated in the Appendix.

METHODS
Renewal models and inference problems

We consider an infectious disease epidemic observed
over some period of time 1 < s < t. If the incidence
or number of newly infected cases at time s is I then
It = {I; : 1 < s <t} is known as the incidence curve of
the epidemic. For convenience, we assume that incidence
is available on a daily scale so that I} is a vector of ¢
daily counts (weeks or months could be used instead). A
common problem in infectious disease is the inference of
the transmissibility of the epidemic given this incidence
curve. The renewal model [1], [19] presents a general
and popular framework for investigating this problem.

This model posits that epidemic transmissibility, sum-
marised by the effective reproduction number, R, gen-
erates the observed incidence as in Eq. (I)). There Pois

. . . . d
indicates Poisson observation noise, = means that both
distributions are equal and A, := Zi;ll I wy,.

P(I,| Ry, I:™") £ Pois(A,R,) (1)

In Eq. R describes the branching of the epidemic
i.e. it captures the number of secondary cases generated
per effective primary one at s, while A, which is termed
the total infectiousness, defines how many effective past
cases are still infectious at s. The generation time distri-
bution of the epidemic, w‘f*l ={wy,:1<u<s—1},
controls how past incidence influences Ag, with w, as
the probability that a primary case takes between u — 1
and u days to generate a secondary case [1].

We make the standard assumption that w{® is known
for the epidemic of interest and well approximated by
its serial interval distribution and focus on inferring the
complete set of R values i.e. R! given I} with ¢ as the
last recorded time of the incidence curve. Estimating R!
is important, not only for learning whether the epidemic
is still growing (whenever Rs; > 1) or under control
(i.e. if Rg < 1) [4], but also for assessing how much
existing interventions can be relaxed without risking a
second wave of infection [10]. This latter problem can
be particularly difficult (as we will show) since, under
these conditions, incidence data are scarce.

We define three key inference problems, commonly
studied in engineering [[18]], based on how information
in I is recruited to construct R estimates. We represent
these problems in terms of the posterior distribution
they induce over R!. Estimates are then functions of
these posteriors. The first is called causal filtering, where
we sequentially calculate ps = P(R;|I7) [20]. Causal
means that estimates of R only depend on data up to
time s. Solving this problem is fundamental to real-time
inference [21]]. The second problem is non-causal filter-
ing and is the complement of the first. Here we calculate
rs = P(R,|I!), which is important for retrospective or
backward-looking estimates [22].

The last problem is termed smoothing and is our main
interest. To solve it we must extract all the information
possible to formulate qs = P(Rs | It) [13]. Note that ps,
rs and qg depend on the choice of state space model,
which describes the dynamics of R across time, and
observation model, which explains how changes in R
lead to trends in the observed incidence data [18]]. These
models encode our assumptions about the epidemic of in-
terest and determine how estimates tradeoff assumptions
against data. We will find this latter point important for
determining performance when incidence data are scarce.
We next explain how the most popular approaches for
estimating R}, the WT method and EpiEstim fit within
this engineering framework.

Inference methods and low incidence

We mostly detail EpiEstim as real-time I, estimates
are the key focus of this work. EpiEstim assumes that all
reproduction numbers are the same over a window back
intime, 7(s) = {s, s—1, ..., s—k+1} of size k. Conse-
quently, only I3, ., provides information about Rs and
the causal filtering distribution p,(g) = P(Rs|I_; ;)
follows as in Eq. with a shape-scale gamma prior
distribution applied i.e. P(R,) < Gam(a, ¢~1) [I1].

Pr(s) i Gam(a + ?:T(S)? (C + )\T(S))_l) 2)
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Here i,y = ZueT(s) I, and A = ZueT(s) A, are
sums over the window of interest.

The resulting posterior mean estimate is then }?T(S) =
pr(S) RsdRs = E[RS ‘ Iss—k+1] = (a + Z.‘r(s))(c +
Ar(s)) " and the Fisher information that I¥_, , contains
about R is proportional to /\T(S) [23]]. The observation
model is Eq. but the state space model of EpiEstim
is not explicit. However, if R ) is the assumed average
reproduction number in 7(s) (which is used to estimate
Rs) then A\- ()R, (4) = ZuET(S) Ay R, [14]. As a result,
EpiEstim somewhat incorporates a linear moving aver-
age state space model, and assumes that ps ~ P
by deeming If_k to be uninformative. Since p,() can
be computed sequentially across an ongoing epidemic,
EpiEstim provides real-time inference.

The WT method takes a complementary approach to
EpiEstim and computes an estimate of Rg based on a
forward-looking window [2]]. It also uses the observation
model of Eq. and has an implicit moving average
state model R,y = ZuGT(s) Rywy—s+1 [3]. We abuse
notation and define 7(s) = {s, s+1, ..., s+k—1}in
this case as a window into the future of size k. The WT
method assumes that rs ~ r) = P(Rs| I57k+1) and
approximately solves the non-causal filtering problem.
We illustrate the information windows employed by the
WT method and EpiEstim and the complete causal and
non-causal filtering windows in Fig. |1} The goodness of
Pr(s) and r () as measures of ps and rs will depend on
k and the appropriateness of the state model [14].

While EpiEstim and the WT methods are powerful
tools for inferring R in real-time and in retrospect, they
have two main and related limitations, which necessarily
reduce the reliability of their outputs [[12]. First, their per-
formance degrades as s gets close to 1 for EpiEstim and ¢
for the WT method [11]. These edge or censoring effects
correspond, at the extreme, to p1 = pr1) = P(R1| 1)
and r¢ = r(y) = P(R; | I;), which are weakly informed
posterior distributions. As a result, at the beginning of
the incidence curve EpiEstim can be unreliable (and even
unidentifiable). The WT method suffers similarly at the
end of that curve [1]] (see Fig. [I).

The second limitation occurs in phases of the epidemic
where incidence is low and prolonged [23], [17]. In
these periods information is scarce and the quality of
estimates will depend on how well the method of choice
mediates between the little available data and its inherent
assumptions [15]. We illustrate this effect using EpiEstim
by considering an epidemic with a sequence of n zero
incidence days. This sequence is realistic for an epidemic
in its tail phase, and can precede either elimination (i.e.
the epidemic goes extinct) or resurgence (i.e. a second
wave of infection emerges) [24]. As n increases both

ir(s) and Ay shrink, though i () decays more rapidly.
For every n > k, Ur(s) = 0, meaning that the shape of
P-(s) is completely determined by the prior P(R;).

As n increases further A ;) becomes negligible and
we exactly recover our prior distribution (see Eq. (2)).
This problem is acute if the window size, k, is small.
Previous studies, which formally optimise k to maximise
estimate reliability, found that small % is needed when
inferring sharp changes in transmissibility (e.g. due to
lockdowns) [14]. Moreover, as A, falls, the Fisher
information available about Ry from I , 11 shrinks,
leading to an inflation in estimate uncertainty and a
loss of statistical identifiability [25], [23]. An analogous
effect occurs in the WT method if there is low incidence
across its forward-looking window [12].

While some estimate degradation is guaranteed for any
R, inference method when faced with either edge-effects
or low incidence, robustness can still be improved. Edge-
effects can be largely overcome by constructing qs.
Solving the smoothing problem melds the advantages
of the opposite looking windows of EpiEstim and the
WT method, removing the vulnerability near the ends of
I{. This follows as q; = r; and q¢ = p¢. Further, by
maximising the information used for inferring every R
and by minimising our state model assumptions, we can
ameliorate the impact of low incidence. We develop a
method, termed EpiFilter, to realise these improvements
in the next section.

Bayesian (forward) recursive filtering

We reformulate the causal inference problem of esti-
mating I from I as an optimal Markov state filtering
problem. Filtering is the term used in engineering for a
general class of estimation problems aimed at optimally
(usually in a mean squared error (mse) sense) inferring
some hidden state causally and in real time from noisy
observations [18]], [[13]]. Given functions fs and g5, which
describe the state (R in our case) space dynamics and
the process of generating noisy observations (the I,
here), the filtering problem tries to construct the posterior
distribution pg [20], which EpiEstim approximates. The
conditional mean estimate R, = E[R, | I{] leads to the
causal minimum mse of E[(Rs — R,)?] [20].

The famed Kalman filter [21]] was the genesis of these
methods. Here we focus on Bayesian recursive filters for
models with noisy count observations. These generalise
the Kalman filter [20] and have been successfully applied
to similar problems in phylodynamics and computational
biology [26], [27], [28], [29]]. We reconsider our renewal
model inference problem within this engineering state-
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observation framework, as described in Eq. [13].
Ry = fs(Rs—h 65—1)7 Iy = gs(R57 Vs) 3)

Here R; is the hidden Markov state that we wish to infer.
It dynamically depends on the previous state R;_; and
a noise term €51 via fs. Observation I, is then elicited
due to R and a noise term v, according to gs [30].

We formulate our filter under two very mild assump-
tions. First, we define some closed space, R, over which
R is valid i.e. for a given resolution m, extrema R,
and Ry, and grid size 6 = m ™' (Rmax — Rmin) then
R := {Rumin, Rmin+9, ..., Rmax}. This means R, must
take a discrete value in R, the i™ element of which is
R|i]. We formalise this in Eq. (4a).

S P(Ry=R[i])=1,1<s<t
Ry =Rs_1+ (77 Rs—l) €s—1

This is not restrictive since we can compute our filter for
large m if needed and usually we are only interested in
R, on a coarse scale (e.g. policymakers may only want
to know if R; < 1 or not). Note that other approaches,
which depend on MCMC or related sampling methods,
all implicitly assume some sort of discretisation [27].
Second, we propose a linear model for f;, as defined in
Eq. (@b). There €,_; is a standard white noise term i.e.

(4a)
(4b)

P(es_l)iNorm(O, 1) with Norm signifying a normal
distribution and 7 is a free parameter. We assume that a
noisy linear projection of states over consecutive time-
points provides a good approximation of the state trajec-
tory. Not only is this assumption standard in engineering
[20] and epidemiology [31] but it is also more flexible
than the state model inherent to EpiEstim and the WT
method. We scale the noise of this projection by a
fraction, n < 1 of the magnitude of R,_;. This allows
variation but ensures R is a-priori non-negative.

Our observation model, gs, is implicit and leads to the
probability law in Eq. (). As a result, both our observa-
tions and state models are discrete and are summarised
in Fig. [I] We now define the Bayesian recursive filtering
procedure, which is a main contribution of this work,
and can be solved exactly, in real-time and with minimal
computational effort. We adapt general recursive filtering
equations from [30]], [13], [22], [18], which are valid
for various types of observation and state models, for
our renewal model inference problem. The proof of the
equations we employ can be found in these works.

Recursive filtering involves two steps: prediction and
correction. The first, given in Eq. (5a), constructs a se-
quential prior predictive distribution, ps = P(R; | [ f_l),
which is informed by past data Iffl and the last state
Rs_1. The second step then corrects or updates this prior

into the posterior distribution, ps, which constrains pg
using the latest observation, I, as in Eq. (5b).

Py = / P(R,| Ry_1, I ) pe_1dRor  (52)

ps o P(L| Rs, I{™") ps (5b)
Here P(Rs | Rs—1, Iffl iNorm(Rs,l, n?R,_1) is the
state model from Eq. , P(I | Rs, I;™") is the obser-
vation model from Eq. and the constant of propor-
tionality for Eq. (5b) is simply a normalising factor.

Solving Eq. (§) iteratively and simultaneously over the
grid of R leads to our novel real-time estimate of the
time varying effective reproduction number. We initialise
this process with a uniform prior over R for p; and note
that p, and pg are m element vectors that sum to 1, with
i™ term corresponding to when R, = R[i]. Eq. (5) forms
the first half of EpiFilter, is flexible and can be adapted to
many related problems [13]]. A key difference between
EpiFilter and the EpiEstim-type methods [11], [14] is
that the latter approximate P(Rs|I;) and P(R,|I{™1)
with P(Rs | I]_, ) and P(R;), respectively. Estimators
based on these approximations can be suboptimal, espe-
cially when data (i.e. cases) are scarce.

Bayesian (backward) recursive smoothing

While Eq. (5) provides a complete real-time solution
to the causal filtering problem, it is necessarily limited at
the starting edge of the incidence curve, where past data
are scarce or unavailable. Further, because it does not
update past estimates as new data accumulate, it cannot
provide optimal retrospective estimates. Here we develop
the second half of EpiFilter, which involves solving the
optimal smoothing problem and hence computing qs. To
our knowledge, smoothing has not yet been explicitly
considered in infectious disease epidemiology.

We specialise the general methodology from [[13]], [22]
to obtain the recursive smoother of Eq. (6a)).

gs = ps/P(Rs—H ‘ Ry, If) Qs+1 ps_-:l dRs-H (6a)
Qs X I's Ps P(Rs)ilu if rg ~ P(Rs ‘ I£+1) (6b)

We can realise Eq. (6a) exactly by taking a forward-
backward algorithmic approach with ps and psy first
computed from Eq. (5). Remaining terms emerge from
the state space model and by noting that q; = p¢ and
iterating backwards. This approach neatly links ps and
qgs. If we assume that rg is reasonably approximated
by P(Rs|I%, ) then we can also apply the two-filter
smoothing solution of [22] to get Eq. (6b). This shows
how smoothing connects EpiEstim and the WT methods,
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and explains why EpiFilter can be used for both real-
time and retrospective inference. We summarise the main
ingredients of the EpiFilter algorithm in Fig.

The smoothed posterior qs yields the conditional mean
estimate R, = E[R, | It], which is known to significantly
improve on the mse of the filtered equivalent ]N%S [201.
While filtering provides the minimum mse given causal
knowledge, smoothing provides the minimum given all
knowledge. This relationship is formal, with filtered and
smoothed mse values mapping to the amount of mutual
information that I} provides about R! [32]. Extracting
the maximum information from I? should engender es-
timates that are more robust to periods of low incidence.

While our main interest is on optimised and rigorous
real-time and retrospective estimates of transmissibility,
which are completely defined by qs, it is also impor-
tant to predict future incidence, for informing epidemic
preparedness plans and for validating past s estimates
[33], [14]]. We compute the filtered posterior predictive
distribution as in Eq. (integrals are over R [13].

Plr |17) = [ Bl | Rec ) pedRe ()

We assume, as in [34]]: P(Is41 | Rs, I7) 4 Pois(Ast1Rs).
Replacing ps with qg yields the smoothed equivalent of
Eq. (7). We will use Eq. (7) to compare EpiFilter against
APEestim, which is the prediction-optimised version of
EpiEstim [[14]]. Since predictions depend strongly on pg
or s, optimising these distributions can be crucial, for
example, to forecasting second waves of infection.

RESULTS
Improved estimation at low incidence

The estimation of time-varying effective reproduction
numbers when incidence is low is seen as a key challenge
limiting our understanding of transmission [17]]. Periods
with small counts of new cases contain little information
and so present necessary statistical difficulties [23]]. Here
we compare EpiFilter, which allows exact inference but
conditioned on R, with EpiEstim and APEestim, which
minimises the prediction error of EpiEstim by optimising
its window size, at these data-poor settings [[11]], [14]. We
use EpiEstim with a long window, as this is known to
improve robustness at low incidence [24]. The assump-
tions and choices inherent in estimation methods become
important and visible when data are scarce and can bias
inference or support spurious predictions [15]].

We simulate epidemics using Eq. (1)) under the serial
interval distribution of Ebola virus disease available from
[35]. We examine several diverse incidence trajectories
(e.g. outbreaks with small sizes, large peaks or multiple

modes) that all eventually decline to periods of few or
no cases. We apply APEestim with optimal window k™,
EpiEstim with a long window k and EpiFilter with state
noise 7 (see Eq. (4b)) to estimate R, and causally predict
I, for each epidemic. For the first two methods we
compute mean predictions (I 7(s)) as in [14] and estimates
(Ry(s)) from Eq. (2) with 7(s) delimiting the window
times used. We obtain smoothed EpiFilter estimates (]:ZS)
and causal predictions (I,) from Eq. @ and Eq. .

Our main results are in Fig. [2 which exposes how
these three approaches degrade as data diminish. Each
quadrant of this figure examines a different epidemic
scenario. In all plots the true R, and I are dashed black
and dotted grey respectively, estimates are in red and
predictions are blue. The central lines are conditional
means and the shaded regions are their 95% confidence
intervals. As our main focus is on real-time performance
we do not investigate the WT method. See [11], [12]
for comparisons of the WT method and EpiEstim. Our
reasons for comparing to EpiEstim with a long window
and APEestim follow from the Methods.

There we showed that since EpiEstim-type methods
group data over a window into the past, they revert to
their prior distribution as the total cases in this window
becomes small. During low incidence periods, e.g. when
the epidemic is dying or in its early growth phase, using
long windows makes sense [24]]. However, this reduces
predictive accuracy as fluctuations in R, are underfit.
This is the use-case for APEestim, which optimises for
prediction. The top and middle panels of each quadrant
of Fig. [2] illustrate the clear consequences of these trade-
offs. APEestim often selects shorter windows to better
fit R and sequentially predict I5. Each predicted I, is
a one-step-ahead prediction depending on the past data
up to s — 1 as in Eq. (we have abused notation).

While shorter windows improve estimates and predic-
tions the reversion to the prior distribution (seen as wide
confidence intervals in Fig. 2)) when I, is low is acute.
Long windows resolve this latter difficulty, showing a
slower rise to the prior but at the expense of getting other
parts of the epidemic trajectories incorrect. Interestingly,
in the bottom panels of the quadrants of Fig. 2| we see
that EpiFilter has superior performance for these types
of epidemics. Not only does it give good estimates and
predictions throughout the trajectory of the epidemic but
its rise in uncertainty as the epidemic dies is slower and
more controlled. It therefore combines the advantages of
APEestim and long-window EpiEstim.

Improved estimation between epidemic waves

Maintaining robust I, estimation at low incidence is
not just statistically important. Two possible outcomes
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Fig. 2: Small or dying epidemics. We compare reproduction number estimates (RT( s) Or R,) and causal one-step-
ahead incidence predictions (1:7(3) or I,) from APEestim with optimised window k* (top panels), EpiEstim with
long window £ (middle panels) and EpiFilter with state noise 7 (bottom panels). We simulate epidemics with low
daily case numbers or long tails (long sequences of zero cases) using the standard renewal model (Eq. (I))). The
true R, is in black (dashed, left panels) and its corresponding I in grey (dots, right panels). All mean estimates or
predictions are in red with 95% confidence intervals. APEestim and EpiEstim use a Gam(1,2) prior distribution
and EpiFilter a grid with m = 2000, Ry, = 0.01 and Rp.x = 10. We find that EpiFilter is more robust to small
incidence (better uncertainty), whereas the other approaches can quickly decay to their prior distribution.

may follow periods of small Ig: either the epidemic goes
extinct, or a second wave of infection (also known as
resurgence) occurs e.g. due to imports or unmonitored
local transmission. Predicting which outcome is likely,
rapidly and in real-time, is of major global concern as
countries aim to relax interventions during the ongoing
COVID-19 pandemic, while also minimising the risks of
second waves [17]. As changes in reproduction numbers
predate and signal corresponding variations in incidence,

reliably identifying and inferring IR, trends in the trough
preceding potential new peaks is crucial for preparedness
and both timely and effective epidemic control [10].

Reliable estimation of R between epidemic waves de-
pends on the prior assumptions of the inference method
used and on how that method relies on those assumptions
when data are scarce [36]], [37]]. Here we examine this
dependence and exactly investigate this scenario, where
after a low incidence period resurgence occurs. As in the
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Fig. 3: Epidemics with multiple waves. We compare reproduction number estimates (R or R,) and causal
one-step-ahead incidence predictions (I (s) OF I,,) from APEestim with optimised window k* (top panels), EpiEstim
with long window k£ (middle panels) and EpiFilter with state noise 7 (bottom panels). We simulate epidemics with
multiple waves of infection using the standard renewal model (Eq. @)). The true R, is in black (dashed, left
panels) and its corresponding I in grey (dots, right panels). All mean estimates or predictions are in red with 95%
confidence intervals. APEestim and EpiEstim use a Gam(1, 2) prior distribution and EpiFilter a grid with m = 2000,
Rpin = 0.01 and Ry, = 10. We find that due to the improved robustness of EpiFilter to low incidence regions,
it is best able to negotiate troughs between epidemic peaks and hence infer re-emerging infectious dynamics.

previous section, we test APEestim with optimal window
k* (top panels), EpiEstim with a long window & (middle)
and EpiFilter with state noise 1 (bottom panels) on four
diverse epidemics, which in this case all feature multiple
waves or early hints of upcoming resurgence. Simulation
parameters are unchanged from the last section.

Our main results are in Fig. 3] with each quadrant
specifying a different epidemic trajectory. The true R;
and I, are in dashed-black and dotted-grey respectively.

All estimates (]:ZT( s) for EpiEstim and APEestim and R,
for Epifilter) are in red with corresponding causal pre-
dictions (fT(S) and I,) in blue. Plots provide conditional
means with 95% confidence intervals. For all second
and additional wave epidemic examples we observe a
similar tradeoff in performance between APEestim and
long-window EpiEstim as in our previous analysis of
Fig. 2l APEestim is better able to predict upcoming I,
terms and follow the overall trend in R, than EpiEstim.
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However, the long window of EpiEstim makes it more
stable during the trough between waves, which can be
advantageous for understanding transmission there.

EpiFilter once again combines the advantages of the
other approaches. For every scenario in Fig. [3|it provides
accurate tracking of changes in R with stable confidence
intervals. Concurrently, its predictive performance rivals
that of APEestim. EpiFilter is therefore a powerful tool
when dealing with second-wave scenarios. We also find
that the n = 0.1 parameter value seems to be an all-
purpose heuristic, meaning that usage of EpiFilter can
be somewhat simpler than APEestim and EpiEstim. The
superior capability of EpiFilter in these scenarios likely
results from its minimalistic assumptions (see Eq. ()
and its increased information extraction. We next test
our method on empirical incidence data.

COVID-19 in New Zealand and HINI in the USA

The previous sections confirmed EpiFilter as a power-
ful inference and prediction tool, especially in data-poor
conditions, using simulated epidemics. We now confront
our method with empirical data from the 1918 HINI1
influenza pandemic in Baltimore (USA) [38] and the
ongoing COVID-19 pandemic in New Zealand (up to 17
Aug 2020) [39]. The HIN1 dataset has been well-studied
and so we first use this to benchmark EpiFilter. We clean
this data by applying a 5-day moving average filter as
recommended in [38]]. Previous work [[11]] analysed this
data with EpiEstim and found that sensible R estimates
result when a weekly window (k = 7) is applied.

A recent study, which re-examined this epidemic with
APEestim [[14]], shows that, while EpiEstim with k = 7
provides stable estimates for this epidemic, it is a poor
causal predictor of the incidence data. Instead, an opti-
mised window of 2 days (k* = 2) yields good predictions
but the resulting R, estimates are noisy. We reproduce
the estimates (RT(S)) and predictions (fT(S)) from both
studies in Fig.d]and compare them against EpiFilter with
n = 0.1 (Rs and I,). The cleaned HIN1 incidence is in
dotted grey, the critical Rs = 1 line in dashed black and
all R, estimates and I predictions (with 95% confidence
intervals) are in red and blue respectively.

Top and middle rows of Fig. |4 show the mentioned
trade-off between estimate stability and prediction accu-
racy. The bottom row confirms the power of EpiFilter.
Our R, estimates are of comparable stability to that of
EpiEstim at k = 7, yet our prediction fidelity matches
APEestim. Our improved inference again benefits from
using more information (i.e. the backward pass in Fig. [T
and making less restrictive prior assumptions. We see the
latter from the R, confidence intervals over 40 < s < 60.

There EpiEstim seems overconfident, and this results in
a rigid overestimation of incidence. However, EpiFilter
mediates its confidence to a level similar to APEestim.
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Fig. 4: HIN1 influenza transmission estimates for
Baltimore (1918). We compare APEestim (top), EpiEs-
tim with recommended weekly window (middle) (both
with Gam(1,2) prior) and EpiFilter (with m = 2000,
n = 0.1, Ryin = 0.01 and Ry.x = 10) on the HINI1
influenza dataset of [38]. We use a 5-day moving average
filter, as in [38]], to remove known sampling biases. Esti-
mates of Ry and corresponding 95% confidence intervals
are in red. One-step-ahead predictions of I (with 95%
confidence) are in blue with the actual incidence in grey.
We find that EpiFilter combines the benefits of the other
methods, achieving good estimates and predictions.

We explore COVID-19 transmission patterns in New
Zealand using incidence data up to 17 Aug 2020 from
[39]]. New Zealand presents an insightful case study be-
cause officials combined swift lockdowns with intensive
testing to achieve and sustain very low incidence levels
that some believed could engender local elimination of
COVID-19 [40]. However, an upsurge in cases in early
Aug inspired concerns about a second wave (which led
to new interventions and is why we do not consider data
beyond 17 Aug). Here we investigate time-varying trans-
mission in New Zealand to see if this uptick suggests that
the epidemic was resurfacing in mid Aug. We believe
smoothing can confer important inferential advantages
in exactly these types of low incidence scenarios.

We make the common assumptions that case under-
reporting is constant and that reporting delays are negli-
gible [11]. While this makes our investigation somewhat
naive, we consider this to be reasonable given the intense
surveillance that New Zealand employed [41]. We also
use the serial interval distribution from [42]] and do not
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explicitly distinguish imported from local cases in our
analysis. The latter could bias our study [24] but our
focus is on demonstrating differences between filtering
and smoothing on R, trends instead of specifying the
precise value of R during this period. We plot the results
of our exploration in Fig. 5] More involved analyses
can be performed by pre-processing the data for known
delays or case ascertainment fractions as in [12], [6].
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Fig. 5: COVID-19 transmission in New Zealand.
We compute smoothed and filtered reproduction number
estimates, Ry and R, respectively, from the COVID-19
incidence curve for New Zealand (available at [39]). We
use EpiFilter with m = 2000, n = 0.1, Ry, = 0.01 and
Rpax = 10 with a uniform prior over the grid R. The
top panel shows conditional mean estimates and 95%
confidence intervals for R, (red) and R, (grey). Vertical
lines indicate the start and end of lockdown, a major
intervention that was employed to halt transmission. The
additional ‘future’ information used in smoothing has a
notable effect. The bottom panel provides smoothed one-
step-ahead predictions I, (blue, with 95% confidence) of
the actual reported cases I; (grey). The inset gives the
probability of R, <1 and lockdown times.

We apply EpiFilter and obtain causally filtered (R,
grey) and smoothed (RS, red) conditional mean estimates
together with their 95% confidence intervals. These are
in the top panel of Fig. [5|and computed from Eq. (5) and
Eq. (0) respectively. The times of lockdown and release
are the grey vertical dashed lines. Interestingly, we see
a notable difference in the quality of inference between
R, and R,. The former, as expected, is unreliable at
the beginning of the incidence curve and features wider
uncertainty and unclear trends. The smoothed estimate,
by using both forward and backward-looking data largely
overcomes these issues and clarifies transmission trends.

Our smoothed analysis suggests that R, has resurged
and supports the reimplementation of measures around
14 Aug. In the bottom panel of Fig. [5| we provide
predictions (which are from the smoothed R, hence the
notation fs) and their 95% confidence intervals in blue
against the reported incidence from [39] in dotted grey.
These confirm that R reasonably describes the data. In
the inset we show that the P(Rs < 1) also supports the
resurgence hypothesis. Last, we note that transmission
decreased considerably (and rise in P(Rs < 1)) across
the lockdown period.

DISCUSSION

Estimating time-varying trends in effective reproduc-
tion number R reliably and in real-time is an important
and popular problem in infectious disease epidemiology
[5]. As the COVID-19 pandemic has continued to unfold,
the interest in solving this problem has only elevated [S§]].
Initially, the focus was on characterising how R, might
respond to interventions such as lockdowns and social
distancing [10]. However, as COVID-19 has progressed
and countries have entered the controlled phase, con-
cerns have shifted to trying to understand how existing
interventions might be relaxed with minimum risk.

The literature on intervention exit strategies is, how-
ever, still in development, and several challenges remain
to modelling the transmission behaviour of epidemics
following prolonged periods of low incidence [17]], [24].
While changes in R over this period are not the only an-
alytic for assessing this risk, they do provide a key real-
time diagnostic since upticks in R, generally precede
corresponding rises in incidence. Unfortunately, current
approaches to estimating R under these conditions tend
to be underpowered or prior-constrained [11[], [23].

Here we re-examined existing methodology for infer-
ring Rs from an engineering perspective. We observed
that two of the most useful and popular inference ap-
proaches, EpiEstim [11] and the WT method [2]], only
capitalise on a portion of the data available, deem-
ing either upcoming or past incidence informative (see
Fig.[I). This informative portion is directly controlled by
prior assumptions on the speed of possible R, changes,
which are often characterised by a window of size k.
Other methods are also known to apply similarly strong
change-point assumptions on R [23[], [9]. When data
are scarce these assumptions can control inference.

In control engineering a common problem, known as
filtering, involves optimally (in a mse sense) estimat-
ing hidden Markov states, causally in real-time, from
noisy and uncertain observations [18]. A related problem
termed smoothing provides accompanying and optimal


https://doi.org/10.1101/2020.09.14.20194589
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.09.14.20194589; this version posted September 18, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license . 11

retrospective inference [13]. By reinterpreting Rs as a
Markov state (Eq. (4)) observed through a noisy renewal
process (Eq. (I)) and defining R, on a predetermined
grid R, we were able to construct exact filtering (Eq. (5)))
and smoothing (Eq. (6))) solutions. This led to EpiFilter,
which is our central contribution.

Generally, filtering and smoothing can be involved and
require sophisticated sequential Monte Carlo techniques
[30]. However, because our system is low dimensional
and as we make only minimal assumptions about R,
modelling it as a simple diffusion, we were able to solve
these problems exactly and without complex sampling
algorithms [27]. Our solutions are computationally sim-
ple and deterministic (i.e. precisely reproducible given
the same data). While EpiFilter is limited by one free
parameter 7, our = (.1 heuristic seems statistically
justified by its good causal one-step-ahead predictive
performance (see Appendix and Fig. 2] and Fig. [3) [14].

Importantly, EpiFilter is able to look both forward and
backward through the incidence data, and so maximise
the information extracted [32f]. This property means it
combines the advantages of both EpiEstim and the WT
method (see Fig. [I) and largely negates their edge-effect
issues [[12]], offering both real-time and retrospective R
estimations that are robust. We illustrated the advantages
of EpiFilter by comparing it to EpiEstim and APEestim
on many simulated examples with diverse periods of low
incidence and epidemic resurgences (Fig. 2] and Fig. [3).
Interestingly, we found EpiFilter able to track arbitrary
changes in transmission without requiring any preset
change-points or window sizes or any tuning of 7.

Moreover, EpiFilter was notably better at negotiating
periods of low incidence, offering a graceful degradation
to its prior without sacrificing predictive accuracy. When
incidence is low, it is usually beneficial to use long
windows with EpiEstim [24]]. This keeps R estimates
reasonably stable. However, it often leads to poor predic-
tions [14]. APEestim, which optimises window size for
prediction fidelity, showed that in many of the simulated
scenarios short windows are necessary for describing
transmission patterns. Consequently, we have a tradeoff
between estimate robustness and prediction accuracy.

We found that EpiFilter overcomes this tradeoff, con-
currently achieving good estimates and predictions. We
confirmed these advantages on empirical data from the
HIN1 pandemic of 1918 (see Fig. d). The ability to inte-
grate the benefits of long window EpiEstim and APEes-
tim make EpiFilter particularly useful for investigating
resurgence after a period of low incidence, as it is better
able to forewarn of increasing case numbers and can
more speedily infer upticks in transmission (see Fig. [3).
Capitalising on these properties, we performed a naive

exploratory analysis of COVID-19 in New Zealand and
found evidence of a potential second wave of infection
after a prolonged period of control (see Fig. [3)).
Balancing the assumptions inherent to a model against
the data it is applied on, to produce reliable inference is a
non-trivial problem that is still under active investigation
in several fields [[15]], [36l], [37]]. EpiFilter, by maximising
the information extracted from the incidence data and
minimising its state space model assumptions, appears
to strike this balance. Consequently, it performs strongly
on a wide range of problems, including those involving
sparse data, where other methods might struggle. Given
its demonstrated advantages, straightforward formulation
and theoretical underpinning, we hope that EpiFilter will
be useful as a diagnostic tool for reliably warning about
second waves of infection as COVID-19 unfolds.
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APPENDIX
Validating the recursive filter

Having constructed EpiFilter in Eq. (3) — Eq. (6) we
now investigate its mechanics and performance. First we
illustrate how the choice of the grid resolution m allows
our approach to achieve estimates at differing levels of
accuracy. Our recursive implementation is also known
as a grid smoother, since its estimates are optimal (in
mse) but conditioned on the grid R [27]. Left panels
of Fig. |A . 1| show how the smoothed estimator R, (red
together with 95% confidence bounds) becomes more
accurate with increased resolution. The true Ry is in
black. Generally, we find that no visible improvement
occurs above m ~ 103. Wider grid ranges Ryax — Rmin
require larger m for the same resolution.

We also test the behaviour under different choices of
the process or state noise parameter 7). This parameter
is vaguely similar to the window size parameter, k, in
EpiEstim approaches, but is easier to select. The right
panels of Fig. [AT] show how a smaller 1 might lead to
underfitting, while large 1 (where we would not consider
n > 1 given Eq. (#b)) could promote overfitting. How-
ever, while the optimal choice of window in EpiEstim
varies with the form of the true R (e.g. large k is
needed for stable R time-series and small £ for strongly
fluctuating ones [14]]), we find that a fixed n = 0.1 works
well across many and diverse epidemic scenarios.

We illustrate this further in Fig. There we compare
R estimates from APEestim (left panels, denoted ﬁfT(S)
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Fig. Al: Filtering mechanics. We examine how EpiFil-
ter behaves under various choices of process noise pa-
rameter 77 and grid resolution m. Left panels indicate that
increasing m leads to improved estimation, as expected,
but that even at coarse settings the estimate behaves
sensibly. Right panels show that reducing 7 sharpens
confidence intervals but can potentially underfit. We find
that n = 0.1 serves as a good general heuristic. All
simulations are at R,;, = 0.01 and R,,.x = 10, black is
the true R, (a seasonal epidemic) and red is the EpiFilter
mean estimate (RS) with 95% confidence intervals.

with optimal window size k) [14]], [11] to EpiFilter (right
panels, denoted Ry) at n = 0.1 and m = 2000 for several
simulated epidemic scenarios. We generate epidemics
according to the standard renewal model of Eq. () using
the serial interval distribution for Ebola virus disease
[35]]. The true R is in black with respective estimates
in red (together with 95% confidence intervals). To
keep comparisons fair we set the usual gamma prior
distribution over Rs in APEestim to Gam(1,2) so that
its domain is essentially bounded by Ry, .x.

EpiFilter has broadly comparable inference perfor-
mance to APEestim, despite our using a single n value
across the entire range of simulated scenarios. This is in
stark contrast to the discordant optimal k£ values, which
are shown in Fig. [A2] Moreover, our implementation is
fast (it executes in seconds) and unlike other window-less
approaches does not require any choices of the timing
or number of change-points i.e. at this single 7 it easily
handles unchanging trajectories, seasonal variations and
rapidly or gradually fluctuating transmission.

The bottom panels of Fig. [A2]illustrate the central ad-
vantage of EpiFilter. There the associated incidence val-
ues (not shown) are small. While this causes APEestim
inference to destabilise (see Methods for explanation),

EpiFilter offers more robust and usable estimates. We
explore this in detail in the main text. Note that in none
of these scenarios does the true R have either the state
model of Eq. {@D) or the sliding-window relationship in
EpiEstim. Consequently, these simulations also indicate
robustness of the different inherent state assumptions in
both approaches to moderate model mismatch.
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Fig. A2: Validation against APEestim. We compare
estimates from EpiFilter (right panels) with optimised
ones from EpiEstim (called APEestim, left panels [14])
over various epidemic scenarios, simulated using Eq. (T).
We use m = 2000, Rpin = 0.01 and Rp.x = 10.
To be fair we use a Gam(1,2) prior distribution with
APEestim, which sums to 1 by Ry.x. Here k is the
optimal window choice in APEestim and n = 0.1
is fixed for EpiFilter inferences. True R is in black
and conditional mean estimates with 95% confidence
intervals are in red. Both approaches offer comparable
performance but EpiFilter is more stable especially early
in the epidemic when incidence is low.
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