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Abstract: The fast transmission rate of COVID-19 worldwide has made this virus the most important
challenge of year 2020. Many mitigation policies have been imposed by the governments at different
regional levels (country, state, county, and city) to stop the spread of this virus. Quantifying the effect
of such mitigation strategies on the transmission and recovery rates, and predicting the rate of new
daily cases are two crucial tasks. In this paper, we propose a modeling framework which not only
accounts for such policies but also utilizes the spatial and temporal information to characterize the
pattern of COVID-19 progression. Specifically, a piecewise susceptible-infected-recovered (SIR) model
is developed while the dates at which the transmission/recover rates change significantly are defined as
“break points” in this model. A novel and data-driven algorithm is designed to locate the break points
using ideas from fused lasso and thresholding. In order to enhance the forecasting power and to describe
additional temporal dependence among the daily number of cases, this model is further coupled with
spatial smoothing covariates and vector auto-regressive (VAR) model. The proposed model is applied
to several U.S. states and counties, and the results confirm the effect of “stay-at-home orders” and
some states’ early “re-openings” by detecting break points close to such events. Further, the model
performed satisfactorily short-term forecasts of the number of new daily cases at regional levels by
utilizing the estimated spatio-temporal covariance structures. Finally, some theoretical results and
empirical performance of the proposed methodology on synthetic data are reported which justify the
good performance of the proposed method.

Keywords and phrases: COVID-19, Break point detection, Spatio-temporal model, Short-term
forecast.

1. Introduction

Since the first officially reported case in China in late December 2019, the SARS-CoV-2 virus (henceforth
COVID-19) spread worldwide within weeks. As of August 18, 2020, there have been over five million confirmed
cases of COVID-19 in the United States alone and more than twenty million worldwide. In response to the
rapid growth of confirmed cases, followed by hospitalizations and fatalities, initially in the Hubei Province
and in particular the capital of Wuhan in China, and subsequently in Northern Italy, Spain and the tri-state
area of New York, New Jersey and Connecticut, various mitigation strategies were put rapidly in place
with the most stringent one of “stay-at-home” orders. The key purpose of such strategies was to reduce the
virus transmission rate and reduce pressure on public health infrastructure (Anderson et al., 2020). To that
end, the California governor issued a “stay-at-home” order on March 19, 2020, that was quickly followed by
another 42 states by early April. All states with such orders proceeded with multi-phase reopening plans
starting in early May, allowing various non-essential business to operate, possibly at reduced capacity levels
to enforce social distancing guidelines. In addition, mask wearing mandates also came into effect (CDC, 2020)
as emerging evidence from clinical and laboratory studies shows that masks reduce the spread (Leung et al.,
2020). However, these reopening plans led to a substantial increase in the number of confirmed COVID-19
cases in many US states, followed by increased number of fatalities.

The emergence of the COVID-19 worldwide pandemic led to the development of many modeling ap-
proaches for both prediction purposes and also assessing various mitigation strategies. Next, a brief overview
of proposed models is provided.

Related Work. A number of epidemic models have been developed to analyze and predict COVID-19 transmis-
sion dynamics. Mathematical models, such as the class of susceptible-infectious-recovered (SIR) models are
widely used to model and forecast epidemic spreads. Chen, Lu and Chang (2020) proposed a time-dependent
SIR model and tracked the transmission rate and the recovery rate at each time point by employing ridge
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regression while Anastassopoulou et al. (2020) proposed a discrete-time susceptible-infectious-recovered-dead
(SIRD) model and provided estimations of the basic reproduction number (R0), and the infection mortality
and recovery rates by least squares method. Moreover, Song et al. (2020) built an extended SIR model with
time-varying transmission rates and implemented the MCMC algorithm to obtain posterior estimates and
credible intervals of the unknown parameters

A number of models focused on identifying a change in the parameters of the underlying model employed.
For example, Dehning et al. (2020) combined the widely used SIR model (see Section 2) with Bayesian
parameter inference through Markov Chain Monte Carlo (MCMC), assuming a time-dependent transmission
rate. Instead of directly estimating a change point in the transmission rate and the other parameters in the
SIR model, they assumed a fixed value on the number of the change points, and imposed informative
prior distributions on their locations, as well as the transmission rate based on information from intervention
policies. Further, Jiang, Zhao and Shao (2020) proposed to model the time series of the log-scaled cumulative
confirmed cases and deaths of each country via a piecewise linear trend model. They combined the self-
normalization (SN) change-point test with the narrowest-over-threshold (NOT) algorithm (Baranowski, Chen
and Fryzlewicz, 2016) to achieve multiple change-point estimation. Moreover, Vokó and Pitter (2020) and
Wagner et al. (2020) analyzed the effect of social distancing measures adopted in Europe and the United
States, respectively, using an interrupted time series (ITS) analysis of the confirmed case counts. Their work
aim to find a change point in the time series data of confirmed cases counts for which there is a significant
change in the growth rate. In Vokó and Pitter (2020)’s paper, the change points were determined by linear
threshold regression models of the logarithm of daily cases while Wagner et al. (2020) used an algorithm
developed in Fearnhead, Maidstone and Letchford (2019), based on an L0 penalty on changes in slope to
identify the change points.

Another line of work employed spatio-temporal models for parameter estimation and forecasting the
spread of COVID-19. For example, Wang et al. (2020a) introduced a generalized additive varying coefficient
model and coupled it with a non-parametric approach for modeling the data, to study spatio-temporal
patterns in the spread of COVID-19 at the county level. Further, Srivastava and Prasanna (2020) proposed a
heterogeneous infection rate model with human mobility from multiple regions and trained it using weighted
least squares at state and country levels while Qi et al. (2020) fitted a Generalized Additive Model (GAM) to
quantify the province-specific associations between meteorological variables and the daily cases of COVID-19
during the period under consideration.

In addition to mathematical methods, many machine learning/deep learning methods were applied for
forecasting of COVID-19 transmission. For example, Chimmula and Zhang (2020) employed Long Short-
Term Memory (LSTM) type deep neural networks to forecast the future COVID-19 cases in Canada while
Hu et al. (2020) developed a modified stacked auto-encoder for modeling the transmission dynamics of the
epidemic.

In this paper, we analyze the confirmed and death cases data related to COVID-19 from five states and
nine parishes/counties/cities in the United States from March 1st to August 18, 2020. In the absence of
interventions, the spread of COVID-19 can be modeled by a Susceptible-Infected-Recovered (SIR) model
with stationary transmission and recovery rates. One of the main reasons to choose the SIR model as the
building block for our proposed model is that the transmission and recovery rates in the SIR model are
easy to interpret and hence can be utilized in policy decision making process. However, since there were
many mitigation policies put in place at different regional levels in the U.S., the simple SIR model may
not be a good fit. Instead, we propose a piecewise stationary SIR model (model 1), i.e. the SIR model
parameters may change at certain (unknown) time points. Such time points are defined as “break (change)
points”. Unlike some other methods discussed in the literature review, in our modeling framework, the
number of change points and their locations are assumed to be unknown and must be inferred from the
data. Such flexibility in the modeling end not only allows inferring potentially different temporal patterns
in different regions (states or counties) but also complicates the model fitting procedures. To that end, a
novel data-driven algorithm is developed to detect all break points, and to estimate the model parameters
within each stationary segment. Specifically, we define certain time blocks and assume the model parameters
are fixed during each block of time points. Then, fused lasso based estimation is utilized to estimate all
model parameters (Tibshirani et al., 2005). This procedure is further coupled with hard-thresholding and
exhaustive search steps to estimate the number and location of change points (see more details in Section 2,
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Algorithm 1). To enhance the forecasting power of the model and to capture additional spatial and temporal
dependence not explained through the SIR model, the piecewise constant SIR model is coupled with spatial
smoothing (model 2) and time series components (model 3). The former is done through adding a spatial
effect term which accounts for the effect of neighboring regions while the latter includes adding a Vector Auto-
Regressive (VAR) model component to capture additional auto-correlations among new daily new cases and
deaths. Capturing the spatio-temporal dependence through model 3 helped in reducing the prediction error
significantly (sometimes around 80%) compared to the piecewise SIR model which confirms the usefulness
of such modeling framework (see more details in Section 4). To verify the applicability of the proposed
methodology to other data sets with similar characteristics, the developed algorithm is tested over several
simulation settings with satisfactory performance (see details in Section 3) and some theoretical properties of
the proposed method (prediction consistency as well as detection accuracy) are investigated and summarized
in Appendix A.

The rest of the paper is organized as follows. In Section 2, three statistical models are introduced and
data-driven algorithms are described to estimate their parameters. The proposed algorithms are tested on
various simulation settings and the results are reported in Section 3. The proposed models are applied to
several U.S. states and counties and the results are described in Section 4. Finally, some concluding remarks
are drawn in Section 5.

2. A Family of Spatio-temporal Heterogeneous SIR models

The proposed class of models leverages the framework of the SIR model, which is presented next to set up
key concepts.
Background: the standard SIR Model with Stationary Transmission and Recovery Rates: We start by con-
sidering the standard SIR model (Kermack and McKendrick, 1927), wherein the total population is divided
into the following three compartments: susceptible (uninfected), infected, and recovered (healed or dead).
It is assumed that each infected individual, on average, infects β other individuals per unit time, and each
infected individual recovers at rate γ. The two key model parameters, the transmission rate β and recovery
rate γ, are assumed to be fixed over time. The temporal evolution of the SIR model is governed by the
following system of three ordinary differential equations:

dS

dt
= −βSI

N
,

dI

dt
= β

SI

N
− γI, dR

dt
= γI, (1)

where S, I and R represent the individuals in the population in the susceptible, infected and recovered
stages, respectively. Note that the variables S, I and R always satisfy S + I + R = N , where N is the
total population size. In this formulation, we ignore the change in the total population, so that N remains
constant over time. We also omit the probability rate of becoming susceptible again, after having recovered
from the infection.

Due to the fact that COVID-19 records are discrete in time (∆t = 1 day), we consider the discrete-time
version of SIR model, so that for each t = 1, . . . , T −1, the system comprises of the following three difference
equations

S(t+ 1)− S(t) = −βS(t)I(t)

N
, I(t+ 1)− I(t) = β

S(t)I(t)

N
− γI(t), R(t+ 1)−R(t) = γI(t), (2)

where S(t) stand for the number of susceptible individuals at time t, I(t) for the number of infected ones and
finally R(t) for those recovered. Note that these three variables S(t), I(t) and R(t) still satisfy the constraint
S + I +R = N .

In the discrete version of the model, it is assumed that the observation period T is relatively small, so
that only a very small fraction of the population is infected or recovered, i.e. S(t)� I(t) and S(t)� R(t).
Therefore, we have S(t) ≈ N for all t ∈ [1, T ]. Due to the constraint S + I + R = N and the assumption
that S(t)/N ≈ 1, we drop variable S(t) and only consider the remaining two variables I(t) and R(t). In that
case, for each t = 1, . . . , T − 1, the difference equations reduce to the following simple linear equations:(

∆I(t)
∆R(t)

)
︸ ︷︷ ︸

Yt

=

(
I(t) −I(t)

0 I(t)

)
︸ ︷︷ ︸

Xt

(
β
γ

)
︸ ︷︷ ︸

B

, (3)
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where ∆I(t) = I(t+ 1)− I(t) and ∆R(t) = R(t+ 1)−R(t).
Next, we extend the standard SIR model to accommodate temporal and spatial heterogeneity. The former

is achieved, by allowing the transmission and recovery rates to vary over time, while the latter through the
inclusion of an additional term in (3) that captures spatial effects.

2.1. Model 1: Piecewise Stationary SIR Model

The assumptions underlying the transmission and recovery rates of the standard SIR model are stringent.
Both environmental factors and changes in population behavior can lead to time varying behavior and this
has been the case for Covid-19; see, e.g., discussion in (Giordano et al., 2020). Variants of the SIR model
with time varying parameters have been proposed in the literature (Liu and Stechlinski, 2012).

Let β(t) and γ(t) denote the transmission and recovery rate at time t. A time varying analogue of the
system in (3) is: (

∆I(t)
∆R(t)

)
︸ ︷︷ ︸

Yt

=

(
I(t) −I(t)

0 I(t)

)
︸ ︷︷ ︸

Xt

(
β(t)
γ(t)

)
︸ ︷︷ ︸

Bt

. (4)

The solutions for β(t) and γ(t) are given by

γ(t) =
∆R(t)

I(t)
, β(t) ≈ ∆I(t) + ∆R(t)

I(t)
. (5)

Given time series data on {I(t), R(t)), t ∈ [1, T ]}, the corresponding Bt = (β(t), γ(t))′ can be calculated for
each t = 1, · · · , T − 1 (Chen, Lu and Chang, 2020).

For our application, we assume that the transmission and recovery rates are piecewise constant over time,
reflecting the fact that their temporal evolution is impacted by intervention strategies and environmental
factors. Hence, it becomes important to identify the break points wherein these rates exhibit changes. Specif-
ically, suppose there exist m0 change points {t1, . . . , tm0

} such that the rate vector Bt = (β(t), γ(t))′ exhibits
a change from B(j) = (β(j), γ(j))′ to B(j+1) = (β(j+1), γ(j+1))′ at time point tj , while it remains fixed until
the next break point. Then, model (4) takes the following form

Yt =

m0+1∑
j=1

(
XtB

(j) + εt

)
1{tj−1≤t<tj}, t = 1, . . . , T − 1, (6)

where 1 = t0 < t1 < · · · < tm0
< tm0+1 = T . In each segment [tj−1, tj), all model parameters are assumed

to be fixed; hence, these break points divide the time series data into stationary segments, as reflected in
model (6).

The goal then becomes to utilize data on infected and recovered individuals over time to detect both the
change points tjs, as well as the model parameters βj and γj within each fixed segment. The key steps in
our proposed change point detection strategy are outlined in Algorithm 1.

Next, we elaborate on the key steps of the Algorithm. First, few notations are defined.

Notation. Denote the indicator function of a subset A as 1A. R denotes the set of real numbers. For any
vector v ∈ Rp, we use ‖v‖1, ‖v‖2 and ‖v‖∞ to denote

∑p
i=1 |vi|,

√∑p
i=1 |vi|2 and max1≤i≤p |vi|, respectively.

The transpose of a matrix A is denoted by A′.

Block Fused Lasso: the objective is to partition the observations into blocks of size bn, wherein the model
parameter Bt remains fixed within each block and select only those blocks for which the corresponding change
in the parameter vector is much larger than the others. Specifically, let n = T −1 be the number of the times
points for the response data Yt and define a sequence of time points 1 = r0 < r1 < · · · < rkn = n + 1 for
block segmentation, such that ri− ri−1 = bn for i = 1, . . . , kn− 1, bn ≤ rkn − rkn−1 < 2bn , where kn = b nbn c
is the total number of blocks. For ease of presentation, it is further assumed that n is divisible by bn such
that ri− ri−1 = bn for all i = 1, . . . , kn. By partitioning the observations into blocks of size bn and fixing the
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Algorithm 1: Change Point Detection for the Piecewise Stationary SIR model

Input: Time series data {I(t), R(t)}, t = 1, 2, · · · , T ; regularization parameter λn; block size bn (value of n as a
function of T specified in the sequel).

1 Block Fused Lasso: Partition the time points into blocks of size bn and fix the coefficient parameters within each

block. Then, obtain candidate change points Ân together with estimates of parameters for each block Θ̂ by solving (8).

2 Hard-thresholding: For i = 2, · · · , kn, if ‖θ̂i‖22 ≤ η, declare that there are no change-points within the i-th block;
otherwise, select the first time point ri−1 in the i-th block as a candidate change point. Denote the set of candidate

change points by Ãn.
3 Block clustering: Partition the m̃ candidate change points ÃT =

{
t̃1, · · · t̃m̃

}
into m0(≤ m̃) subsets

C = {C1, C2, · · · , Cm0}, so as to minimize the within-cluster distance.
4 Exhaustive Search: Set li = (Ci − bn) and ui = (Ci + bn). Apply an exhaustive search method for each time point s

in the search domain (li, ui) and estimate the change point t̃fi by minimizing the mean square error (MSE) of
observations within the interval [Ci − bn, Ci + bn) .

Output: The estimated parameter matrix θ̂j in each segment, j = 1, 2, . . . , m̂ using the block fused lasso. The final

estimated change points Ãf
n =

{
t̃f1 , . . . , t̃

f
m0

}
.

model parameters within each block, we set θ1 = B(1) and

θi =

{
B(j+1) −B(j), when tj ∈ [ri−1, ri) for some j

0, otherwise,

for i = 2, 3, . . . , kn. Note that θi 6= 0 for i ≥ 2 implies that θi has at least one non-zero entry and hence
a change in the parameters. Next, we formulate the following linear regression model in terms of Θ(kn) =
(θ′1, . . . , θ

′
kn

)′:

Y1

...
Yr1−1

Yr1
...

Yr2−1

...

...

Yrkn−1

...
Yrkn−1


︸ ︷︷ ︸

Y

=



X1

... 0 . . . . . . 0
Xr1−1

Xr1 Xr1
...

... . . . . . . 0
Xr2−1 Xr2−1

...
...

. . .
...

...
...

. . .
...

Xrkn−1
Xrkn−1

Xrkn−1

...
... . . . . . .

...
Xrkn−1 Xrkn−1 Xrkn−1


︸ ︷︷ ︸

X


θ1

θ2

...
θkn


︸ ︷︷ ︸

Θ(kn)

+



ε1

...
εr1−1

εr1
...

εr2−1

...

...

εrkn−1

...
εrkn−1


︸ ︷︷ ︸

E

, (7)

where Y ∈ R2n, X ∈ R2n×2kn , Θ(kn) ∈ R2kn and E ∈ R2n.
A simple estimate of parameters Θ(kn) can be obtained by using an `1-penalized least squares regression

of the form

Θ̂(kn) = arg min
Θ∈R2kn

{
1

2n
‖Y − XΘ‖22 + λn‖Θ‖1

}
, (8)

which uses a fused lasso penalty to control the number of change points in the model. This penalty term
encourages the parameters across consecutive time blocks to be similar or even identical; hence, only large
changes are registered, thus aiding in identifying the change points. Further, a hard-thresholding procedure
is added to cluster the jumps into two sets: large and small ones, so that those redundant change points with
small changes in the estimated parameters can be removed. We only declare that there is a change point at
the end point of a block, when associated with large jump of the model parameters.
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Hard Thresholding: is based on a data-driven procedure for selecting the threshold η. The idea is to combine
the K-means clustering method (Hartigan and Wong, 1979) with the BIC criterion (Schwarz et al., 1978) to
cluster the changes in the parameter matrix into two subgroups. The main steps are:

• Step 1 (initial state): Denote the jumps for each block by vk =
∥∥∥θ̂k∥∥∥2

2
, k = 2, · · · , kn and let v1 = 0.

Denote the set of selected blocks with large jumps as J (initially, this is an empty set) and set BICold =
∞.
• Step 2 (recursion state): Apply K-means clustering to the jump vector V = (v1, v2, · · · , vkn) with two

centers. Denote the sub-vector with a smaller center as the small subgroup, VS , and the other sub-
vector as the large subgroup, VL. Add the corresponding blocks in the large subgroup into J . Compute
the BIC by using the estimated parameters Θ̂ after setting θ̂i = 0 for each block i /∈ J and denote it
by BICnew. Compute the difference BICdiff = BICnew − BIColdand update BICold = BICnew. Repeat
this step until BICdiff ≥ 0.

Block clustering: the Gap statistic (Tibshirani, Walther and Hastie, 2001) is applied to determine the number
of clusters of the candidate change points. The basic idea is to run a clustering method (here, K-means is
selected) over a grid of possible number of clusters, and to pick the optimal one by comparing the changes
in within-cluster dispersion with that expected under an appropriate reference null distribution (for more
details, see Section 3 in Tibshirani, Walther and Hastie (2001)).
Exhaustive search: Define li = (Ci−bn)1{|Ci|=1}+min(Ci)1{|Ci|>1} and ui = (Ci+bn)1{|Ci|=1}+max(Ci)1{|Ci|>1},
where Ci’s are the subsets of candidates blocks by block clustering procedure. Denote the subset of corre-
sponding block indices by Ji. Define the following local coefficient parameter estimates:

Ψ̃i,1 =

1
2 (max(Ji−1)+min(Ji))∑

k=1

θ̂k, Ψ̃i,2 =

1
2 (max(Ji)+min(Ji+1))∑

k=1

θ̂k, (9)

for all i = 1, . . . ,m0, where J0 = {1} and Jm0+1 = {kn}.
Now, given a subset Ci, we apply the exhaustive search method for each time point s in the interval (li, ui)

to the data set truncated by the two end points in time, min(Ci)− bn and max(Ci) + bn, i.e. only consider
the data within the interval [min(Ci)−bn,max(Ci)+bn). Specifically, define the final estimated change point

t̃fi as

t̃fi = arg min
s∈(li,ui)

{
s−1∑

t=min(Ci)−bn

∥∥∥Yt −XtΨ̃i,1

∥∥∥2

2
+

max(Ci)+bn−1∑
t=s

∥∥∥Yt −XtΨ̃i,2

∥∥∥2

2

}
, (10)

for i = 1, . . . ,m0, where Ψ̃i,1 and Ψ̃i,2 are the local coefficient parameter estimates based on the first step

by block fused lasso. Denote the set of final estimated change points from (10) by Ãfn =
{
t̃f1 , . . . , t̃

f
m0

}
.

Remark: An alternative approach for detection of break points is to run a full exhaustive search procedure
for both single and multiple change point problems. Such procedures are computationally expensive, and
not scalable for large data sets. Simple fused lasso is (block of size one) another method, which although
computationally fast, it leads to over-estimating the number of break points; hence, it requires additional
“screening” steps to remove redundant break points found using the fused lasso algorithm (Harchaoui and
Lévy-Leduc, 2010; Safikhani and Shojaie, 2020). Such screening steps usually include tuning several hyper-
parameters. This task not only slows down the detection method, but is also not robust. The proposed
approach (block fused lasso coupled with hard-thresholding) aims to solve this issue by choosing appropriate
block sizes, while it only needs a single tuning parameter (the threshold) to be estimated.
Estimation of Infection and Recovery rates: Once the locations of break points are obtained, one can estimate
the model parameters by running a separate regression for each identified stationary segment of the time
series data. The work of Safikhani and Shojaie (2020) shows that this strategy yields consistent model
parameter estimates.

Some Properties of the Detection Procedure: The estimated change points obtained by the block fused lasso
step includes all points with non-zero Θ̂, which leads to overestimating the number of the true change
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points in the model. Hence, the reason for employing a hard-thresholding step to “thin out” redundant
change points exhibiting small changes in the estimated coefficients. Nevertheless, the block fused lasso
parameter estimates enjoy a prediction consistency property, which implies that the prediction error, i.e.

1
2n

∥∥∥X (Θ̂−Θ)
∥∥∥2

2
, converges to zero with high probability as n → +∞. This result is stated and proved in

Theorem A.1 in the Appendix A under some mild conditions on the behaviour of the tail distributions of
error terms.

After the hard-thresholding step, those candidate change points located far from any true change points
will be eliminated when the block size is large enough (bn = c log n for a large enough constant c > 0).

On the other hand, there may be more than one selected change points remaining in the set Ãn in bn-
neighborhoods of each true change point. The exhaustive search step picks one estimated break point in
each such bn-neighborhoods. Therefore, by selecting bn = c log n for a large enough constant c > 0, one can
conclude that the proposed detection algorithm locates the true break points with an error bounded by the
order O (log n). Similar bounds have been found in the literature for similar processes (see for example Chan,
Yau and Zhang (2014) for auto-regressive models). For more details, see appendix A.

2.2. Model 2: Piecewise Stationary SIR Model with Spatial Heterogeneity

The standard SIR model and its piecewise stationary counterpart do not account for any influence due to
inter-region mobility and travel activity. To that end, we extend the previous model for each region, by
considering the influence exerted by its q neighboring regions (cities, counties or states) (see also Srivastava
and Prasanna (2020)). Then, for each time point t = 1, · · · , T − 1, the model becomes(

∆I(t)
N

∆R(t)
N

)
=

(
I(t)
N − I(t)N
0 I(t)

N

)(
β(t)
γ(t)

)
︸ ︷︷ ︸

SIR model

+α

q∑
j=1

ωj

(
∆Ij(t−1)

Nj

∆Rj(t−1)
Nj

)
︸ ︷︷ ︸

Spatial Effect (Zt)

, (11)

where N j denotes the total population in neighboring region j; α is a spatial effect parameter; ωj ’s are
spatial weights such that

∑q
j=1 ωj = 1. The latter two parameters capture inter-region mobility patterns.

Model (11) can be succinctly written as

Y = XΘ + Zα+ E, (12)

where Z = (Z ′1, . . . , Z
′
T−1) ∈ Rn and Zt =

∑q
j=1 ωj

(
∆Ij(t−1)

Nj

∆Rj(t−1)
Nj

)
is the weighted average of spatial effect

over the neighboring regions at time t.
Note that assuming that the influence of the spatial effect component Z is small, we can use Model 1 for

each region of interest to estimate both the change points and the corresponding transmission and recovery
rates. Subsequently, the piecewise constant SIR model, augmented with an overall spatial effect, is used as
follows: suppose that there are m0 change points being detected, denote the final estimated change points

by Model 1 as Ãfn =
{
t̃f1 , . . . , t̃

f
m0

}
. We now formulate the following linear regression model in terms of
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Θ(m0) =
(
B′1, . . . , B

′
m0+1, α

)′
:

Y1

...
Yt̃f1−1

Yt̃f1
...

Yt̃f2−1

...

...

Yt̃fm0

...
Yn


︸ ︷︷ ︸

Y

=



X1 Z1

... 0 . . . . . . 0
...

Xt̃f1−1 Zt̃f1−1

Xt̃f1
Zt̃f1

0
... . . . . . . 0

...
Xt̃f2−1 Zt̃f2−1

...
...

. . .
...

...
...

...
. . .

...
...

Xt̃fm0
Zt̃fm0

0
... . . . . . .

...
...

Xn Zn


︸ ︷︷ ︸

X?


B1

B2

...
Bm0+1

α


︸ ︷︷ ︸

Θ(m0)

+



ε1

...
εt̃f1−1

εt̃f1
...

εt̃f2−1

...

...

εt̃fm0

...
εn


︸ ︷︷ ︸

E

, (13)

where Y ∈ R2n, X ? ∈ R2n×2(m0+1)+1, Θ(m0) ∈ R2(m0+1)+1 and E ∈ R2n. The model parameters are then
estimated by least squares.

2.3. Model 3: A Stochastic Piecewise Stationary SIR Model with Spatial Heterogeneity

The standard homogeneous SIR model, previously discussed, is deterministic; hence, the output of the model
is fully determined by the parameter values of the transmission and recovery rates and the initial conditions.
Its stochastic counterpart (Bartlett, 1949; Bailey, 1953), possesses some inherent randomness. The same
set of parameter values and initial conditions will lead to an ensemble of different outputs; for an in depth
discussion and survey of deterministic and stochastic epidemic models, see Daley and Gani (2001).

The transition probabilities associated with the Markov process underlying the stochastic version of the
SIR model are given by

P ((S(t+ ∆t), I(t+ ∆t))− (S(t), I(t)) = (−1, 1)) = β
S(t)I(t)

N
∆t+ o(∆t), (14)

P ((S(t+ ∆t), I(t+ ∆t))− (S(t), I(t)) = (0,−1)) = γI(t)∆t+ o(∆t), (15)

where S(t), I(t) ∈ {0, 1, 2, · · · , N} are discrete random variables, denoting the number of susceptible and
infected individuals at time t.

Using the approximation result in Greenwood and Gordillo (2009) (see also Allen (2017); Buckingham-
Jeffery, Isham and House (2018)), the general stochastic epidemic model can be approximated by the stochas-
tic differential equation:

dX(t) = f(X(t))dt+G(X(t))dW (t) (16)

where the random variables S(t) and I(t) are continuous,

X(t) =

(
S(t)

I(t)

)
, f =

(
−β SIN

β SIN − γI

)
, G =

 −√β SIN 0√
β SIN −

√
γI

 , (17)

and W = (W1,W2)′ is a vector of two independent Wiener processes, i.e., Wi(t) ∼ N (0, t).
Under the assumption that S(t) ≈ N and given (16), the stochastic SIR model can be written as:(

∆I(t)
∆R(t)

)
︸ ︷︷ ︸

Yt

=

(
I(t) −I(t)

0 I(t)

)
︸ ︷︷ ︸

Xt

(
β
γ

)
︸ ︷︷ ︸

B

+

( √
βI(t)∆W1(t)−

√
γI(t)∆W2(t)√

γI(t)∆W2(t)

)
︸ ︷︷ ︸

εt

, (18)

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.09.14.20194548doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.14.20194548
http://creativecommons.org/licenses/by-nc-nd/4.0/


/ 9

where the increments ∆W1(t) and ∆W2(t) are two independent normal random variables, i.e., ∆Wi(t) ∼
N (0,∆t).

It can be seen that the resulting regression model, based on the discrete analogue of (18), will have
an error term exhibiting temporal correlation, driven by I(t) and R(t). An examination of the temporal
correlation patterns in the residuals of model 2 from COVID-19 data (see left two panels in Figures 8 and 11
in Appendices B and C ) supports this finding. To that end, we model the error process as a Vector Auto-
Regressive (VAR) with lag p. The corresponding temporal correlation plots for the residuals after inclusion
of the VAR(p) component are depicted in the right two panels in Figures 8 and 11 in Appendices B and C
and clearly show the importance of considering such an error structure.

The piecewise stationary SIR model with spatial heterogeneity and a VAR(p) error process is given by

Yt =

m0+1∑
j=1

XtB
(j)
1{tj−1≤t<tj} + αZt + φ1εt−1 + · · ·+ φpεt−p + ut, t = 1, . . . , T − 1, (19)

where ut is white noise with mean 0 and variance σ2, φ1, . . . , φp are the corresponding autoregressive pa-
rameters.

The estimation of the model parameters is accomplished in the following three steps: Step 1: Fit model 1
for each region of interest to obtain the change points; Step 2: Obtain the transmission and recovery rates
and spatial effect as in Model 2. Step 3: Compute the residuals (ε̂t) from Step 2 and fit a VAR model to
them, see Lütkepohl (2005).

3. Simulation Studies

We evaluate the performance of the proposed models on their predictive ability, change point detection and
parameter estimation. We consider three simulation scenarios. The details of the simulation settings for each
scenario are explained in Section 3.1. All results are averaged over 100 random replicates.

We assess the results for the three models presented: Model 1, the piecewise stationary SIR model; Model
2, the piecewise stationary SIR model with spatial effect; and Model 3, the piecewise stationary SIR model
with spatial effect and a VAR(p) error process. The out-of-sample mean relative prediction error (MRPE) is
used as the performance criterion defined as:

MRPE(I) =
1

T − 1

T∑
t=2

∣∣∣∣∣ Î(t)− I(t)

I(t)

∣∣∣∣∣ , (20)

where Î(t) is the predicted count of infected cases at time t, and I(t) the observed one. The MRPE of R(t)

can be obtained by respectively replacing the Î(t) and I(t) with R̂(t) and R(t). The estimated number of
infected cases and recovered cases are defined as

Î(t) = I(t− 1) + ∆̂I(t− 1), R̂(t) = R(t− 1) + ∆̂R(t− 1),

for all t = 2, · · · , T . For change point detection, we report the locations of the estimated change points
and the percentage of replicates that correctly identifies the change point. This percentage is calculated as
the proportion of replicates, where the estimated change points are close to each of the true break points.
Specifically, to compute the selection rate , a selected break point is counted as a “success” for the first true
break point, t1, if it falls in the interval [t1 − t1

5 , t1 + t2−t1
5 ]. The change point detection results are reported

in Table 1. We also evaluate the performance of SIR model with spatial effects by reporting the mean and
standard deviation of estimated parameters . The results are reported in Table 2.

3.1. Simulation Scenarios

We consider three different simulation settings. In each simulation scenario, we consider three different block
size settings. In all scenarios, the block sizes are selected to be bn = 4, 8, 12.
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Fig 1: True transmission rate and recovery rate in Scenario A, B, C. The left plot provides the true trans-
mission rate β(t) and recovery rate γ(t) in the SIR model in Scenario A; the middle plot provides the true
transmission rate β(t) and recovery rate γ(t) in the SIR model in Scenario B and C; the right plot provides
the true transmission rate βs(t) and recovery rate γs(t) for generating the spatial component in Scenario B
and C.

Simulation Scenario A (SIR model with piecewise constant rates): the transmission and recovery rates are
chosen to be piecewise constant. In this scenario, we set the number of time points T = 250, m0 = 2,
the change point t1 = 100 and t2 = 200. We choose β(1) = 0.10, β(2) = 0.05, β(3) = 0.01,γ(1) = 0.04,
γ(2) = 0.06, γ(3) = 0.04. Results are based on data generated from the SIR model in (4) with β(t) ∼
Lognormal(

∑m0+1
j=1 β(j)

1{tj−1≤t<tj}, 0.01) and γ(t) ∼ Lognormal(
∑m0+1
j=1 γ(j)

1{tj−1≤t<tj}, 0.01). The coeffi-
cients for the SIR model are depicted in Figure 1.
Simulation Scenario B (SIR model with piecewise constant rates and spatial effect): the transmission and
recovery rates are chosen to be piecewise constant. In this scenario, we set the number of time points T = 200,
m0 = 1, the change point t1 = bT2 c = 100. We choose α = 1, β(1) = 0.10, β(2) = 0.05, γ(1) = 0.04, γ(2) = 0.04,

β(1)s = 0.10, β(2)s = 0.05 , γ(1)s = 0.04, γ(2)s = 0.04 . We construct a sequence of T − 1 values of β
s
(t)

decreasing from β(1)s to β(2)s and a sequence of T − 1 values of γs(t) increasing from γ(1)s to γ(2)s on the
linear scale and then generate the spatial effect data from SIR model in (4). By plugging in the spatial effect
data, we generate the response variable Yt from (11) with additional white noise error term from N (0, I2).
The SIR model’s coefficients for the response variable and the spatial effect variable are depicted in Figure 1.
Simulation Scenario C (piecewise constant SIR model with spatial effect and VAR(1) structure in error term):
the data are generated based on (19) with piecewise constant transmission and recovery rates. Similar to
scenario B, we set the number of time points T = 200, m0 = 1, the change point t1 = bT2 c = 100, β(1) = 0.10,

β(2) = 0.05, γ(1) = 0.04 and γ(2) = 0.04 . For the spatial effect, we set α = 1, β(1)s = 0.10, β(2)s = 0.05 ,
γ(1)s = 0.04, γ(2)s = 0.04. The sequence of T − 1 values of β

s
(t) and γs(t) are on the linear scale, same as

above in scenario B. We first generate the spatial effect data from SIR model in (4) with parameter β
s
(t)

and γs(t) and generate the error term by VAR(1) model with the covariance matrix of the noise process
Σε = 0.1I2. By plugging in the spatial effect data and error term data, we generate the dataset of the
response variable Yt from (19). The SIR model’s coefficients for the response variable and the spatial effect
variable are depicted in Figure 1. The autoregressive coefficient matrix has entries 0.8, 0, 0.2, 0.7 from top
left to bottom right.

3.2. Simulation Results

The mean and standard deviation of the location of the selected change point, relative to the the number of
time points T – i.e., t̃f1/T – for all simulation scenarios are summarized in Table 1. The results clearly indicate
that, in the piecewise constant setting, our procedure accurately detects the location of change points. The
results of the estimated transmission rate β̂, recovery rate γ̂ and spatial effect α̂ in Table 2 also suggest that
our procedure produces accurate estimates of the parameters, under the various settings considered.

In Scenario C, we generate additional 20 days worth of data for prediction testing. The results of the
out-of-sample mean relative prediction error (MRPE) for I(t) and R(t) are provided in Table 3. The results

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.09.14.20194548doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.14.20194548
http://creativecommons.org/licenses/by-nc-nd/4.0/


/ 11

Table 1
Results of the mean and standard deviation of estimated change point location and the selection rate under the piecewise

constant setting.

Model change point truth mean std selection rate
Scenario A

model 1 (bn = 4) 1 0.4 0.4012 0.0096 0.98
model 1 (bn = 4) 2 0.8 0.8 0 0.97
model 1 (bn = 8) 1 0.4 0.4 4e-04 0.99
model 1 (bn = 8) 2 0.8 0.8003 0.0032 0.99
model 1 (bn = 12) 1 0.4 0.4 0 1
model 1 (bn = 12) 2 0.8 0.7997 0.0032 1

Scenario B
model 1 (bn = 4) 1 0.5 0.4988 0.0039 1
model 1 (bn = 8) 1 0.5 0.5 0 1
model 1 (bn = 12) 1 0.5 0.5 0 1

Scenario C
model 1 (bn = 4) 1 0.5 0.4998 0.0018 1
model 1 (bn = 8) 1 0.5 0.5 0 1
model 1 (bn = 12) 1 0.5 0.5 0 1

Table 2
Results of the mean and standard deviation of estimated parameters β̂, γ̂, α̂.

Scenario B Scenario C
Model parameter true value mean std mean std

model 2 (bn = 4)

β1 0.1 0.1 2e-04 0.1 3e-04
β2 0.05 0.0501 3e-04 0.05 2e-04
γ1 0.04 0.04 1e-04 0.04 2e-04
γ2 0.04 0.04 1e-04 0.04 1e-04
α 1 0.9881 0.0487 0.9923 0.0384

model 2 (bn = 8)

β1 0.1 0.1 1e-04 0.1 3e-04
β2 0.05 0.05 1e-04 0.05 1e-04
γ1 0.04 0.04 1e-04 0.04 1e-04
γ2 0.04 0.04 1e-04 0.04 1e-04
α 1 1.0012 0.0236 0.9945 0.0318

model 2 (bn = 12)

β1 0.1 0.1 1e-04 0.1 3e-04
β2 0.05 0.05 1e-04 0.05 1e-04
γ1 0.04 0.04 1e-04 0.04 1e-04
γ2 0.04 0.04 1e-04 0.04 1e-04
α 1 1.0012 0.0239 0.9946 0.0317
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Table 3
Results of out-of-sample mean relative prediction error (MRPE) in simulation scenarios C. IR includes both I(t) and R(t).

Model MRPE(IR) MRPE(I(t)) MRPE(R(t))
Scenario C

model 1 (bn = 4) 0.000255 0.000367 0.000142
model 1 (bn = 8) 0.000252 0.000362 0.000142
model 1 (bn = 12) 0.000252 0.000362 0.000142
model 2 (bn = 4) 2.9e-05 4.5e-05 1.3e-05
model 2 (bn = 8) 2.6e-05 3.9e-05 1.3e-05
model 2 (bn = 12) 2.6e-05 3.9e-05 1.3e-05
model 3 (bn = 4) 2.8e-05 4.3e-05 1.3e-05
model 3 (bn = 8) 2.4e-05 3.7e-05 1.2e-05
model 3 (bn = 12) 2.4e-05 3.7e-05 1.2e-05

indicate that adding the spatial effect can significantly improve the prediction, when the spatial component
influences the individual data series.

The estimated transition matrices of the VAR component are close to the true values, regardless of block
size selection. For example, for bn = 4, the entries of estimated autoregressive coefficients matrix which are
averaged among 100 replicates are 0.7577, -0.0057, 0.2361, 0.6663, with standard deviations 0.1125, 0.0461,
0.3582, 0.1147, respectively, while the entries of true autoregressive coefficients matrices are 0.8, 0, 0.2, 0.7
from top left to bottom right. Moreover, for bn = 8, the entries of estimated autoregressive coefficients matrix
are 0.7652 -0.0057, 0.2088, 0.6767, with standard deviations 0.0533, 0.0464, 0.0459, 0.0573, respectively.
These results confirm the good performance of the proposed algorithm in finite sample while also indicates
its robustness with respect to block size selection.

4. Application to State and County Level COVID-19 Data

4.1. Data Description

The COVID-19 data used in this study are obtained from The New York Times (2020). The curated data
and code used in the analysis are available at the authors’ GitHub repository1. The analysis is performed
both at the state and county level and the raw data include both cases and deaths, as reported by state and
local health department and organized by the NY Times. However, due to lack of complete information on
recovered individuals (which are an important covariate in the models considered but the daily number of
recovered cases are only reported at the national level (Wang et al., 2020b)), we calculate the number of
recovered cases for each region (state/county) as follows: death in the region, multiplied by the nationwide
cumulative recovered cases and divided by the nationwide deaths. Specifically, here we assume that the
recovery versus deceased ratio for each state/county is fixed, and is approximated by the nationwide recovery-
to-death ratio. As coronavirus infections keep multiplied and laboratory testing is limited, reporting only
confirmed cases and deaths leads to inconsistent data collection and undercounts of the disease’s impact. On
April 14, 2020, CDC advised states to count both confirmed and probable cases and deaths. As more states
and localities have started to include probable cases and deaths in their counts, in this study, we rely on the
combined cases, which include both confirmed and probable cases. The populations of states and counties
are obtained from the U.S. Census Bureau (2019). Further, to decide which neighboring states/counties to
include in Model 2, their distance to the target state/county of interest is used. The latter is obtained from
National Bureau of Economic Research (2010). Here, we define the regions within 500 miles for states and
100 miles for counties/cities as neighboring regions in model 2 and 3. For those areas with a large number
of neighboring regions, such as New York state, New York City and King county, we only consider the top
five regions with the smallest distances.

We analyzed the daily count of COVID-19 cases at the state-level from March 1, 2020, to August 18, 2020,
and at the county-level from the first day after March 1, 2020, when the region records at least one positive
COVID-19 case to August 18, 2020. In particular, for the five states presented next (NY, OR, FL, CA, TX),
New York city and King county, n = 170; for Miami-Dade county, n = 160; for Orleans parish, n = 161; for

1https://github.com/ybai69/COVID-19-Change-Point-Detection
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Table 4
Neighboring states by distance (for model 2.1 and model 2.2).

Region Neighboring Regions (states: within 500 miles)
New York Connecticut, New Hampshire, New Jersey, Pennsylvania, Vermont
Oregon California, Idaho, Nevada, Washington
Florida Alabama, Georgia, South Carolina
California Arizona, Nevada, Oregon, Utah
Texas Arkansas, Kansas, Louisiana, New Mexico, Oklahoma

Jefferson parish, n = 162; for Charleston, Greenville, Richland and Horry counties, n = 165, 156, 154, 156,
respectively.

Most of the states together with New York City, King and Miami-Dade counties were selected due to
being severely affected for a period of time during the course of COVID-19. The remaining counties illustrate
interesting patterns gleaned from the proposed models.

Let I(t) and R(t) denote the number of infected and recovered individuals (cases) on day t. Day 1 refers to
the first day after March for which the region records at least one positive COVID-19 case. Figure 2 depicts
the actual case numbers I(t) and R(t) in the five states considered.
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Fig 2: Number of infected cases (dark orange) and recovered cases (dark green) in several states. The first
vertical black dotted line indicates the “stay-at-home” order start date for each state, while the second
vertical black dotted line indicates the “reopening” start date.

4.2. Results for US States

The various models considered are applied on scaled versions (divided by their standard deviations) of the
predictors matrix Xt and the response vector Yt. Further, the block size is set to bn = 7, i.e. partition the
observations into blocks of 7 days for all regions except Texas, wherein a block size bn = 5 is used. We choose
different block sizes since, in some regions, there are more than one break points of the transmission rate
very close to each other which violates the assumptions of our model. To mitigate this issue, we select a
smaller block size to detect most of the change points. Another situation is that the transmission rate in
some regions exhibit many small noise disturbances. In this case, we use a larger block size to smooth out
the parameter estimates and detect the change point more accurately. Finally, the tuning parameter λn is
selected via a cross-validated grid search (Hastie, Tibshirani and Friedman, 2009).

For Model 2, we consider four different types of weights: equal weights (Model 2.1), distance-based weights
(Model 2.2), similarity-based weights (Models 2.3 and 2.4). In Model 2.1 and 2.2, the neighboring regions
are selected based on distance. For states, a threshold of 500 miles is used and the resulting neighbors
are displayed in Table 4. When the spatial resolution is high (county level aggregated data), neighboring
regions may exhibit similar patterns in terms of the evolution of transmission and recovery rates. Therefore,
constructing weight matrices based on distance is meaningful as it is a common practice in spatial statistics
(Cressie, 2015). Such spatial smoothing through proper weight matrices is specially helpful in increasing the
statistical power through increasing the sample sizes, hence yielding to more accurate predictions.

However, the evolution of COVID-19 may exhibit different patterns across neighboring states due to the
coarse spatial resolution. Thus, defining weight matrices based on distance may not be ideal. Hence, Models
2.3 and 2.4 select regions based on similarities of infected/recovered cases. Similarity between the region of
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Table 5
Neighboring states by similarity score (for model 2.3).

Region Neighboring Regions (states: selected from all states in the country)
New York Massachusetts, Connecticut, Michigan, Pennsylvania, District of Columbia
Oregon West Virginia, Wyoming, Montana , Ohio, Washington
Florida South Carolina, Nevada, Alabama, Georgia, Mississippi
California North Carolina, Utah, Oklahoma, Idaho, Missouri
Texas Idaho, Georgia, California, Nevada, South Carolina

interest and the j-th potential similar region is defined as

sj =

√√√√T−1∑
t=1

(
∆I(t)

N
− ∆Ij(t)

N j

)2

+
T−1∑
t=1

(
∆R(t)

N
− ∆Rj(t)

N j

)2

. (21)

Model 2.3 uses the top five regions with the smallest similarity score, while Model 2.4 uses all states in the
country. For states, the resulting neighbors for Model 2.3 are displayed in Table 5.

In the equal weight setting (Model 2.1), ωj = 1/q for any j = 1, . . . , q. In both the distance-based weight
and similarity-based weight settings, power distance weights are used, wherein the weight is a function of
the distance/similarity to the neighboring region:

ωj =
1

dj
, ωj =

1

sj
(22)

where dj is the distance score and sj is the similarity score for the j-th region . Under the constraint that∑q
j=1 ωj = 1, we obtain the normalized weights as:

ωj =
d−1
j∑q

k=1 d
−1
k

, ωj =
s−1
j∑q

k=1 s
−1
k

. (23)

Before applying Model 3, we compare the in-sample and out-of-sample MRPEs (defined in Section 3) in
all four variants of Model 2 and select the parameter values estimated by the best-performing model. In
subsequent analysis, the results from Model 2.3 are reported, since it proved to be the best performing one.

As expected, change points detected for state data are related to “stay-at-home” orders, or phased re-
opening dates issued by state governments. We define the reopening date as the time when either the
“stay-at-home” order expired or state governments explicitly lifted orders and allowed (select or even all)
businesses to reopen (Mervosh et al., 2020). The “stay-at-home” and reopening dates for each state are
shown in Table 6. In Model 1, a change point is detected from March to April for four states: New York,

Table 6
Statewide “Stay-at home” plan and reopening plan begin dates, along with the detected change points (CPs) in five states.

New York Oregon Florida California Texas
“Stay-at home” plan March 22 March 23 April 3 March 19 April 2
Detected CP April 11 April 11 April 18 April 29 May 15
Reopening plan June 8 (Phase 1) May 15 (Phase 1) May 4 (Phase 1) May 8 (Phase 1) April 30 (Phase 1)

June 22 (Phase 2) June 5 (Phase 2) June 12 (Phase 2) May 22 (Phase 2)
July 6 (Phase 3) - - - June 3 (Phase 3)

Detected CP - May 15 July 18 - June 15, July 17
*NY reopening dates vary in counties. Here, we use the NYC reopening dates instead.

Oregon, Florida, and California. These change points coincide with the onset of “stay-at-home” orders and
correspond to a significant decrease in the transmission rate. The first change point detected for Florida is
around two weeks after the state’s Governor signed a statewide “stay-at-home” order, which is consistent
with the fact that COVID-19 symptoms develop 2 days to 2 weeks following exposure to the virus. The
first change points in New York and Oregon are detected around 20 days after the statewide “stay-at-home”
order, which is longer than Florida. This delayed change point is probably because New York was a hot spot
at that time since the virus was in circulation before the start of our observation period (March 1), and thus
it took a much longer time to suppress the transmission rate by the statewide “stay-at-home” order. On
the other hand, the death toll in New York, which contributes to the recovery rate, continued to rise from
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the end of March to the beginning of April, even though the “stay-at-home” policy was in effect. Although
Texas exhibits a clear downward trend of transmission in April, as gleaned from the estimated transmission
rate β(t) shown in the Figure 7, Model 1 fails to detect the change point for Texas in April. This is mainly
because its transmission rate keeps decreasing smoothly during the month of May and violates the model’s
piecewise constant assumptions.
Remark: The daily new cases data in California and Texas are highly skewed. This could be another ex-
planation on why the detected change points by our algorithm are not close enough to the “stay-at-home”
order start date. To remedy this issue, we considered applying log transformation to the data for these two
states to deal with the skewness. The new break points detected by our method applied to the transformed
data are much closer to the “stay-at-home” order start date. Specifically, for California, the detected change
point occurs at April 8th -almost two weeks after the “stay-at-home” order start date- while the detected
change point for Texas occurs at April 10th (almost a week after the “stay-at-home” order start date). A
more detailed summary of these findings are stated in Section 5 of the supplementary materials.

As can be seen from Figure 7, in addition to the downward trend after lockdowns have been put in place,
Florida and Texas have a clear upward trend after state reopenings began in May. Two change points in
June and July are detected for Texas and Florida, which relate to their reopening. Note that in Florida,
there is another jump in estimated parameters in June 21st. However, since this jump is close to the already
selected change point in July, the algorithm does not pick this time point as a new break point since it
violates the modeling assumption that true break points can not be close to each other. Such assumptions
are quite natural and common in the anomaly detection literature (Safikhani and Shojaie, 2020).

Note that the restriction in either phase 2 reopening plan in Florida or the phase 3 reopening plan in Texas
is quite similar in terms of restaurants, bars, and entertainment businesses. Starting June 5, restaurants and
bars in Florida could increase their indoor seating to 50% capacity. Movie theaters, concert venues, arcades,
and other entertainment businesses can also open at 50% capacity. Starting June 3, all businesses in Texas
could expand their occupancy to 50% with certain exceptions. Bars may increase their capacity to 50% as
long as patrons are seated.

Assuming that Florida had not begun the phase 2 reopening plan on June 5, our model predicts 50,585
infected cases by June 12 while the actual number of infected cases is 52,269 (3.3% higher). Similarly, by
June 19, our model predicts 57,895 infected cases, while the actual number of infected cases is 69,571 (20.2%
higher). Similarly, suppose that Texas had not begun the phase 3 reopening plan on June 3, then by June 10,
our model predicts 69,054 infected cases, while the actual number of infected cases is 69,317 (around 0.4%
higher). By June 17, our model predicts 82,120 infected cases, while the actual number of infected cases is
85,823 (4.5% higher).

In July, many states paused plans to reopen, amid rising infected case counts. These pausing actions
effectively slowed the spread of COVID-19, as can be clearly seen in the downward trend of the transmission
rate in July in both Florida and Texas. Hence, a third change point is being detected in Texas and Florida,
mainly related to this pausing.

The fitted number of infected cases and recovered cases are defined as

Ĩ(t) = I(1) +
t−1∑
k=1

∆̂I(k), R̃(t) = R(1) +
t−1∑
k=1

∆̂R(k), (24)

for all t = 2, . . . , T .
The observed and fitted number of infected cases are displayed in Figure 3. In summary, the piecewise

constant SIR model (Model 1) significantly improves the performance in prediction of the number of infected
cases compared with the baseline SIR model with fixed rates. Model 2.3 further improves the fit of the data
for the California and Texas, due to the addition of a spatial smoothing effect. Finally, Model 3 provides
further improvements, in particular for New York and Florida.

To determine the significance level of the spatial effect in model 2, we provide the estimate, p-value, and
95% confidence intervals for the parameter α in Table 15. We find that the influence of the infected or
recovered cases in adjacent states is statistically significant (p-value < 0.05) for all states.

Next, we assess the prediction performance for the three proposed models and the baseline SIR one. The
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(f) NY (Model 2.3)
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Fig 3: Observed (black) and fitted (red) number of infected cases estimated by three models in five states.

out-of-sample mean relative prediction error (MRPE) is used as the performance, given by

MRPE(I) =
1

ntest − 1

T∑
t=T−ntest+1

∣∣∣∣∣ Î(t)− I(t)

I(t)

∣∣∣∣∣ , (25)

where Î(t) is the predicted number of infected cases at time t; and I(t) is the observed number of infected

cases at time t. The MRPE of R(t) can be obtained by respectively replacing the Î(t) and I(t) with R̂(t)
and R(t). We set the last two weeks of our observation period as the testing period and use the remaining
time points for training the model. Note that predicted number of infected and recovered cases are defined
as

Î(t) = I(t− 1) + ∆̂I(t− 1), R̂(t) = R(t− 1) + ∆̂R(t− 1),

for all t = 2, . . . , T , where the ∆̂I(t − 1) and ∆̂R(t − 1) are predicted by using the estimated parameters
from the training period of the models.

Table 7
Out-of-sample mean relative prediction error (MRPE) of I(t).

NY OR FL CA TX
MRPE(I) MRPE(I) MRPE(I) MRPE(I) MRPE(I)

Model 1 0.0017 0.0091 0.0168 0.0076 0.0117
Model 2.1 0.0015 0.0034 0.0029 0.0029 0.0042
Model 2.2 0.0015 0.0037 0.0028 0.0032 0.0039
Model 2.3 0.0014 0.0047 0.0032 0.0029 0.0031
Model 2.4 0.0021 0.0033 0.0053 0.0032 0.004
model 3 0.0015 0.0046 0.0032 0.0029 0.0032

The results of out-of-sample MRPE of I(t) and R(t) in the five states are reported in Tables 7 and 8. The
calculated MRPEs of I(t) show that the model 3 which includes spatial effects and VAR temporal component
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Table 8
Out-of-sample mean relative prediction error (MRPE) of R(t).

NY OR FL CA TX
MRPE(R) MRPE(R) MRPE(R) MRPE(R) MRPE(R)

Model 1 0.0054 0.0094 0.0062 0.0054 0.0083
Model 2.1 0.0019 0.0099 0.0111 0.0052 0.0076
Model 2.2 0.0018 0.0098 0.0111 0.0061 0.0076
Model 2.3 7e-04 0.009 0.0131 0.0041 0.0067
Model 2.4 0.0052 0.0086 0.0074 0.0044 0.0068
model 3 7e-04 0.0089 0.0131 0.0039 0.0067

outperforms the other models. Spatial smoothing itself (model 2) reduces the prediction error significantly
in some states. For example, in Florida, the spatial smoothing reduced the MRPE by 80% when using model
2.2 (distanced-based weight) while in Oregon and Texas, the spatial smoothing reduced the MRPE (I) by
more than 60% when using model 2.4 and model 2.3, respectively (similarity-based weight). In the state of
New York, the prediction error reduction using spatial effects was not significant mainly due to the fact that
its neighbors had different COVID-19 progression compared to New York. New York state was the hotspot
at the beginning of the pandemic while the neighboring states had a surge in the number of cases much later.
Finally, the reduction in MRPEs using model 3 (as reported in Tables 7 and 8) justifies the presence of the
VAR component in the modeling framework. Additional results related to the VAR component (including
the estimated auto-regressive parameters) are reported in Section 4 of the supplementary materials.

Aug 05 Aug 07 Aug 09 Aug 11 Aug 13 Aug 15 Aug 17

0
20

0
40

0
60

0
80

0
10

00
14

00

Date

∆I
(t

)

● ● ● ● ● ● ● ● ● ● ● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

(a) NY ∆̂I(t)

Aug 05 Aug 07 Aug 09 Aug 11 Aug 13 Aug 15 Aug 17

−
50

0
0

50
0

10
00

15
00

Date

∆R
(t

)

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

● ●
●

●

● ● ●
●

●

●●

● ●

● ●
●

●

● ● ●
●

●

●

(b) NY ∆̂R(t)

Aug 05 Aug 07 Aug 09 Aug 11 Aug 13 Aug 15 Aug 17

0
20

00
60

00
10

00
0

14
00

0

Date

∆I
(t

)

●
●

●
●

● ●
●

●
●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(c) FL ∆̂I(t)

Aug 05 Aug 07 Aug 09 Aug 11 Aug 13 Aug 15 Aug 17

0
50

0
10

00
15

00

Date

∆R
(t

)

●
●

●
● ● ● ●

● ● ● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

(d) FL ∆̂R(t)

Aug 05 Aug 07 Aug 09 Aug 11 Aug 13 Aug 15 Aug 17

0
20

00
40

00
60

00
80

00
12

00
0

Date

∆I
(t

)

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

● ●

(e) CA ∆̂I(t)

Aug 05 Aug 07 Aug 09 Aug 11 Aug 13 Aug 15 Aug 17

0
20

0
40

0
60

0
80

0
10

00
12

00

Date

∆R
(t

)

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

(f) CA ∆̂R(t)

Fig 4: Prediction of response variable yh in three models. Black line: true value; orange: model 1; green:
model 2; blue: model 3.

In Figure 4, we provide the predicted values in the last 2 weeks from all three different models in three
states: New York, Florida and California. In both the daily infected cases ∆I(t) and the daily recovered
cases ∆R(t), the predictions by model 2 and model 3 perform better than model 1 in all three states.

4.3. Results for Selected US Counties

We focus on the following counties in this analysis: New York City, King County in Washington, Miami-Dade
County in Florida, Orleans and Jefferson parishes in Louisiana and Charleston, Greenville, Richland, and
Horry in South Caroline. Note that The New York Times (2020) reports a single value for New York City
which includes the cases in New York, Kings, Queens, Bronx and Richmond Counties.

The block size bn is set to 7 for New York City, King and the South Carolina counties. For Miami-Dade, a
smaller block size bn = 5 is used, while for Louisiana counties a larger one bn = 10. Further, for determining
their neighbors displayed in Table 9, a threshold of 100 miles is used. Model 2.3 uses the top five counties
in the corresponding state with the smallest similarity score, while Model 2.4 uses all counties in the given
state. The resulting neighbors for Model 2.3 are displayed in Table 10.

Since the parameters obtained from (5) vary greatly, the 7-day moving average of transmission β(t) and
recovery γ(t) rates is provided in Figure 9 and 10. As can be seen from those figures, our estimated piecewise
parameters are very close to the real parameters in the 7-day moving average.

The statewide and countywide policy start dates and the detected change points are shown in Tables 11
and 12. A change point is detected from March to April for the first three counties. These change points
coincide with the onset of ”stay-at-home” orders and indicate a significant decrease in the transmission rate.
A change point in June is detected in King county and Miami-Dade county, which may be related to the
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Table 9
Neighboring cities/counties/parishes by distance (for model 2.1 and model 2.2).

Region Neighboring Regions (counties: within 100 miles)
New York City (NY) Hudson, Essex, Union, Bergen, Nassau
King County (WA) Pierce, Island, Kitsap, Kittitas, Snohomish
Miami-Dade County (FL) Broward, Collier, Hendry, Palm Beach, Monroe
Orleans Parish (LA) Jefferson, St. Charles, St. John the Baptist, St. Tammany, Hancock
Jefferson Parish (LA) Lafourche, Orleans, Plaquemines, St. Charles, Terrebonne
Charleston (SC) Dorchester, Beaufort, Berkeley, Colleton, Georgetown
Greenville (SC) Polk, Henderson, Anderson, Pickens, Spartanburg
Richland (SC) Calhoun, Lexington, Sumter, Fairfield, Kershaw
Horry (SC) Columbus, Dillon, Marion, Florence, Georgetown

Table 10
Neighboring cities/counties/parishes by similarity score (for model 2.3).

Region Neighboring Regions (counties: in the same state)
New York City (NY) Erie, Dutchess, Monroe, Columbia, Niagara
King County (WA) Thurston, Kitsap, Pierce, Lewis, Grays Harbor
Miami-Dade County (FL) Broward, Osceola, Escambia, Bay, Duval
Orleans Parish (LA) Jefferson, St. Bernard, St. Tammany, St. Charles, Ascension
Jefferson Parish (LA) Orleans, St. Bernard, St. Tammany, Lafourche, St. Charles
Charleston (SC) Horry, Berkeley, Dorchester, Greenville, Orangeburg
Greenville (SC) Pickens, Lexington, Richland, Spartanburg, York
Richland (SC) Lexington, Greenville, Berkeley, Beaufort, York
Horry (SC) Greenville, Berkeley, Charleston, Richland, Pickens

reopening plan after June as both change points correspond to a substantial increase in the transmission
rate. Similar to Texas, a third change point is being detected in Miami-Dade county in July due to pausing
in the reopening plans.

Next, using the proposed set of models we discuss two cases that provide interesting insights into policy
questions.
Case I: Neighboring Parishes in Louisiana. A change point is detected in April for the Orleans and Jefferson
parishes in Louisiana. This is primarily due to the fact that the virus circulated widely due to Mardi Gras
activities in the end of February, that led to a high transmission rate in the March/early April period.
However, the estimated transmission rate is much higher in Orleans, compared to Jefferson, which translates
to a much higher number of infections in the former county. After reopening in early June, the transmission
rate exhibited an increase (and hence a change point), only for Jefferson county. A possible explanation is
that the high transmission rate in March in Orleans county led to a much larger number of infections, thus
possibly conferring immunity to a larger portion of the population, while that was not the case in Jefferson
county. Hence, in Jefferson’s case, the reopening led to a subsequent increase in the transmission rate. Note
that seroprevalence survey data from the CDC2 show a much higher percentage of immunity for Louisiana
at the time of this writing, but probably not uniformly distributed across the state.
Case II: Neighboring Counties in South Carolina. We consider the following four neighboring counties
(harleston, Greenville, Richland, and Horry), where mask wearing policies exhibited some variation in their
timing, while Greenville county did not impose one. We can see that the transmission rates in these four
counties share a very similar pattern with an upward trend in May and a downward trend from late June to
August. Although all four counties show a significant decline in transmission rates in July, the mask mandate
seems to lead to a reduction in transmission rates. Specifically, in Charleston at the change point in July
the estimated transmission rate has a jump of 0.04, which is larger than the one in Greenville’s June change
point of 0.02. The difference in jump size may relate to mandating the facial covering. What is difficult to
delineate is whether the timing of the imposition of the mask mandate in three out of the four neighboring
counties should have occurred earlier, so as the transmission rate not to exhibit such a large jump, especially
in the most populous Charleston county.

Figure 11 shows the ACF plot of model 2’s residual time series for three counties. As can be seen from
these plots, in Orleans parish, there is a significant temporal dependence among the time-lagged residual
time series processes. This temporal dependence has been successfully captured by including the VAR(p)

2https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/commercial-lab-surveys.html
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Table 11
Statewide “Stay-at-home” plan and reopening plan begin dates, along with the detected change points in

counties/cities/parishes.

New York City King County Miami-Dade County Orleans Parish Jefferson Parish

“Stay-at-home” plan (statewide) March 22 March 23 April 3 March 23 March 23
Detected change point (model 1) April 5 April 12 April 13 April 9 April 9
Reopening plan (statewide) May 15 May 30 June 5 (Phase 2) June 5 (Phase 2) June 5 (Phase 2)
Detected change point (model 1) - June 28 June 23, July 25 - June 27

Table 12
Statewide “Stay-at-home” plan and reopening plan begin dates, along with countywide mask mandate plan and the detected

change points in four counties in South Carolina.

Charleston Greenville Richland Horry

“Stay-at-home” plan (statewide) April 7 April 7 April 7 April 7
Reopening plan (statewide) April 20 April 20 April 20 April 20
Mask mandate (countywide) July 1 No mandate July 6 July 3
Detected change point (model 1) June 9, July 6 May 6, June 20 May 11, July 24 July 11

model for the residuals, as seen in the ACF plot of the new residuals, i.e. ε̃.
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(h) Charleston(Model 2.3)
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(m) Charleston(Model 3)
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(o) Horry(Model 3)

Fig 5: Observed (black) and fitted (red) number of infected cases estimated by three models in
parishes/counties/cities.

A more intuitive result is shown in Figure 5, where the fitted values of infected cases by model 2 and
model 3 are much closer to the observed value than the predicted value by model 1. Specifically, Model 2.3
improves the fit of the data in all regions, due to the addition of a spatial smoothing effect. Model 3 further
improves the fit of the data in New York City and Orleans parish.

We also provide the out-of-sample MRPE of I(t) and R(t) in Tables 13 and 14. The MRPE of I(t) results
show that the piecewise constant model (model 1) performs the best in New York City, Orleans parish, while
the piecewise constant model with spatial effect (model 2) performs the best in King County, Miami-Dade
County, Jefferson parish and Richland. Adding the VAR(p) (model 3) performs the best in Charleston and
Horry. The MRPE of R(t) results show that the piecewise constant model with spatial effect (model 2)
performs the best in King County, Miami-Dade County, Greenville, Richland and Horry, while adding the
VAR(p) (model 3) performs the best in New York City, Orleans, Jefferson and Charleston.
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Table 13
Out-of-sample mean relative prediction error (MRPE) of I(t) and R(t).

NYC King Miami-Dade Orleans Jefferson
MRPE(I) MRPE(R) MRPE(I) MRPE(R) MRPE(I) MRPE(R) MRPE(I) MRPE(R) MRPE(I) MRPE(R)

Model 1 0.004 0.0063 0.0036 0.0029 0.0169 0.008 0.003 0.0061 0.0072 0.0069
Model 2.1 0.0048 0.005 0.0037 0.0033 0.0061 0.0068 0.0032 0.0054 0.0065 0.0065
Model 2.2 0.0043 0.005 0.0036 0.0033 0.0053 0.0067 0.0033 0.0054 0.0065 0.0065
Model 2.3 0.005 0.0056 0.0037 0.0032 0.0058 0.0118 0.0033 0.0055 0.0064 0.0063
Model 2.4 0.0062 0.0064 0.0036 0.0031 0.0157 0.0094 0.0038 0.0062 0.0063 0.0071
Model 3 0.0051 0.0047 0.0037 0.0033 0.0058 0.0113 0.0033 0.005 0.0065 0.0062

Table 14
Out-of-sample mean relative prediction error (MRPE) of I(t) and R(t).

Charleston Greenville Richland Horry
MRPE(I) MRPE(R) MRPE(I) MRPE(R) MRPE(I) MRPE(R) MRPE(I) MRPE(R)

Model 1 0.0117 0.0195 0.0134 0.0093 0.0143 0.0107 0.012 0.0106
Model 2.1 0.0069 0.0185 0.0085 0.0137 0.0091 0.0125 0.0109 0.0102
Model 2.2 0.0059 0.0182 0.0078 0.0141 0.0091 0.0127 0.0107 0.0102
Model 2.3 0.0036 0.0179 0.0041 0.0104 0.0043 0.0094 0.004 0.0111
Model 2.4 0.0063 0.0194 0.0058 0.0127 0.0064 0.0122 0.0083 0.0117
Model 3 0.0022 0.0175 0.0041 0.0105 0.0044 0.0095 0.0037 0.0142
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Fig 6: Prediction for the response variable yh in three models. Black line: true value; orange: model 1; green:
model 2; blue: model 3.

Finally, Figure 6 shows the predicted values in the last 2 weeks from all three different models. Here, we
provide the prediction plots in three counties: Orleans, Charleston and Richland. In terms of the infected
cases, the predictions by model 2 and model 3 perform much better than model 1 in all three counties.

5. Conclusion and Discussion

COVID-19 has posed a number of challenges for modellers, both due to the lack of adequate data (especially
early on in the course of the pandemic) and its characteristics (relative long period before emergence of
symptoms compared to SARS and other viruses). A plethora of models -a number of them briefly summarized
in the introductory section- were developed, most aiming to provide short and long term predictions of the
spread of COVID-19. This work contributes to that goal by developing a piecewise stationary SIR model
with neighboring effect and temporal dependence to model the spread of COVID-19 at both state-level and
county-level in the United States. Based on the results, a substantial decrease in the transmission rate was
detected in the late March/early April period, which is a consequence of many factors, including ”stay-at-
home” orders, but also change in behavior by individuals once the infectious nature of the disease and the
consequences for those severely affected became apparent. Florida and Texas experienced strong jumps in
the transmission rates after reopening, which subsequent led to imposition of additional mitigation strategies
(mask mandates) and a slower implementation of the multi-phase reopening plans originally devised.

The reasonable short-term forecasts of model 3 (including spatial effects and the VAR component) confirm
the existence of spatial and temporal dependence among new daily cases which can not be accounted by
the homogeneous deterministic SIR model. Further, the detection of change points in neighboring counties
can provide insights into how the spread of COVID-19 impacted different communities at different points in
time and also that of mitigation policies adopted by county (state) health adminsitrators.

Our paper did not take the under-reporting or the reported with delay issues of new cases/deaths into
account. Therefore, the estimated transmission rates in the model may be over-estimated or under-estimated.
Nevertheless, our model helps to understand various trends at the state/countylevels of COVID-19 and also
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allow researchers to look back at the impact of various mitigation strategies in impacting the course of the
epidemic.
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APPENDIX.

Some theoretical properties are explained with their proofs in Appendix A. In Appendix B, we provide
additional results for U.S. states while in Appendix C, additional results for U.S. counties are stated.

Appendix A: Theoretical Properties

In this section, we establish the prediction consistency of the estimator from (8). To establish prediction
consistency of the procedure, the following assumptions are needed:

(A1.) (Deviation bound) There exist constants ci > 0 such that with probability at least 1−c1exp(−c2(log 2n)),
we have ∥∥∥∥X ′E2n

∥∥∥∥
∞
≤ c3

√
log 2n

2n
. (26)

(A2.) There exists a positive constant MB > 0 such that

max1≤j≤m0+1‖B(j)‖∞ ≤MB .

Theorem A.1. Suppose A1-A2 hold. Choose λn = 2C1

√
log 2n

2n for some large constant C1 > 0, and assume

m0 ≤ mn with mn = o(λ−1
n ). Then with high probability approaching to 1 and n→ +∞ , the following holds:

1

2n

∥∥∥X (Θ̂−Θ)
∥∥∥2

2
≤ 8MBλnm0. (27)

Proof of Theorem 1. By the definition of Θ̂ in (8), the value of the function in (8) is minimized at Θ̂.
Therefore, we have

1

2n

∥∥∥Y − X Θ̂
∥∥∥2

2
+ λn

∥∥∥Θ̂
∥∥∥

1
≤ 1

2n
‖Y − XΘ‖22 + λn‖Θ‖1. (28)

Denoting A = {t1, t2, . . . , tm0} as the set of true change points, we have

1

2n

∥∥∥X (Θ̂−Θ
)∥∥∥2

2
≤ 1

n

(
Θ̂−Θ

)′
X ′E + λn

(
‖Θ‖1 −

∥∥∥Θ̂
∥∥∥

1

)
≤ 1

n

(
Θ̂−Θ

)′
X ′E + λn

(
kn∑
i=1

‖θi‖1 −
kn∑
i=1

‖θ̂i‖1

)

≤ 2

kn∑
i=1

∥∥∥θ̂i − θi∥∥∥
1

∥∥∥∥X ′E2n

∥∥∥∥
∞

+ λn
∑
i∈A

(
‖θi‖1 −

∥∥∥θ̂i∥∥∥
1

)
− λn

∑
i/∈A

‖θ̂i‖1

≤ λn
∑
i∈A

∥∥∥θ̂i − θi∥∥∥
1

+ λn
∑
i∈A

(
‖θi‖1 −

∥∥∥θ̂i∥∥∥
1

)
≤ 2λn

∑
i∈A
‖θi‖1

≤ 2λnm0 max
1≤j≤m0

∥∥∥B(j+1) −B(j)
∥∥∥

1

≤ 8MBλnm0,

with high probability approaching to deviation bound in (26). This completes the proof.

Theoretical properties of lasso have been have been studied by several authors (Bickel et al., 2009; van de
Geer, Bühlmann and Zhou, 2011; Loh and Wainwright, 2012; Negahban et al., 2012). In controlling the
statistical error, a suitable deviation conditions on X ′E/2n is needed. The deviation bound conditions (e.g.
the assumption A1) are known to hold with high probability under several mild conditions. Under the
condition that the error term E ∼ N (0, σ2I2n), the deviation bound condition holds with high probability
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by Lemme 3.1 in van de Geer, Bühlmann and Zhou (2011). Given that the p (the number of time series
components) is small and fixed, we have n � log p, therefore, in the case where the X is a zero-mean sub-
Gaussian matrix with parameters (Σx, σ2

x), and the error term E is a zero-mean sub-Gaussian matrix with
parameters (Σe, σ

2
e), the deviation bound condition holds with high probability by Lemme 14 in Loh and

Wainwright (2012).
Detection Accuracy. When the block size is large enough, such that logn/bn remains small, if the selected

change point t̂j is close to a true change point , the estimated Θ̂j will be large (asymptotically similar to the
true jump size in the model parameters); if the selected change point t̂j is far away from all the true change

points, the estimated Θ̂j will be quite small (converges to zero as sample size tend to infinity). Therefore,
after the hard-thresholding, the candidate change points that are located far from any true change points
will be eliminated. In other words, for any selected change point t̃j ∈ Ãn, there would exist a true change
point tj′ ∈ An close by, with the distance being at most bn. Thus, the number of clusters (by radius bn )
seems to be a reasonable estimate for the true number of break points in the model.

On the other hand, since the set of true change points An has cardinality less than or equal to the
cardinality of the set of selected change points Ãn, i.e., m0 ≤ m̃, there may be more than one selected
change points remaining in the set Ãn in bn-neighborhoods of each true change point. For a set A, define
cluster (A, x) to be the minimal partition of A, where the diameter for each subset is at most x. Denote the

subset in cluster
(
Ãn, bn

)
by cluster

(
Ãn, bn

)
= {C1, C2, . . . , Cm0}, where each subset Ci has a diameter at

most bn, i.e., maxa,b∈Ci |a− b| ≤ bn. Then with high probability converging to one, the number of subsets in

cluster
(
Ãn, bn

)
is exactly m0. All candidate change points in Ãn are within a bn-neighborhood of at least

one true change point and therefore, with high probability converging to one, there is a true change point ti
within the interval (Ci− bn, Ci + bn). The distance between the estimated change point and the true change
point will be less then 2bn. Therefore, by selecting bn = c log n for a large enough constant c > 0, one can
conclude that the proposed detection algorithm locates the true break points with an error bounded by the
order O (log n).

Appendix B: Additional Results for U.S. States
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Fig 7: The 7-day moving average of observed transmission rate β(t) (orange) and recovery rate γ(t)(green)

along with the estimated transmission rate β̂(t) (purple) and recovery rate γ̂(t) (blue) in several states. The
vertical black dotted line indicates the statewide “stay-at-home” order begin date or reopening begin date.
The vertical dark red dashed line indicates the estimated change time point for each state.
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Table 15
Spatial effect estimation in model 2.

Model Estimate P-value Confidence interval

NY

Model 2.1 0.9479 3.37e-17 ( 0.7396 , 1.1563 )
Model 2.2 0.9968 8.00e-18 ( 0.7825 , 1.2111 )
Model 2.3 1.2546 2.76e-30 ( 1.0614 , 1.4477 )
Model 2.4 0.3141 0.08310 ( -0.0414 , 0.6695 )

FL

Model 2.1 1.6925 3.04e-95 ( 1.5839 , 1.801 )
Model 2.2 1.727 6.56e-95 ( 1.6158 , 1.8381 )
Model 2.3 1.9183 4.40e-103 ( 1.8044 , 2.0323 )
Model 2.4 2.7535 6.56e-52 ( 2.4612 , 3.0458 )

CA

Model 2.1 0.5695 2.79e-51 ( 0.5084 , 0.6306 )
Model 2.2 0.6147 2.12e-49 ( 0.5469 , 0.6824 )
Model 2.3 1.0837 4.38e-49 ( 0.9637 , 1.2037 )
Model 2.4 0.8066 2.38e-32 ( 0.6876 , 0.9255 )

Few additional plots and tables related to the results of applying our method to some U.S. states are
provided in this section. In Figure 7, we show the 7-day moving average of measured transmission rate β(t)

and recovery rate γ(t) by (5), along with the estimated β̂(t) and γ̂(t) from model 2. We can see that the
measured transmission rate β(t) decreases dramatically during the late March-early April in all five states.
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Fig 8: Auto-correlation plot of residuals by model 2.3 (left) and model 3 (right)

For a stationary time series Xt, the auto-covariance function (ACVF) at lag h is defined as

γ(h) = Cov(Xt, Xt+h), (29)

and the auto-correlation function (ACF) at lag h is defined as

ρ(h) = γ(h)/γ(0). (30)

Let ε̂ and ε̃ be the residuals from models 2 and 3, respectively. We use ACF to measure the degree of
dependence among the residual processes at different times. Figure 8 shows the ACF of these residual time
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series. As can be seen from these plots, in all states, there is a statistically significant auto-correlation in the
process ε̂ at different times while this temporal dependence has been reduced significantly in the residuals
of model 3 which confirms the applicability of VAR modeling for the considered data sets.

Appendix C: Additional Results for U.S. Counties
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Fig 9: The 7-day moving average of observed (orange and green) and estimated (purple and blue) transmission
rate and recovery rate in counties/cities/parishes. The vertical black dotted line indicates the statewide “stay-
at-home” order begin date or reopening begin date in the corresponding state. The vertical dark red dashed
line indicates the estimated change time point in the county/city/parish.
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Fig 10: The 7-day moving average of observed (orange and green) and estimated (purple and blue) transmis-
sion rate and recovery rate in four counties in South Carolina. The vertical black dotted line indicates the
statewide “stay-at-home” order begin date or reopening begin date in the corresponding state. The vertical
dark red dashed line indicates the estimated change time point.

Few additional plots and tables related to the results of applying our method to some U.S. counties are
provided in this section. The 7-day moving average of transmission β(t) and recovery γ(t) rates are provided
in Figure 9 and 10. Further, the results in Table 16 indicate that the neighboring counties are making an
significant impact on estimating and forecasting the transmission dynamic. Finally, Figure 11 shows the ACF
of these time series in three counties: Orleans, Charleston and Richland.
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Table 16
Spatial effect estimation in model 2.

Model Estimate P-value Confidence interval

Orleans

Model 2.1 0.2651 0.00142 ( 0.1032 , 0.4271 )
Model 2.2 0.273 0.00135 ( 0.1069 , 0.4391 )
Model 2.3 0.2835 0.00138 ( 0.1107 , 0.4562 )
Model 2.4 0.3236 0.00050 ( 0.1427 , 0.5046 )

Charleston

Model 2.1 0.5843 2.64e-08 ( 0.3832 , 0.7854 )
Model 2.2 0.693 7.55e-11 ( 0.4912 , 0.8949 )
Model 2.3 0.9494 6.60e-21 ( 0.765 , 1.1338 )
Model 2.4 0.7831 5.18e-07 ( 0.4828 , 1.0833 )

Richland

Model 2.1 0.361 4.92e-13 ( 0.2675 , 0.4546 )
Model 2.2 0.3666 2.66e-13 ( 0.2727 , 0.4604 )
Model 2.3 0.7234 3.28e-24 ( 0.5963 , 0.8506 )
Model 2.4 0.6278 3.72e-15 ( 0.4796 , 0.776 )
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Fig 11: Auto-correlation plot of residuals by model 2.3 (left) and model 3 (right). County level.
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