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Abstract 
 
Introduction​: Recent advances in psychiatric genomics have enabled large-scale genome-wide 
scans that elucidated genetic architecture both in mood disorder and schizophrenia across 
individuals of East Asian and European descent. Investigating joint genetic architecture of these 
psychiatric traits enables the identification of common and diverging etiological mechanisms 
underlying these psychiatric illnesses. Here, we leverage on the largest GWAS of schizophrenia 
and mood disorder conducted to date in East Asian and European descent samples to elucidate 
the joint genetic architecture that underlie these psychiatric disorders.  
 
Methodology ​: We carried out GWAS meta-analysis on both European (EUR) and East Asian 
(EAS) Ancestry summary statistics for Major Depressive Disorder (MDD) and Schizophrenia via 
Multi-Trait Analysis of GWAS. Downstream pathway, eQTL, chromatin interaction analysis were 
carried out to characterize genome-wide results. In addition we carried out genetic correlations 
and polygenic risk prediction analysis to further study the joint genetic architectures of mood 
disorder and schizophrenia.  
 
Results ​: There were 308 loci that was significantly associated with at least one trait. 
Specifically, there were 98 independent loci in EUR-MDD, 5 loci for MTAGx-EAS-MDD, 121 loci 
for MTAGx-EUR-MDD, 8 independent loci for EAS-SZ, 171 independent loci for EUR-SZ, 124 
independent loci for MTAGx-EAS-SZ, and 159 independent loci for MTAGx-EUR-SZ. In all, 61 
loci were novel across traits. ​SOAT1 ​and ​FOXO3 ​ genes were implicated based on 
genome-wide associations. 114 gene(s) were implicated in eQTL analysis of gene expression in 
brain tissue. Gene-set analysis show support for GABA-egic pathways implicated in MDD, 
driven by several GABA-alpha receptor genes as well as more peripheral ​PLCL1 ​and ​NISCH 
genes that are responsible for endocytosis and neuronal trafficking. Cross-Ancestry genetic 
correlations ascertained that the CONVERGE MDD phenotype generally holds higher SNP 
based heritability and is likely driven by case-ascertainment procedures. Finally, polygenic risk 
score modelling indicates that MTAGx procedures were effective in enriching GWAS signals in 
the EAS-MDD for prediction in an independent case-control sample.  
 
Discussion​: Here we are able to demonstrate that cross-trait cross-ancestry approaches in 
schizophrenia and MDD not only yields new discoveries to the genetic architecture of these 
illnesses; we were able to identify new biological underpinnings within the GABA pathways for 
depressive disorders. The evidence in the current report underscores the importance of taking 
into consideration both phenotype and ancestry complexities in genome-wide studies.  
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Introduction 
 

Major Depressive Disorders (MDD) and Schizophrenia (SZ) are amongst the most 
debilitating in adult psychiatry; disabilities that are associated with these mental illnesses are 
associated with significant economic burden ​(1, 2)​. There have been hypotheses suggesting 
that MDD and SZ, tend to be comorbid, with a sizable proportion of individuals with 
schizophrenia also having diagnosed depression ​(3, 4)​. Individuals at-risk to psychosis and 
first-episode psychosis have been reported to present with affective disorders prior to 
manifestation of psychosis ​(5–7)​. Yet, others have argued that psychosis and/or schizophrenia 
could be an endpoint of the psychopathology spectrum that begins with significant mood or 
affective symptom presentation. 
 

Both biological experimentation and genetic studies have demonstrated potential joint 
genetic architecture that underpins mood disorder and schizophrenia.  The biology that jointly 
underlie SZ and MDD remain poorly understood. Nevertheless, from reviews of earlier 
genome-wide studies and animal model reports,  it appears that MDD and SZ do show evidence 
of overlap in the area of neurotransmission (dopamine, glutamate, serotonin, gaba-ergic) and 
neurodevelopmental systems ​(8–10)​. In the recent literature large-scale genome-wide 
association studies have been reported for psychiatric disorders, identifying 102 genomic loci 
associated with depression ​(11)​, 145 loci associated with schizophrenia in European descent 
individuals ​[Citation error]​; 2 loci associated with depression ​(12)​, and 19 loci associated with 
schizophrenia ​(13)​ in individuals of East Asian descent.  

 
Prior reports that investigated the genetic architecture of SZ and MDD indicated a 

genetic correlation of approximately Rg = 0.45~0.50 within and between European and East 
Asian ancestry ​(13)​. Within MDD, there appears to be differential genetic architecture 
depending on how cases were being ascertained ​(14)​. The phenotype definitions range from 
MDD that appears recurrent and severe, DSM diagnosed, to depressive symptoms that are 
self-reported in large-scale biobank collection efforts. Analogous to the phenotype 
ascertainment is the idea that more severe, recurrent MDD has higher genetic loading. On the 
other hand, schizophrenia as shown in our previous report tends to be highly consistent in 
phenotypic ascertainment; as reported, even across ancestries ​(13)​. Nevertheless, the 
significant genetic correlations reported across these traits would suggest that at least to some 
degree, it would be possible to leverage the overlap of genetic architecture between MDD and 
SZ despite phenotypic definitions to improve power for discovery.  

 
An added complexity to GWAS meta-analysis over and above phenotypic definitions is 

the issue of ancestry. In the case of SZ, where cross-ancestry genetic correlation is close to 
Rg=1, fixed-effect meta-analysis may be utilized to harmonize genetic signals across the 
genome, without diluting or changing implicitly the inherent phenotype definition. Conversely, 
when two phenotypes with moderate genetic correlations are meta-analyzed, disentangling if 
the association signal belongs to one definition or the other; or if by meta-analyzing moderately 
(genetically) correlated traits have in fact resulted in a ”latent” trait makes interpretation 
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challenging. For the case of MDD, which appears to be in the scenario where genome-wide 
heritability appears differential across studies and ancestry. This is where the Multi-Trait 
Analysis of GWAS (MTAG; ​(15)​) framework could bring benefits to cross-trait, cross ancestry 
analysis. The nature of MTAG allows effect sizes to be treated as vectors and projected on an 
alternate trait based on genetic correlations. This would allow the original trait to be enhanced 
and overall genetic architecture retained. We describe the MTAG methodology further in the 
methods section.  

 
In the current report we aim to (1) identify novel genome wide associated loci, that could 

be enhanced and identified via MTAG (2) carry out genetic correlations that clarifies the 
phenotype ascertainment in MDD (3) carry out downstream analysis on the results of MTAG 
and (4) perform polygenic risk prediction in independent case-control samples. The overarching 
objective is to demonstrate that it is possible to direct GWAS evidence for potential clinical 
application using a cross-trait, cross ancestry approach even though original discovery GWAS 
were predominantly conducted in EUR samples.  
 

Methodology 
 
Quality control of GWAS summary statistics  
 

Prior to meta-analysis summary statistics we carried out quality control of summary 
statistics. Prior to quality control procedures there were 9,600,460 variants in the East Asian 
Mood Disorder (​(12)​, EAS-MDD) GWAS summary statistics; 10,482,735 variants in the East 
Asian Schizophrenia (​(13)​, EAS-SZ) summary statistics; 8,098,589 variants in the European 
Mood Disorder (​(11)​, EUR-MDD) summary statistics; and 8,167,164 variants in the European 
Schizophrenia (​(16)​ EUR-SZ) summary statistics. With the exception of EAS-MDD data, all 
GWAS summary statistics were obtained from public repositories. To harmonize results of 
EAS-MDD, which were processed differently from the other results (see ​(12)​), we first converted 
the raw data into genotypes. Quality control, imputation, and association procedures were then 
conducted using default parameters via RICOPILI ​(17)​. Preliminary results show that the 
summary statistics obtained via RICOPILI were similar to those in prior reports. For subsequent 
analysis, we used the version of RICOPILI processed summary statistics, such that data 
processing procedures were compatible with the other sets of GWAS summary statistics.  
 

Summary statistics quality control is carried out via an in-house quality control pipeline 
as various sets of GWAS summary statistics were generated over time for separate projects. 
The summary statistics quality control procedures sought to harmonize genomic position, allele 
order, strand alignment, allele frequencies across GWAS summary statistics e procedures first 
aligned CHR, BP coordinates, with A1 and A2 alleles between the 1000 genomes reference 
panel (phase 3). SNPs with minor allele frequency threshold less than 0.005 were excluded. 
After allele alignment with the reference panel, variants with allele frequency difference greater 
than 0.15 were excluded. Finally, we checked strand ambiguous variants against the reference 
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panel. Strand ambiguous variants with allele frequencies differences greater 0.35 were 
excluded. Finally, variants with allele frequencies that at exactly 0.5 are removed.  
 
GWAS cross-trait-cross-ancestry meta-analysis  
 

Cross-trait-cross-ancestry analysis was carried out using the MTAG framework. In its 
original form, MTAG uses LD score regression for estimating the sigma matrix. Along the 
diagonal of the sigma matrix, are the LD score regression intercept for each trait respectively. 
While the off-diagonal of the matrix is the bivariate LD score regression intercept. The sigma 
matrix plays a crucial role in adjusting for potential GWAS inflation due to sample overlap, as 
well as potential residual population stratification effects ​(18)​. The sigma matrix for MTAG can 
be assembled using the standard LDSC report.  
 

Another crucial aspect of the MTAG framework that estimates bivariate genetic 
covariances is the general methods of moment approach, which allows MTAG to take 
advantage of all variant information into account. However, as MTAG is considered a common 
variant method, genetic covariance could also be estimated using an external genetic 
correlation approach like LD score regression ​(19)​. MTAG allows for external matrices to be 
estimated and used for estimation of the eventual MTAG estimator albeit such approach is 
slightly less optimal in that such approaches are more likely to utilize only HAPMAP3 based LD 
scores rather than all variants present in the input summary statistics. Nevertheless, using 
externally generated genetic covariance matrices allows a much more flexible framework for 
MTAG to incorporate various modes of genetic correlations. For purposes of the current study, 
we investigated the use of the MTAG framework in three stages. First, we demonstrate 
MTAG-General Methods of Moments (MTAG-GMM) and MTAG-LD Score Regression 
(MTAG-LDSC) yields overall MTAG Chi-Square values that are largely comparable when 
combining within ancestry GWAS summary statistics for MDD and SZ. Second, we carry out 
cross-trait meta-analysis of MDD and SZ within ancestry. The cross trait MTAG yields two sets 
of GWAS summary statistics (a) MDDsz (b) SZmdd. The trait in capital letters represents the 
primary trait investigated, while the trait in lower case represents the secondary trait that was 
projected on the primary trait. The cross-trait analysis was conducted in both EUR and EAS 
ancestries respectively. Third, we carried out MTAGx, an add-on to the MTAG framework, which 
estimates cross-ancestry genetic covariance using POPCORN ​(20)​. The input summary 
statistics to MTAGx was (a) MDDszEAS (b) MDDszEUR (c) SZmddEAS (d) SZmddEUR. The 
output summary statistics are (a) MDDszEASeur (b) MDDszEUReas (c) SZmddEASeur (d) 
SZmddEUReas. The overall workflow is further visualized in Figure 1. The output summary 
statistics are defined as follows (a) MDDszEASeur - primary genetic architecture is MDD EAS, 
secondarily projected on by SZ, and EUR ancestry (b) MDDszEUReas - primary genetic 
architecture is MDD EUR, secondarily projected on by SZ, and EAS ancestry  (c) 
SZmddEASeur - primary genetic architecture is SZ EAS, secondarily projected on by MDD, and 
EUR ancestry (d) SZmddEUReas - primary genetic architecture is SZ EUR, secondarily 
projected on by SZ, and EAS ancestry  
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Independent SNPs, loci and gene positional mapping 
 

To identify independent GWAS loci joint clumping of all input and output summary 
statistics were carried out on MDD and SZ GWAS summary statistics for each ancestry 
respectively, as well as the four MTAG genome wide output indicated in the previous section. 
GWAS significant threshold of ​P ​< 5e-8 and LD threshold of R​2 ​< 0.1 were used to identify 
independent significant SNPs. To identify independent genomic loci, SNPs in the LD threshold 
of R​2 ​> 0.6 and with ​P < ​0.05 with the independent lead SNPs were extracted. Independent loci 
were defined based on the lower and upper SNP coordinates of the extracted SNPs. 
Independent genomic loci that were within 250 kb of each other were then merged into a single 
locus. LD clumping was carried out using the 1000 Genomes reference phase 3 v 5 reference 
panel ​(21)​ in PLINK 1.90.6. ​(22)​. Loci definitions were merged via BedTK ​(23)​. Downstream 
characterization of the GWAS loci was carried out via Functional Mapping and Annotation 
procedure (FUMA; ​(24)​). Gene positional mapping from the summary statistics were carried out 
based on ANNOVAR ​(25)​ annotations by specifying the maximum distance between SNPs and 
genes or based on functional consequences of SNPs on genes. The default threshold of 10kb 
was used. All FUMA output was harmonized using genomic loci definitions via multi-trait joint 
clumping procedures described above.  
 
eQTL mapping of Brain Tissue 
 

To identify genes that are jointly expressed in relation to depression and schizophrenia, 
we leverage on eQTL mapping of gene expression profiled in the various meta-analysis results. 
These are then consolidated and compared. The following eQTL databases were used for eQTL 
mapping: (i) GTEx v8 (​http://www.gtexportal.org/home/datasets​). FUMA contains all SNP-gene 
pairs of cis-eQTL with nominal P-value < 0.05 (including non-significant associations). 
Significant eQTLs are defined as FDR (gene q-value) ≤ 0.05. The gene FDR is pre-calculated 
by GTEx and every gene-tissue pair has a defined P-value threshold for eQTLs based on 
permutation. The following tissues were included, Amygdala (N=129), Anterior cingulate cortex 
(N=147), Caudate (N=194),  Cerebellar Hemisphere (N=175), Cerebellum (N=209), Cortex 
(N=205), Frontal Cortex (N=175), Hippocampus (N=165), Hypothalamus (N=170),  Nucleus 
accumbens (N=202), Putamen (N=170), Spinal cord cervical c-1 (N=126), Substantia nigra 
(N=114) (ii) PsychENCODE (http://resource.psychencode.org/). The available eQTLs were 
filtered based on an FDR <0.05 and an expression >0.1 FPKM in at least 10 samples. See 
Wang et al. 2018 for further details. Ensembl gene ID is used as provided in the original file. The 
signed statistics are betas (N=1387). (iii) CommonMind Consortium 
(https://www.synapse.org//#!Synapse:syn5585484). Both eQTLs with and without SVA are 
included. Available eQTLs from CMC are binned by FDR. Therefore, nominal P-value is not 
available (replaced with NA). FDR was binned into, <0.2, <0.1, <0.05 and <0.01. Trans eQTLs 
are also available for CMC data set (as a separated option from cis-eQTLs). Post-mortem brain 
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samples (Frontal Cortex) from 467 Caucasian individuals (209 with SZ, 206 controls and 52 AFF 
cases (iv) xQTLServer (Dorsolateral prefrontal cortex) (http://mostafavilab.stat.ubc.ca/xqtl/). 
Gene names were mapped to Ensembl ID (excluded genes which are not mapped to ENSG ID). 
Since alleles were not available in the original data, extracted from 1000G EUR ancestry based 
on chromosome coordinate. FDR was not provided in the original data source, but the FDR 
column was replaced with Bonferroni corrected p-value, as it was used in the original study 
(corrected for all tested SNP-gene pairs 60,456,556, N=494). (v) Braineac 
(http://www.braineac.org/). The data included all eQTLs with nominal P-value < 0.05. Since the 
tested allele was not provided in the original data source, minor alleles in 1000 genome phase 3 
are assigned as tested alleles. Signed statistics are t-statistics. eQTLs were identified for each 
of the following 10 brain regions and based on averaged expression across all of them, 
Cerebellar cortex, Frontal cortex, Hippocampus, Inferior olivary nucleus (sub-dissected from the 
medulla), Occipital cortex, Putamen (at the level of the anterior commissure), Substantia nigra, 
Temporal cortex, Thalamus (at the level of the lateral geniculate nucleus), Intralobular white 
matter. Expression data was obtained from 134 neuropathologically confirmed control 
individuals of European descent from the UK Brain Expression Consortium.  

 
MAGMA and GENE2FUNC gene-set analysis 
 

GENE2FUNC gene set analysis is part of the FUMA pipeline described earlier. To 
further characterize genes identified by eQTL analysis (described in the previous section), these 
genes were entered to the GENE2FUNC gene set analysis as exploratory analysis. MAGMA 
gene association tests and pathway analysis ​(26)​ were carried out for each of the MTAG 
results. 10,678 gene sets (curated gene sets: 4761, GO terms: 5917) from MsigDB v6.2 are 
used. Benjamini-Hochberg FDR correction was performed for all tested gene sets as part of the 
MAGMA pathway analysis. 
 
Within and between ancestry genetic correlation analysis 
 

Genetic correlation analyses were carried out in the quality controlled summary 
statistics. Cross-ancestry genetic correlations were carried out between EAS-MDD vs 
EUR-MDD; EAS-SZ vs EUR-SZ via POPCORN (​(20)​). Within ethnicity genetic correlation was 
carried out for EUR-MDD vs EUR-SZ; and EAS-MDD vs EAS-SZ via LD-score regression 
(LDSC;​(19)​). In either POPCORN or LDSC, SNPs were filtered based on HAPMAP3 variants 
(~1.2 million SNPs). We utilized default LD-scores computed for the HAPMAP3 SNPs computed 
on the 1000 genomes phase 3 reference panel (​(21)​). In addition, we computed liability adjusted 
heritability scores (h^2) for each of the traits. We also included two additional sets of summary 
statistics that involved careful curation of mood disorder phenotypes to further investigate how 
phenotype curation affects cross-trait comparisons of genetic architecture. Additionally, to 
investigate the effect of phenotypic definitions for MDD, we included GWAS summary statistics 
for recurrent MDD based on the ICD in the UK Biobank (MDD-UKB-EUR-Recur;​(14)​) and 
recurrent MDD based on the DSM-IV in females (MDD-PGC-EUR-Fem-Recur; ​(27)​).  
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Polygenic risk prediction of EAS schizophrenia 
 

We carried out polygenic risk score prediction on an independent schizophrenia 
case-control dataset of EAS ancestry. ​Patients with schizophrenia and non-psychiatry controls 
were recruited from multiple institutions (university hospitals and local hospitals) in Japan. The 
patients were diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders, 
Fourth Edition (DSM-IV) with consensus from at least 2 experienced psychiatrists. All patients 
were agreed to participate in the study and provided written informed consent. The study was 
approved by the institutional review boards of the Tokyo Metropolitan Institute of Medical 
Science and all affiliated institutions. Genotyping was carried out at The Broad Institute, DNA 
samples were genotyped on the Illumina Infinium Global Screening Array-24 v1.0 (GSA) 
BeadChip using standard reagents and HTS workflow procedures procedures for genotyping. 
GWAS quality control and imputation was carried out via RICOPILI using default parameters. 
Details of the methodology is reported elsewhere ​(17)​. ​PRS-CS ​(28)​, was utilized for polygenic 
prediction modeling. The method infers posterior effect sizes of SNPs of the four sets of MTAG 
outputs described earlier. PRS-CS utilizes a high-dimensional Bayesian regression framework, 
and by placing a continuous shrinkage (CS) prior on SNP effect sizes, robust to varying genetic 
architectures, provides substantial computational advantages, and enables multivariate 
modeling of local LD patterns. For the current analysis, we relied on pre-computed LD from the 
1000 Genomes Reference Phase 3 reference panel provided with the PRS-CS package. As 
each set of MTAG summary statistics is projected using both ancestry, which in turn is used for 
PRS modeling, we carried out shrinkage procedures based on both EAS and EUR ancestry 
references. Hence, there are two sets of PRS-CS results per prediction modeling analysis. We 
also carried out PRS-CS modeling where EUR ancestry GWAS summary statistics for MDD and 
SZ were used for PRS prediction modeling for each of the target databases, representing 
common practice in the literature where we use as reference points.  

 
Results 

 
Quality control and data harmonization overview 
 

We subjected input summary statistics to quality control procedures. After alignment with 
strand and allele in the 1000 Genomes phase 3 reference panel for the respective ancestries, 
as well as using quality control filters (See methods); 6,926,896 variants remained for EAS-MDD 
(N​CASE​ = 5,290; N​CONTROLS ​= 5,223), 7,835,068 variants remained for EUR-MDD  (N​CASE​ = 
286,534; N​CONTROLS ​= 640,856), 6,494,659 variants remained for EAS-SZ  (N​CASE​ = 14,004; 
N​CONTROLS ​= 16,757) and 7,398,635 variants remained for EUR-SZ  (N​CASE​ = 53,386; N​CONTROLS ​= 
77,258). These were used as input GWAS summary statistics for MTAG procedures. While we 
have added on the POPCORN module for genetic covariance estimation within the MTAG 
framework, standard data harmonization procedures inherent to the MTAG package remain 
unchanged. As such 5,999,616 variants remained after data harmonization between EAS-MDD 
and EAS-SZ;  6,891,308 variants remained after data harmonization between EUR-MDD and 
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EUR-SZ. In the second stage, where MTAGx was carried out, 5,034,195 variants remained for 
the primary mood disorder summary statistics, MTAGx-EAS-MDD and MTAGx-EUR-MDD; and 
5,207,548 variants remained for the primary schizophrenia summary statistics, MTAG-EAS-SZ 
and MTAGx-EUR-MDD. 
 
 
MTAGx : Loci Discovery 
 

MTAG allows for bivariate GWAS summary statistics to be projected on each other as 
vectors. Effectively allowing for GWAS summary statistics for a particular phenotype to retain its 
genetic architecture, especially if multiple phenotypes are used in MTAG. In the first stage of the 
analysis, we compared MTAG using the original methods-of-moments procedure for the 
estimation of genetic covariance using all variants in the summary statistics, against LDSC for 
the estimation of genetic covariance using HAPMAP3 SNPs. The premise as explained earlier 
is that most GWAS leverages common variant SNPs for genetic covariance (with pseudo rare 
variants contributing little to the final Rg). We expected that if sample sizes were large enough, 
method-of-moments estimation and LDSC will not yield too much of a difference. This was 
exactly what we found in the case of EUR-MDD and EUR-SZ. MTAG χ​2 ​using the 
methods-of-moments approach was 1.089; with the LDSC approach, MTAG χ​2​ was 1.086. We 
see the same trend for EAS-MDD and EUR-SZ (MTAG gmm χ​2​ = 1.777; MTAG LDSC χ​2​ = 
1.768) (See Figure 1). The preliminary results suggested that it is possible to employ external 
genetic correlation estimation procedures as extensions to the MTAG framework. As such, we 
extended the MTAG framework with LDSC and POPCORN, a cross ancestry genetic-correlation 
method modeled after LDSC. incorporating cross-ancestry genetic covariance estimation 
allowed cross-trait-cross-ancestry vector projections to be carried out. Figure 1 shows 
MTAGldsc and MTAGx being carried out in two stages. First, MDD and SZ are projected on 
each other within ancestry (Rg ​EAS-MDD-SZ​ = 0.373; ​ ​Rg ​EUR-MDD-SZ​ = 0.345), Thereafter, we carried 
out cross-ancestry MTAGx based on cross ancestry genetic correlations (Rg ​EAS-EUR-MDD​ = 0.542;  
Rg ​EAS-EUR--SZ​ = 0.955). Post MTAG χ​2​ were as follows: MTAGx-EAS-MDD χ​2​ = 1.142; 
MTAGx-EUR-MDD χ​2​= 1.871, MTAGx-EAS-SZ χ​2​ = 1.666; MTAGx-EUR-SZ χ​2​= 1.863 (See 
Figure 1). After joint LD clumping, there were 308 loci associated with MDD and SZ across 
ancestries. Due to the slight differences in clumping parameters and lower number of input 
SNPs, lead SNPs and loci boundaries differed slightly in the original input GWAS summary 
statistics. Nevertheless, these differences were small. We categorized loci that were a) not 
GWAS significant in the input summary statistics of the same phenotype vis-à-vis the primary 
MTAG phenotype output b) not GWAS significant in any of the input GWAS summary statistics. 
After harmonization across GWAS significant loci for each GWAS input summary statistics and 
output MTAG summary statistics, there were 98 independent loci in EUR-MDD, 5 loci for 
MTAGx-EAS-MDD, 121 loci for MTAGx-EUR-MDD, 8 independent loci for EAS-SZ, 171 
independent loci for EUR-SZ, 124 independent loci for MTAG-EAS-SZ, and 159 independent 
loci for MTAG-EUR-SZ. Of these, there were 40 loci in MTAGx-EUR-MDD, 2 loci in 
MTAGx-EAS-MDD that were novel to their input summary statistics; while there were 39 loci in 
MTAG-EAS-SZ and 47 loci in MTAG-EUR-SZ that were novel to their input summary statistics. 
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In all, 61 loci were novel (Supplementary Table 1, 2). Variants within the novel were ranked via 
their CADD score > 10, and SNP function. ​SOAT1 ​ and ​FOXO3 ​, harboring an exonic variant 
(rs13306731) and an UTR3 variant (rs111727905)  respectively were amongst the top novel 
signals derived from the MTAG analysis. ​SOAT1 ​ was previously associated with Insomnia ​(29) 
and ​FOXO3 ​ was previously reported to be associated with white matter microstructure in the 
corpus callosum  ​(30)​. It should also be note that of the 72 lead SNPs that the 61 loci harbored, 
6 of these SNPs (rs9975024, rs337718, rs6983764, rs7811417, rs950394, rs11790388), were 
also reported in previous EAS schizophrenia studies ​(13, 31)​ (Supplementary Table 2). Region 
plots for the 5 independent significant GWAS loci for MTAGx-EAS-MDD are shown in 
Supplementary Figures 1-5.  
 
Characterization of MTAGx eQTL signals 
 

To further characterize results emanating from MTAGx results we report eQTL signals 
that are in and around GWAS significant regions (See Supplementary Figure 6). 
Benjamini-Hochberg FDR correction for multiple testing was carried out on the results.  We 
focus on significantly expressed genes in various brain regions, particularly those that are 
enriched in EAS-MDD - as MTAGx enables the most significant enrichment for 
cross-trait-cross-ancestry summary statistics. genes that were unique to MTAGx-EAS-MDD as 
these would represent gene-sets associated with the more severe MDD phenotype in the EAS 
ancestry. 114 genes were significantly expressed in brain tissue, that underlie the 
MTAGx-EAS-MDD results. Importantly, eQTL analyses support earlier variant based 
annotations of ​SOAT1 ​and ​FOXO3 ​. Further examining the 114 genes, 54 (47%) of them 
overlapped the MTAGx-EUR-MDD results, 45 (49%) overlapped uniquely with schizophrenia 
results (from either ancestry) (See Figure 2). It is notable that several of these genes ​AS3MT​, 
CNNM2 ​, ​NT5C2 ​, ​ZNF804A​, are also known to be associated with bipolar disorders and mood 
disorder reported in earlier cross-disorder analysis ​(32, 33)​. To further understand the biological 
underpinnings of the expressed genes, hypergeometric tests were conducted of the 114 genes 
against protein coding genes. We selected only GO-gene-sets with the Molecular Signature 
database 6.2 to facilitate comparisons with subsequent MAGMA gene set analysis. The 
preliminary gene-set analysis here suggests that crucial neuronal regulatory pathways were 
implicated (See Figure 2). Strikingly, the 5 significant associations that underlie the results of 
MTAGx-EAS-MDD (Supplementary Figures 1-5)  show not only GWAS significant associations 
primarily related to the EAS-MDD but also appear to be in highly functional regions underscored 
by the existence of large swathes of eQTL signals and HiC annotations.  

 
MAGMA gene set analysis  
 

MAGMA gene set analysis was performed for each of the MTAGx results. Gene-set 
analysis was conducted based on the gene mapping Gene-set analysis was conducted based 
on gene mapping procedures on the MTAG output summary statistics. For each, the Molecular 
Signature Database (v6.2) was used as the annotations. Results were then combined across 
the MTAG output (Supplementary Table 4). Gene set analyses indicate several biological 
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systems being implicated, particularly synaptic, and neuronal pathways. Some of these have 
been previously reported in mood disorder and schizophrenia literature. Nonetheless, the 
GABA-ergic pathway emerging for the MTAGx-EUR-MDD results (MAGMA​Z ​= 4.32; 
MAGMA​P-FDR​ = 0.0021), appears to be in support of GABA dysfunction in mood disorders. We 
further examined genes that were part of the GABA-gene set to identify genes that are 
implicated in the pathway, and also searched eQTL results that might also be implicated as part 
of the GABA-signalling. The following genes have been implicated  ​DRD2 ​, ​GABRA4 ​, ​GABRA6 ​, 
GABRB2 ​, ​GABRG3 ​, ​NISCH​, ​PLCL1 ​, ​PLCL2 ​(See Figure 3, Supplementary Table 3, 4).  
 
Genetic correlation 
 

In the earlier section, we leverage cross ancestry correlations carried out within the 
POPCORN package with the MTAG framework to allow for cross-trait-cross-ancestry 
enrichment of GWAS association signals. In this section, we carry out POPCORN to investigate 
the SNP based heritability, as well as genetic correlations of the EAS-MDD data set with other 
similarly curated phenotypes reported in previous studies ​(11–14, 27)​. Genetic correlation 
analyses show that the observed heritability for schizophrenia in both ancestries are expectedly 
high (Rg ​EUR-SZ​ = 0.70; Rg ​EAS-SZ ​= 0.69). Our expectation that EAS-MDD being a more clinically 
driven phenotype is supported in that the heritability appears significantly higher than MDD 
phenotypes derived in large scale biobank studies, i.e. Rg ​EAS-MDD ​= 0.48 is comparable to 
females clinically diagnosed with MDD via DSM-criteria rather than minimally phenotyped MDD 
(See Figure 4A).  Moreover, though variant heritability matches recurrent MDD in females 
reported in a previous PGC cohort, we note that genetic correlation between these phenotypes 
continue to be modest compared to schizophrenia. These genetic correlation results further 
supported the rationale for an MTAGx analysis rather than standard inverse variance GWAS 
meta-analysis. The results also would inform subsequent polygenic risk prediction analysis 
reported in the subsequent section. 
 
Polygenic Risk Modelling  
 

Polygenic risk modelling was carried out to predict schizophrenia case-control status 
based on each MTAGx output. We first carried out PT analysis using both EUR-MDD and 
EUR-SZ summary statistics as base data for predicting into a target schizophrenia case-control 
dataset (See Figure 4B). PT results show an expected trend, with the polygenic signal 
saturating with more SNPs. Nevertheless, EUR-MDD though significant does not appear to be 
optimal as a predictor, with effect sizes much smaller than schizophrenia, which is expected. 
The intuition for the MTAGx output as base predictors into the same schizophrenia case-control 
data is that by enhancing GWAS associations representing the trait of interest, we would expect 
improvement in polygenic risk score prediction. This was exactly the case. We found that the 
MTAGx-EUR-MDD based statistics improved by 2.19 times in its prediction of case-control 
status, while MTAGx-EAS-MDD showed the most dramatic improvement in polygenic risk 
prediction by 6.59 times. Both MTAGx EAS and EUR SZ improved by 1.17 and 1.12 times 
compared to EUR-SZ only prediction which is not unexpected. In addition, we carried polygenic 
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risk prediction modelling using PRS-CS. The results of PRS-CS largely agreed with results of 
PT polygenic risk modelling. However, it is notable that in some cases PRS-CS showed better 
performance for PRS prediction when the reference panel is tuned to the target sample rather 
than the MTAGx output.  
 

 
 

Discussion  
 
Previous reports of genome-wide association for MDD have yielded evidence that mood 
disorder like schizophrenia is highly polygenic, and implicates brain and neuronal level 
biological underpinnings. More recently, evidence has also emerged that unlike schizophrenia, 
where observed SNP heritability is sufficiently high, and that phenotype ascertainment is 
relatively uniformed; phenotyping in MDD tends to have an influence on the observed genetic 
effects. It is apparent, but not surprising, that more severe recurrent MDD comprises higher 
genetic loading compared to less rigorous phenotyping procedures e.g. self-reports existent in 
large-scale biobanks. Amidst calls for greater diversity and inclusion of other ancestries within 
studies of psychiatric genomics, our group has initiated the largest cross-ancestry research 
efforts in the Han Chinese ancestry for schizophrenia. Nevertheless, there continues to be 
opportunities to expand efforts for MDD. The CONVERGE data, previously presented, yields a 
unique opportunity to study the effects of phenotype ascertainment and cross-ancestry work in 
genomics in tandem.  
 

As prior reports have discussed, phenotype ascertainment in the CONVERGE data had 
been significantly more rigorous for MDD than other sites that have reported large-scale GWAS 
evidence. Arguably, phenotyping procedures in the CONVERGE data could be thought of as 
“optimizing” the sample for genetic discovery given the sample inclusion criteria for recurrent 
mood disorders, and in predominantly females. This appears very evident in the genetic 
correlations and heritability comparisons reported in the earlier sections. Though with modest 
sample sizes, we observe that the CONVERGE (i.e. EAS-MDD) show a much higher mean SNP 
heritability as compared to a large-scale GWAS of MDD close to a million individuals. Moreover, 
when compared to a more carefully ascertained sample of EUR ancestry, matching that of the 
CONVERGE data, we observe similar SNP heritability; further supporting the notion that the 
phenotype reported with the CONVERGE dataset is likely to be much more genetically loaded 
clinical phenotype. As such, we sought to further leverage existing cross-ancestry data for 
schizophrenia in an attempt to enrich GWAS association signals within the CONVERGE data 
using an extension of MTAG . It should be noted that we selected MTAG as a framework for 
cross-ancestry-cross-trait enrichment of GWAS association signals because MTAG tends to 
preserve the existing genetic architecture of the input data. This is compared to other methods 
such as the Hans and Eskin (xx) Random-Effects approach ​(34)​, or more recently PLEIO ​(35) 
that uses a similar approach but combines data similar to GWAS meta-analysis. In the case of 
the latter two approaches, cross-trait enrichment becomes challenging, as the implicit 
assumption of these cross-trait methods is elucidating pleiotropy, but combining cross-trait 
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GWAS summary statistics inadvertently results in a “latent-trait” that is either equally weighted, 
or driven by the trait with larger samples/statistical power. 
 
By “borrowing” statistical power, we were able to demonstrate that MTAGx is an effective tool 
for loci discovery. Of the 308 loci elucidated from the analysis 61 of them were not reported in 
the original input summary statistics. 6 of the 72 SNPs harbored within the 61 loci, were 
reported in large-scale cross-ancestry GWAS of schizophrenia. This indicates that MTAGx 
methodology not only captures what tends to be reported via transethnic meta-analysis, it 
facilitates loci discovery to a greater extent leveraging precisely on the cross-trait-cross ancestry 
approach. The primary objective of enhancing the genetic architecture of EAS-MDD from the 
CONVERGE data, was met. Importantly, 5 loci were identified and of those 5, two, were novel to 
MDD. We also acknowledge however that some of the loci were also shared with schizophrenia. 
What appears noteworthy is at least one of the loci within the MTAGx-EAS-MDD significant loci 
is a known Bipolar disorder genomic region (i.e. ​CNNM2, AS3MT​). While further work is 
necessary to further understand each of the 5 regions identified, it is possible that enhancing the 
genetic architecture of more rigorously defined mood disorder phenotype, via MTAGx with 
schizophrenia, and more generalized mood disorder phenotype, we were able to index loci that 
tends have greater biological sequelae.  
 

We further attempted to understand the biological underpinnings of genes identified in 
brain expressed eQTL as well as genes that are mapped more broadly from the MTAGx results. 
We identified several neuronal regulation pathways based on genes with significant eQTL 
signals in MTAGx-EAS-MDD. These included (list pathways). The results are largely consistent 
with what is observed with the MAGMA gene set analysis. Although, it is necessary to point out 
that MTAGx-EAS-MDD was not powered enough for MAGMA gene-set analysis. Results from 
the gene-set analysis are mainly driven by the other MTAGx results. The gene-sets that 
emerged as significant for MTAGx-EUR-SZ, MTAGx-SZ-EAS and MTAGx-SZ-EUR were largely 
consistent (list pathways). Worth highlighting are the results from MTAGx-EUR-MDD where we 
observed that GABA-ergic signalling emerged as a significant gene-set. This is not trivial given 
that previous studies did not find this gene-set to be significant. It is likely that the GABA-ergic 
signaling pathway is emerging due to the increased power from the EAS and schizophrenia 
datasets included in the MTAGx analysis. Though not surviving multiple corrections in the 
MTAGx-EAS-MDD gene-set analysis, we note that it shows a trend result. The results here 
support GABA dysfunction hypothesis in mood disorders. It could also be likely that the GABA 
signalling gene-set is elucidated due to enrichment from the more clinically severe phenotype 
ascertained as part of the CONVERGE data. Examining genes that are driving the gene-set 
analysis results we found that genes coding for GABA-alpha subunit 1, GABA-beta subunit 2 
and GABA-gamma subunit 3 were significant. These subunits are part of GABA-A-receptors 
that tend to be activated by chloride ion, regulating GABA signalling across neurons. Other 
eQTL results for MTAGx-EUR-MDD also implicated genes encoding the Phospholipase 
C-related but catalytically inactive protein and nonadrenergic imidazoline-1 receptor protein. 
Both genes ​PLCL1 ​and ​NISCH ​are part of the GABA-ergic signalling pathway but play more 
peripheral regulatory roles such as membrane trafficking, and endocytosis for GABA. It is, 
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however, necessary in subsequent work to establish the exact variant that is directly causal to 
these genes, its downstream effects on the pathways.  
 

Lastly, we investigated polygenic prediction into an independent schizophrenia dataset. 
First, we carried out polygenic prediction modelling using the P-thresholding approach based on 
the large GWASs of EUR-MDD and EUR-SZ, to establish a baseline that we could compare 
against. This represented the standard polygenic risk prediction analysis that is expected in 
most research contexts. Next, we used each of the MTAGx outputs as base data for prediction. 
A crucial aspect is that sample size is not considered an issue. The reason was that MTAGx did 
not significantly increase the sample sizes of the traits that we were most interested in 
MTAGx-EAS-MDD and MTAGx-EUR-MDD. We expected the MTAGx schizophrenia base to 
perform well, based on the baseline PT modelling results, and that was supported by the 
subsequent MTAGx results - however, this did not seem surprising, given that the target data is 
in fact a schizophrenia case-control dataset. However, there was a significant improvement 
when we applied the MTAGx MDD datasets as the base predictors. Despite being less powered 
based on estimated sample sizes in the MTAGx-EUR-MDD results, there was an improvement 
in polygenic prediction. The improvement in prediction is much more pronounced with the 
MTAGx-EAS-MDD which is potentially driven by the more rigorous phenotyping in the 
CONVERGE data. We also carried out PRS-CS which purports to improve prediction accuracy 
via Bayesian methods. What appears to be notable from PRS-CS results is that for MTAGx 
results, it is more preferable for PRS-CS to be tuned according to the ancestry of the target 
data. Further work is necessary to clarify this curious phenomenon.  
 

Concluding Remarks 
 

The results reported in here represents the first data freeze of ongoing analysis that the 
authors wish to share with the community. Preliminary findings suggest that MTAGx is effective 
in enhancing the original genetic architecture of input data. This allows improvement in loci 
discovery, which improves downstream eQTL and gene set analysis. Importantly, MTAGx 
serves to improve polygenic risk prediction that allows larger, more powered EUR based GWAS 
to be used for enhancing smaller more modest EAS results. Additionally, it would also allow for 
traits that have higher SNP heritability to be exploited for polygenic risk prediction analysis.  
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Figure Captions  
 
Figure 1. Study design and results for 2-stage enrichment using MTAGldsc and MTAGx.  
Panel A: MTAGldsc for EAS and EUR ancestry respectively. EAS ancestry MTAG is in two 
shades of green. Darker green represents EAS-MDD, and the lighter shade of green represents 
EUR-SZ. Darker shade of orange represents EUR-SZ and lighter shade of orange represents 
EAS-SZ. MTAGldsc with larger “bubble” represents the primary trait of interest. In the second 
stage of the analysis, MTAGx was carried out. The largest “bubble” represents the primary trait 
enriched/projected on by the other traits either from the same ancestry or the alternative 
ancestry. Panel B: Manhattan plots representing MTAGx outputs. On the top left, 
MTAGx-EAS-MDD, top right, MTAGx-EUR-MDD. On the bottom left, MTAGx-EAS-SZ and on 
the bottom right, MTAGx-EUR-SZ.  
 
Figure 2. eQTL significant genes for MTAGx results and Hypergeometric Gene-Set 
analysis 
Panel A: 114 significant expressed genes in brain tissue represented in MTAGx-EAS-MDD. 
Venn diagram shows MTAGx output for EAS-MDD, EUR-MDD, EAS-SZ, and EUR-SZ. Panel B: 
Hypergeometric gene-set analysis for 114 gene against GO gene ontologies for Biological, 
Cellular, and Molecular functions.  
 
Figure 3. MAGMA gene-set analysis for MTAGx results 
Panel A: Significant MAGMA gene-set results. In darker blue, is the MTAGx-MDD-EAS results 
after Benjamini-Hochberg multiple testing correction. Other colored bars represent gene-set 
analysis results from each of the MTAGx outputs. Panel B. GABA-ergic synapse/signalling 
gene-set with supporting gene-based results either from gene-mapping of MTAGx or eQTL 
results. ​Note ​: Error bars represent 95% Confidence interval.  
 
Figure 4. Transethnic Genetic Correlations and Polygenic Risk Score modelling 
Panel A: Left-hand panel, are the SNP heritability for each trait. Right-hand panel, genetic 
correlations obtained via POPCORN. Panel B: Left-hand panel, standard P​T​ genetic risk score 
modelling using EUR-MDD and EUR-SCZ as base data for prediction into independent GWAS 
EAS schizophrenia case-control cohort. Right-hand panel, MTAGx results used as base data for 
genetic risk prediction into the same  GWAS EAS schizophrenia case-control cohort.   
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Supplementary Materials 
 

Supplementary Tables  
 
Supplementary Table 1: Significant Genomic Loci for each dataset, MDD-eas-input; 
MDD-eur-input, SCZ-eas-input; SCZ-eur-inpu; MTAG-MDD-EAS-output; 
MTAG-MDD-EUR-output; MTAG-SCZ-EAS-output; MTAG-SCZ-EUR-output 
 
Supplementary Table 2: Independent significant GWAS loci for each dataset, MDD-eas-input; 
MDD-eur-input, SCZ-eas-input; SCZ-eur-inpu; MTAG-MDD-EAS-output; 
MTAG-MDD-EUR-output; MTAG-SCZ-EAS-output; MTAG-SCZ-EUR-output. ​Note: ​Novel Loci 
reported in second tab, VEP annotations reported in third tab.  
 
Supplementary Table 3: eQTL gene expression information for MTAGx output for mddeas, 
mddeur, sczeas and sczeur. BrainEAC, GTEx8, CMC, PsychEncode, eQTLCatalogue, xQTL 
are reported in this supplementary table.  
 
Supplementary Table 4: MAGMA gene based analysis for MTAG summary statistics. MAGMA 
gene set analysis results for MTAG-MDD-EAS, MTAG-MDD-EUR, MTAG-SCZ-EAS, 
MTAG-SCZ-EUR.  
 
Supplementary Figures  
 
Supplementary Figures 1-5: Region plots for GWAS significant signals for MTAGx-EAS-MDD.  
 
Supplementary Figure 6: Mixed manhattan plot for eQTL signals.  Panel A: BrainEAC; Panel B: 
GTEx8; Panel C: PsychENCODE.  
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