
 1 

Plasma Metabolomic Profiling in Patients with Rheumatoid Arthritis Identifies Biochemical Features 1 

Predictive of Quantitative Disease Activity 2 

 3 

Benjamin Hur1,2, Vinod K. Gupta1,2, Harvey Huang3, Kerry A. Wright4, Kenneth J. Warrington4, Veena 4 

Taneja5, John M. Davis III4,*, and Jaeyun Sung1,2,4,*, † 5 

 6 
1Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA 7 
2Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA 8 
3Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA 9 
4Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA 10 
5Department of Immunology, Mayo Clinic, Rochester, MN, USA 11 
*Contributed equally as co-senior authors 12 
†Corresponding author: Sung.Jaeyun@mayo.edu 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 25, 2021. ; https://doi.org/10.1101/2020.09.13.20193664doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:Sung.Jaeyun@mayo.edu
https://doi.org/10.1101/2020.09.13.20193664
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 44 

Background: Rheumatoid arthritis (RA) is a chronic, autoimmune disorder characterized by joint 45 

inflammation and pain. In patients with RA, metabolomic approaches, i.e., high-throughput profiling of small-46 

molecule metabolites, on plasma or serum has thus far enabled the discovery of biomarkers for clinical 47 

subgroups, risk factors, and predictors of treatment response. Despite these recent advancements, the 48 

identification of blood metabolites that reflect quantitative disease activity remains an important challenge in 49 

precision medicine for RA. Herein, we use global plasma metabolomic profiling analyses to detect metabolites 50 

associated with, and predictive of, quantitative disease activity in patients with RA. 51 

 52 

Methods: Ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was 53 

performed on a discovery cohort consisting of 128 plasma samples from 64 RA patients, and on a validation 54 

cohort of 12 samples from 12 patients. The resulting metabolomic profiles were analyzed with two different 55 

strategies to find metabolites associated with RA disease activity defined by the Disease Activity Score-28 56 

using C-reactive protein (DAS28-CRP). More specifically, mixed-effects regression models were used to 57 

identify metabolites differentially abundant between two disease activity groups (‘lower’, DAS28-CRP ≤ 3.2; 58 

and ‘higher’, DAS28-CRP > 3.2); and to identify metabolites significantly associated with DAS28-CRP scores. 59 

A generalized linear model (GLM) was then constructed for estimating DAS28-CRP using plasma metabolite 60 

abundances. Finally, for associating metabolites with CRP (an indicator of inflammation), metabolites 61 

differentially abundant between two patient groups (‘low-CRP’, CRP ≤ 3.0 mg/L; ‘high-CRP’, CRP > 3.0 62 

mg/L) were investigated. 63 

  64 

Results: We identified 33 metabolites differentially abundant between lower and higher disease activity groups 65 

(P < 0.05). Additionally, we identified 51 metabolites associated with DAS28-CRP (P < 0.05). A GLM based 66 

upon these 51 metabolites resulted in higher prediction accuracy (mean absolute error [MAE]±SD: 1.51±1.77) 67 

compared to a GLM without feature selection (MAE±SD: 2.02±2.21). The predictive value of this feature set 68 

was further demonstrated on a validation cohort of twelve plasma samples, wherein we observed a stronger 69 

correlation between predicted vs. actual DAS28-CRP (with feature selection: Spearman’s ρ = 0.69, 95% CI: 70 

[0.18, 0.90]; without feature selection: Spearman’s ρ = 0.18, 95% CI: [-0.44, 0.68]). Lastly, among all 71 

identified metabolites, the abundances of eight were significantly associated with CRP patient groups while 72 

controlling for potential confounders (P < 0.05). 73 

 74 

Conclusions: We demonstrate for the first time the prediction of quantitative disease activity in RA using 75 

plasma metabolomes. The metabolites identified herein provide insight into circulating pro-/anti-76 

inflammatory metabolic signatures that reflect disease activity and inflammatory status in RA patients. 77 

 78 

Keywords: rheumatoid arthritis, metabolomics, plasma metabolites, DAS28-CRP, biomarker, machine-79 

learning, inflammation 80 
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 3 

Background 88 

 89 

Rheumatoid arthritis (RA) is a chronic, autoimmune inflammatory disease primarily affecting the small 90 

diarthrodial joints and other organ systems [1-4] that can eventually lead to bone/cartilage erosion, joint 91 

deformity, loss in mobility, and organ damage [5]. Known to be associated with a variety of factors, such as 92 

genetic susceptibility [6], age [7], sex [8], smoking status [9], and dietary habits [10], RA is diagnosed in 93 

nearly 5 per 1000 adults worldwide, and women are 2 to 3 times more likely to develop RA than men [5]. In 94 

addition, as is the case with many complex and progressive disorders, patients with RA exhibit vast 95 

heterogeneity in clinical symptoms (e.g., joint inflammation, swelling, pain, stiffness) [11], and in responses 96 

to methotrexate and other disease-modifying anti-rheumatic drugs (DMARDs) [12]. Furthermore, immune 97 

cells (mainly, B-cells, T-cells, and macrophages) and cytokines are known to be implicated in RA 98 

pathogenesis [13]. For example, Haringman et al. observed that the abundance of macrophages in synovial 99 

tissue was positively correlated with disease activity [14], and Chung et al. identified significant differences 100 

in levels of multiple cytokines (e.g., IL-6, IL-11, LIF) between RA and healthy controls [15]. In this regard, 101 

further understanding of the pathophysiological mechanisms that drive either progression or remission in RA 102 

disease activity would be important for identifying prognostic factors and developing more effective 103 

treatments [5, 16]. 104 

Having practical measures of disease activity is essential for determining the course of RA treatment and 105 

for monitoring patient response [3]. To this end, several studies have suggested strategies to quantify (or 106 

categorize) RA disease activity by using clinical and inflammatory core components, which include, but are 107 

not limited to, the number of tender and swollen joints, erythrocyte sedimentation rate (ESR), serum C-reactive 108 

protein (CRP) levels, and patients’ pain levels [17-20]. Among these various strategies, the modified Disease 109 

Activity Score that considers 28 joints (DAS28) with either ESR (DAS28-ESR) or CRP (DAS28-CRP) is 110 

currently one of the most well-recognized and recommended measures in RA [20]. 111 

An emerging area of RA research is in using high-throughput metabolomic profiling approaches, which 112 

comprehensively measure all small-molecule biochemicals in a biological specimen (e.g., plasma, serum, 113 

urine, synovial fluid, etc.) to enable biomarker discovery and novel insights into the biochemical processes 114 

governing disease pathophysiology [11, 21-23]. In particular, recent studies have demonstrated the promise 115 

of using such metabolomic technologies on patient-derived biospecimens for classifying patients with RA 116 

according to their disease activity categories [21, 24, 25], and for identifying metabolic signatures predictive 117 

of treatment response [26-29]. For instance, Teitsma et al. used metabolomic profiling in serum samples from 118 

early RA patients to identify metabolites and metabolic pathways that were significantly associated with 119 

sustained, drug-free remission (DAS28 < 2.6) after tocilizumab- or methotrexate-based therapy [24]. Likewise, 120 

Sasaki et al. identified 15 and 20 metabolites in plasma and urine, respectively, that were differentially 121 

abundant between active RA (DAS28-ESR ≥ 3.2) and inactive RA (DAS28-ESR < 3.2) [25]. These findings 122 

suggest that a wider application of global metabolomic profiling—coupled with advanced analytics [30]—can 123 

lead to the discovery of novel and predictive biomarkers that complement current standard laboratory tests for 124 

assessing disease activity in RA. 125 

To date, a global metabolomic profiling analysis to demonstrate the predictive value of blood 126 

biochemicals in estimating disease activity scores for patients with RA, has remained elusive. In this study, 127 

on 128 plasma metabolomic profiles from 64 RA patients, we utilize a multi-approach analysis to uncover 128 

metabolites that reflect and predict RA disease activity. First, we identify metabolites that stratify patients of 129 

‘higher’ (DAS28-CRP ≥ 3.2) and ‘lower’ (DAS28-CRP < 3.2) disease activity groups. Next, we pinpoint 130 
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specific metabolites that significantly associate with DAS28-CRP. Interestingly, a few of the metabolites 131 

identified through these two approaches were able to differentiate between two groups of patients divided 132 

according to their C-reactive protein (CRP) levels in blood (‘high-CRP’, CRP > 3.0 mg/L; ‘low-CRP’, CRP 133 

≤ 3.0 mg/L); these metabolites may possibly reflect metabolic perturbations affected by worsening 134 

inflammatory activity. Finally, we utilize a machine-learning technique to predict DAS28-CRP with plasma 135 

metabolite abundances. Importantly, we find that the feature selection step led to improved performance in 136 

predicting quantitative disease activity, and this translated reasonably well to a validation cohort. Taken 137 

together, our findings described herein support a key role for high-throughput metabolomic technologies in 138 

identifying blood-borne metabolic signatures of RA disease activity, and lay the groundwork for monitoring 139 

disease progression and systemic inflammation using blood samples alone. 140 

 141 

Materials and Methods 142 

 143 

Study Population, Subject Enrollment, Sample Collection, and Demographic Characteristics 144 

The study population consisted of consecutive patients with RA attending the outpatient practice of the 145 

Division of Rheumatology at Mayo Clinic in Rochester, Minnesota. Eligibility required patients to be adults 146 

18 years of age or older with a clinical diagnosis of RA by a rheumatologist, fulfilling the American College 147 

of Rheumatology/European League Against Rheumatism 2010 revised classification criteria for RA [2]. 148 

Patients were excluded if they did not comprehend English, were unable to provide written informed consent, 149 

or were members of a vulnerable population (e.g., incarcerated subjects). This led to a total of 76 patients 150 

fulfilling the eligibility criteria, who were partitioned into two groups (Table 1): for the discovery cohort of 151 

this study, 64 patients with available blood samples from at least two outpatient visits 6–12 months apart were 152 

included (128 total samples); for the validation cohort, 12 patients whose blood samples were available from 153 

only a single outpatient visit were included (12 total samples). Demographic and clinical data, including the 154 

numbers of tender and swollen joints, patient and evaluator global assessments, CRP (mg/L), body mass index 155 

(BMI, kg/m2), smoking status, and results for rheumatoid factor (RF, IU/mL) and anti-cyclic citrullinated 156 

peptide antibodies (anti-CCP), were collected from the electronic medical records. The patient samples (140 157 

in total) in the study had established disease with mean age 63.54 (range: 32–86), and 69.7% (53 of 76) were 158 

female. Disease activity varied from remission to high disease activity, with a DAS28-CRP mean of 3.0 (range: 159 

1.2–7.0). See Additional file 1 for distribution of DAS28-CRPs corresponding to all study participants. 160 

 161 

Table 1. Demographic characteristics of study participants. 162 

 Discovery Cohort Validation Cohort 

Number of RA patients/samples 64/128 12/12 

Sex of RA patients (female/male) 44/20 9/3 

 Visit 1 Visit 2 - 

DAS28-CRP 

Mean ± SD 

Range (min–max) 

 

3.1±1.3 

1.5–7.0 

 

3.0±1.4 

1.2–6.6 

 

2.4±1.3 

1.7–5.9 

Age (years) 

Mean ± SD 

Range (min–max) 

 

62.7±10.5 

32–85 

 

63.5±10.6 

33–86 

 

67.8±10.6 

54–84 

BMI 

Mean ± SD 

Range (min–max) 

 

30.6±5.7 

22.4–45.3 

 

31.1±6.2 

22.8–47.8 

 

27.0±4.1 

19.0–33.3 
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N/A (n) 6 6 2 

Smoking History (n) 

Current (active within 3 months) 

Former 

Never 

N/A 

 

7 

31 

25 

1 

 

5 

32 

27 

0  

 

1 

3 

7 

1 

CRP (mg/L) 

Mean ± SD 

Range (min–max) 

 

8.91±16.8 

0.29–113 

 

8.0±12.7 

0.7–84 

 

11.5±21.7 

1.0–77.1 

RF (n) 

Positive 

Negative 

N/A 

 

36 

15 

13 

 

- 

- 

- 

 

6 

2 

4 

Anti-CCP (n) 

Positive 

Negative 

N/A 

 

44 

13 

7 

 

- 

- 

- 

 

5 

1 

6 

Treatment  

Methotrexate use (n, %) 

Methotrexate dose (mg/week) 

median 

IQR [Q1, Q3] 

Prednisone use (n, %) 

Prednisone dose (mg/day) 

median 

IQR 

TNFi-bDMARDs𝛿 (n, %) 
non-TNFi-bDMARDs (n, %) 

non-methotrexate csDMARDs (n, %) 

 

48 (75.0%) 

 

20.0 

[15.0, 25.0] 

29 (45.3%) 

 

5.0 

[5.0, 7.0] 

23 (35.9%) 

6 (9.4%) 

20 (31.2%) 

 

49 (76.6%) 

 

20.0 

[15.0, 25.0] 

28 (43.8%) 

 

5.0 

[5.0, 5.0] 

21 (32.8%) 

7 (10.9%) 

27 (42.2%) 

 

7 (58.3%) 

 

22.5 

[17.5,25.0] 

4 (33.3%) 

 

5.0 

[5.0, 5.0] 

3 (25.0%) 

1 (8.3%) 

1 (8.3%) 
Training group. Plasma samples were obtained from patients at two different time-points; Test group. Plasma samples were 163 

obtained from patients at a single time-point; Reported only for the first visit; 𝛿adalimumab, certolizumab, etanercept, and 164 

infliximab; abatacept, rituximab, and tocilizumab; azathioprine, hydroxychloroquine, leflunomide, and sulfasalazine; N/A, Not 165 
available; RF, rheumatoid factor; Anti-CCP, anti-cyclic citrullinated peptide antibodies; IQR, inter-quartile range; bDMARDs, 166 
biologic disease-modifying anti-rheumatic drugs; csDMARDs, conventional synthetic disease-modifying anti-rheumatic drugs; an 167 
expanded table with further information on demographic and clinical characteristics is provided in Additional file 2 and Additional 168 
file 3. 169 

 170 

Metabolomic Profiling 171 

Untargeted metabolomic profiling of plasma samples from both discovery and validation cohorts through 172 

ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was performed 173 

by Metabolon Inc. (Durham, NC, USA)’s Discovery HD4™ platform. Detailed descriptions of all methods 174 

regarding metabolomic profiling are available in Additional file 4. 175 

 176 

Analysis Workflow 177 

Figure 1 provides a summary of the analytic strategy used on the 128 plasma samples of the discovery cohort 178 

to identify associations between metabolites and RA disease activity. The analysis workflow consists of two 179 

complementary approaches: Using mixed-effects logistic regression, the first approach identifies metabolites 180 

that are differentially abundant between higher and lower disease activity groups, which were determined by 181 

DAS28-CRP scores [18-20, 31] (Fig. 1A); the second approach uses mixed-effects linear regression to model 182 
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 6 

the relationship between DAS28-CRP and metabolite abundances, allowing the detection of key biochemical 183 

features that associate with quantitative disease activity (Fig. 1B). To test the predictive accuracy of these 184 

selected features when incorporated into a generalized linear model, an additional cohort of twelve plasma 185 

metabolomic profiles (from twelve RA patients obtained at single time-points) was collected as an 186 

independent validation set. 187 

 188 

 189 
 190 
Figure 1. A multi-approach discovery strategy to identify metabolites indicative of RA disease activity. (A) Differentially 191 
abundant metabolites between higher and lower disease activity groups were identified using a mixed-effects logistic regression 192 
model adjusted for patient age and sex, as well as for Patient ID to control for having multiple samples from the same patient. (B) 193 
A selection scheme to identify metabolites associated with DAS28-CRP. Metabolites were selected with mixed-effects linear 194 
regression. To further demonstrate their association with DAS28-CRP, these metabolites were used to construct a generalized linear 195 
model for predicting DAS28-CRP. Predictive performance of the model was evaluated on the discovery cohort (using a cross-196 
validation technique) and on a validation cohort. 197 

 198 

Pre-processing of Metabolomic Profiling Data 199 

Statistical analyses on untargeted metabolomic data were performed using scaled imputed data provided by 200 

Metabolon, Inc. Briefly, the raw data were normalized to account for inter-day variation, which is a result of 201 

UPLC-MS/MS runs over multiple days, then the peak intensities were rescaled to set each metabolite’s median 202 

equal to 1. Missing values were then imputed with the minimum observed value of the metabolite across all 203 

samples, finally yielding the scaled imputed data. In addition, metabolites with missing values in over 20% of 204 

the entire samples were removed, resulting in 686 metabolites remaining for further analysis. R (v3.6.1), lme4 205 

package (v1.1.21) [32], Python3 (v3.7.5), and sklearn (v0.22.2) were used to perform all data pre-processing 206 

and statistical analyses. 207 

 208 
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 7 

Delineation of RA Disease Activity Groups 209 

Following previous reports [18-20, 31], samples from RA patients were divided into two disease activity 210 

groups based upon DAS28-CRP: ‘lower’ (DAS28-CRP ≤ 3.2, n = 76) and ‘higher’ (DAS28-CRP > 3.2, n = 211 

52). These pre-defined two disease activity groups were used as the nominal response variable in a mixed-212 

effects logistic regression model to identify differentially abundant metabolites between the two groups. 213 

 214 

Identification of Differentially Abundant Metabolites While Controlling for Confounding Factors 215 

The following patient characteristics were examined to identify potential confounding factors in the 216 

association between plasma metabolites and disease activity (i.e., higher or lower disease activity): age, sex, 217 

BMI, smoking history, and treatment use (for methotrexate, prednisone, non-methotrexate csDMARDs, TNFi-218 

bDMARDs, and non-TNFi-bDMARDS). Based upon the Fisher’s exact test, patient age (age ≤ 60, age > 60) 219 

and sex (male, female) were observed to have statistically significant associations with the two disease activity 220 

groups; the P-value for age and sex was P = 0.01 (odds ratio [OR] = 2.74, 95% confidence interval [CI] = 221 

1.15–6.73) and P = 0.02 (OR = 0.37, 95% CI = 0.14–0.88), respectively. On the other hand, no statistically 222 

significant associations were observed between these two disease activity groups and BMI (BMI ≤ 30, BMI 223 

> 30; P = 0.32), disease duration (duration ≤ 9 years, duration > 9 years; P = 0.14), smoking history (smoked 224 

at least once, never smoked; P = 0.36), or treatment use (user, non-user) for methotrexate (P = 0.83), 225 

prednisone (P = 0.58), TNFi-bDMARDs, i.e., adalimumab, certolizumab, etanercept, and infliximab (P = 226 

0.18), non-TNFi-bDMARDs, i.e., abatacept, rituximab, and tocilizumab (P = 0.76), or other non-methotrexate 227 

csDMARDs, i.e., azathioprine, hydroxychloroquine, leflunomide, and sulfasalazine (P = 0.71). In addition, 228 

no significant changes in treatment use were observed between the two visits; P-values of the associations 229 

between treatment use and time-point based upon McNemar’s Chi-squared test for paired nominal data were 230 

as follows: methotrexate (P = 1), prednisone (P = 1), TNFi-bDMARDs (P = 0.75), non-TNFi-bDMARDs (P 231 

= 1), and non-methotrexate csDMARDs (P = 0.07). Therefore, the mixed-effects logistic regression model 232 

was adjusted for age and sex as fixed effects, but not for all other aforementioned covariates. In accordance 233 

with these results, age and sex have been previously reported to be connected to RA disease activity [33-35]. 234 

Herein, patient ID was considered as a random effect in the model to account for intra-subject variance due to 235 

having repeated measurements from a single patient. By controlling for patient ID (which are unique to each 236 

patient) as a random effect, we are acknowledging the non-independence in our data, that is, sampling that has 237 

taken place from within a patient. Leveraging multiple samples from the same patient allows us to compensate 238 

for the small number of samples in higher disease activity (DAS28-CRP > 3.2) in each visit (visit 1 and visit 239 

2 having 25 and 27 samples, respectively) by maximizing the degree of freedom for the quantitative disease 240 

activity measure, and thereby to boost statistical power. Importantly, no significant difference was observed 241 

in DAS28-CRP between visit 1 and visit 2 (P = 0.98, Wilcoxon signed-rank test). Metabolites whose 242 

corresponding coefficients of the regression model were of P-value < 0.05 were considered as differentially 243 

abundant, that is, having a statistically significant association with disease activity group. 244 

 245 

Selection of Metabolites Associated with DAS28-CRP 246 

Selection of metabolites associated with DAS28-CRP was performed with a mixed-effects linear regression 247 

model (DAS28-CRP as the continuous response variable), which controls for fixed effects (scaled metabolite 248 

abundances, patients’ age and sex) and for random effects (patient ID). Satterthwaite’s degrees of freedom 249 
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method supported by lmerTest (v3.1.1) [36] was applied to test for the statistical significance (P-value) of 250 

associations between metabolites and DAS28-CRP. P-values were retrieved from the corresponding 251 

regression coefficients of the predictor variables. 252 

 253 

Evaluation of Predictive Performance of DAS28-CRP-associated Metabolites 254 

A generalized linear model (GLM) was used to estimate DAS28-CRP scores using the aforementioned 255 

significantly associated metabolites as predictor variables. Predictive performance of the parameterized model 256 

was evaluated by two different techniques: First, a modified leave-one-out cross-validation approach was 257 

applied to the 128 samples of the training group (discovery cohort). More specifically, in each cross-validation 258 

loop, both samples from the same patient were allocated as an internal validation set, while all remaining 259 

samples (126 samples from 63 patients) were used to select metabolites significantly associated with DAS28-260 

CRP (P < 0.05). These selected biochemical features were then included in a GLM for predicting DAS28-261 

CRP scores of the remaining two samples (of the internal validation group) from their metabolite abundances. 262 

The second approach considers testing a GLM, which was composed of the DAS28-CRP-associated 263 

metabolites identified from all 128 samples of the training group, on the independent validation group of 12 264 

plasma samples (validation cohort). For both techniques, model performance was reported using mean 265 

absolute error (MAE) and standard deviation (SD). 266 

 267 

Identification of Metabolites Associated with Treatment Use 268 

A marginal, mixed-effects linear regression model was used to relate metabolite abundance with treatment 269 

use. Scaled metabolite abundance, treatment use, and patient ID was set as the response variable, predictor 270 

variable (fixed effect), and random effect, respectively. Use of the following treatments was assessed 271 

individually: methotrexate, prednisone, non-methotrexate csDMARDs, TNFi-bDMARDs, and non-TNFi-272 

bDMARDs (names of individual drugs in each treatment group are provided in the footnote of Table 1). P-273 

values were retrieved from the corresponding regression coefficient of the predictor variable (i.e., use or non-274 

use), and a significance of P < 0.05 was reported as statistically significant. 275 

 276 

Identification of Differentially Abundant Metabolites Between Two CRP Groups 277 

Metabolites that are significantly associated with disease activity groups and DAS28-CRP scores were further 278 

investigated to find those associated with patient groups delineated by CRP levels. First, all samples were 279 

divided into two groups as follows: ‘high-CRP’ (CRP > 3.0 mg/L, n = 52) and ‘low-CRP’ (CRP ≤ 3.0 mg/L, 280 

n = 76). Next, a marginal, mixed-effects linear regression model was used to define the abundance of a 281 

metabolite based upon the following fixed effects: CRP group, sex, age, smoking history, and treatment with 282 

prednisone, methotrexate, non-methotrexate csDMARDs, TNFi-bDMARDs; or non-TNFi-bDMARDs. 283 

Additionally, patient ID was treated as a random effect. Any covariates whose association with metabolite 284 

abundance was statistically significant (i.e., P-value of the corresponding regression coefficient < 0.05) were 285 

then included in an adjusted mixed model for metabolite abundance. Finally, metabolites were considered as 286 

differentially abundant between the two CRP groups if the association between metabolite abundance and 287 

CRP group was still found to be significant in the adjusted model (P < 0.05). 288 

 289 

Results 290 

 291 

Differentially Abundant Metabolites between Higher and Lower Disease Activity Groups 292 
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As shown in our analysis workflow (Figure 1), we first sought metabolites that were significantly different in 293 

abundance between two major disease activity groups. For this, we divided the 128 metabolomic profiles into 294 

two major categories (‘higher’ vs. ‘lower’) based upon the reported disease activity of the corresponding 295 

patient at the time of sample collection (Materials and Methods). Using a mixed-effects logistic regression 296 

model (Materials and Methods), we identified 33 metabolites as differentially abundant between higher (n 297 

= 52) and lower (n = 76) DAS28-CRP groups (Fig. 2). Most of these metabolites (31 of 33) were observed to 298 

have significantly increased abundances in lower disease activity, whereas the remaining two (glucuronate 299 

and hypoxanthine) were found to be significantly increased in higher disease activity. Notably, of the 31 300 

metabolites increased in lower disease activity, seven metabolites (3-hydroxydecanoylcarnitine, dihomo-301 

linoleoylcarnitine (C20:2), eicosenoylcarnitine (C20:1), linoleoylcarnitine (C18:3), linoleoylcarnitine (C18:2), 302 

stearoylcarnitine (C18), palmitoylcarnitine (C16)) are a part of acylcarnitine metabolism, and represent a 3.6-303 

fold enrichment in metabolites involved in this particular pathway (P = 1.9  10-3, hypergeometric test). It is 304 

important to note that the differences seen are relatively small in terms of fold-change, with most of the 305 

metabolites varying by 1.1–1.3 fold. Despite these subtle differences within RA patients of varying disease 306 

activities, we were still able to obtain statistically significant signal even after considering and controlling for 307 

all known potentially confounding factors (which often leads to reduction in statistical power), while adhering 308 

to our cut-offs for statistical significance (P < 0.05). 309 

 310 

 311 
Figure 2. Plasma metabolites differentiating between higher and lower disease activity groups in RA. A total of 2 and 31 312 

metabolites were found to be significantly increased in higher (DAS28-CRP > 3.2, n = 52) and lower (DAS28-CRP ≤ 3.2, n = 76) 313 

disease activity groups, respectively. Each point corresponds to a metabolite (686 total). Differentially abundant metabolites were 314 
found using a mixed-effects logistic regression model on the discovery cohort (128 samples), for which age and sex were adjusted. 315 
Metabolites with P-value < 0.05 (based upon the corresponding coefficient of the regression model) were considered as significantly 316 
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different between groups. P-values and fold-changes for all metabolites are listed in Additional file 5. Metabolites in bold have 317 
been previously described in the literature for their associations with RA. 318 

 319 

N2-acetyl,N6-methyllysine (|log2(FC)| = 1.11, P = 1.26  10-2) and trigonelline (N’-methylnicotinate) 320 

(|log2(FC)| = 0.74, P = 2.09  10-2), which were both found to have increased abundance in lower disease 321 

activity, were the top two metabolites having the largest fold-changes between the two groups. Although the 322 

direct relevance of N2-acetyl,N6-methyllysine to RA is currently not well understood, N2-acetyl,N6-323 

methyllysine is part of the lysine metabolism pathway, which has been reported to be associated with RA in 324 

the following studies: i) according to Teitsma et al., serum metabolites associated with lysine degradation 325 

were observed to have a higher concentration in early RA patients who achieved sustained drug-free remission 326 

(after Tocilizumab- or Methotrexate-based treatment) compared to those who never achieved a drug-free 327 

status [24]; and ii) Yang et al. reported that metabolic products of lysine degradation (carnitine and pipecolic 328 

acid) were significantly increased in RA patients than in normal subjects [37].  329 

In regard to trigonelline, which is a product of niacin (vitamin B3) metabolism, this alkaloid has been 330 

suggested to have therapeutic potential for diabetes and central nervous system disease [38], and also reported 331 

to demonstrate anti-inflammatory properties in mice [39]. In accordance with our results showing decreased 332 

abundance of trigonelline in higher disease activity, trigonelline could be of interest in future studies on 333 

inflammatory responses in RA.  334 

Biliverdin (|log2(FC)| = 0.48, P = 1.38  10-2) and bilirubin (E,E) (|log2(FC)| = 0.43, P = 1.18  10-2), 335 

which are known metabolic products of the heme catabolic pathway, were also observed to have significantly 336 

increased abundances in lower disease activity. In particular, biliverdin has been shown to: i) inhibit the 337 

activation of pro-inflammatory transcription factors, including NFkB both in vitro and in vivo [40-44]; ii) 338 

inhibit the proliferation of primary T cells stimulated with anti-CD3 and anti-CD28 monoclonal antibodies by 339 

inhibiting NFAT/NF-kB activation in a mouse model of heart transplantation [45]; and iii) improve corneal 340 

inflammation mediated by heme-oxygenase 2 (HO-2) deficiency in a transgenic mouse model [41]. Moreover, 341 

bilirubin, which is derived from the reduction of biliverdin by biliverdin reductase, has been reported as a 342 

potential biomarker for RA in line with our findings. For example, Peng et al. observed a decreased 343 

concentration of serum bilirubin in RA patients compared to healthy controls, as well as in RA patients with 344 

worsening disease activity [46]. Additionally, Fischman et al. found that total bilirubin levels are inversely 345 

related to RA disease activity even after adjusting for multiple confounders (e.g., age, sex, race), and discussed 346 

the possibility of bilirubin (a known anti-oxidant) having a physiological anti-inflammatory effect [47]. This 347 

point is further elaborated upon by Jangi et al [48], who have described in detail the immunosuppressive 348 

properties of unconjugated bilirubin in RA and other inflammatory disorders. The full list of differentially 349 

abundant metabolites and their associated pathways are shown in Additional file 5. 350 

 351 

Metabolic Feature Selection Improves DAS28-CRP Prediction Accuracy 352 

Having uncovered metabolites demonstrating altered abundance between two major disease activity groups, 353 

we next asked whether quantitative disease activity can be predicted with plasma metabolomes. As untargeted 354 

metabolomic profiling can yield a considerable amount of noise and random fluctuations in observed signals 355 

[49], it is necessary to first select informative metabolic features that reliably capture relevant aspects of the 356 

phenotype of interest [50]. For this, we used mixed-effects linear regression models to select metabolites 357 

significantly associated with DAS28-CRP. Afterwards, the abundances of the selected metabolic features were 358 

incorporated into a generalized linear model (GLM) to predict DAS28-CRP. For comparison purposes, a GLM 359 

was constructed without metabolic feature selection, and thereby taking into consideration all features of a 360 
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metabolomic profile. Details regarding GLM construction and performance evaluation are provided in 361 

Materials and Methods. 362 

When applying a modified leave-one-out cross-validation technique to the training group samples (n = 363 

128), we found that the GLM incorporating metabolites that were significantly associated with DAS28-CRP 364 

outperformed the model without feature selection (i.e., using all metabolites). As shown in Figure 3, the 365 

distribution of absolute errors between the observed and predicted DAS28-CRP scores was smaller (with 366 

respect to the cumulative area under the error curve) for the GLM with feature selection than that without 367 

feature selection. To this point, the prediction MAE (±SD) of the GLM with and without feature selection was 368 

1.51 (±1.89) and 2.02 (±2.52), respectively. 369 

 370 
Figure 3. Evaluation of DAS28-CRP predictive performance in cross-validation. A modified leave-one-out cross-validation 371 
approach was used on the samples of the training group (128 samples) to test the performance of a generalized linear model (GLM) 372 
in predicting DAS28-CRP scores from metabolite abundances. Distributions of absolute errors from models with and without a 373 
feature selection scheme were compared to identify the more robust model. The GLM with the feature selection scheme performed 374 
better (MAE±SD: 1.51±1.89) than the model without feature selection (MAE±SD: 2.02±2.52). 375 

 376 

Having confirmed that feature selection can lead to a more accurate prediction model in cross-validation, 377 

we applied the same scheme to all metabolome samples of the discovery cohort to obtain a final set of 378 

metabolites associated with DAS28-CRP (P < 0.05). After adjusting for potential confounding factors 379 

(Materials and Methods), this resulted in a collection of 51 plasma metabolites (Table 2). These metabolites 380 

were used to construct a final GLM, whose predictive accuracy was tested on an independent validation cohort 381 

(n = 12) of plasma metabolomic profiles from twelve RA patients (importantly, this additional cohort was not 382 

drawn from the same population distribution from which the features were derived). On this previously unseen 383 

cohort, the GLM constructed with only the 51 selected metabolites performed considerably better than the 384 

model without the feature selection scheme by over two-fold (Fig. 4A); the prediction MAE of the GLM with 385 

and without feature selection was 0.97 (±0.47) and 2.01 (±2.18), respectively. Likewise, when the actual and 386 

predicted DAS28-CRPs were plotted together for both GLMs (Fig. 4B), we found that the model with the 387 

selection scheme performed more favorably. More specifically, a stronger correlation between the actual and 388 

predicted disease activity scores was observed in the model with feature selection (Spearman’s ρ = 0.69, P = 389 

1.40  10-2, 95% CI: [0.18, 0.90]) compared to the model without (Spearman’s ρ = 0.18, P = 5.72  10-2 , 95% 390 

CI: [-0.44, 0.68]). 391 

 392 
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Table 2. Plasma metabolites significantly associated with DAS28-CRP. 393 
Metabolite Name Super-

Pathway 

Sub-Pathway HMDB ID Regression 

Coefficientγ 

P-valueδ 

3-hydroxystearate Lipid Fatty Acid, Monohydroxy N/A 0.418 0.002 

Phenol sulfate Amino Acid Tyrosine Metabolism HMDB60015 -0.265 0.003 

Trimethylamine N-oxide Lipid Phospholipid Metabolism HMDB00925 0.485 0.004 

Bilirubin (E,E) Cofactors and 

Vitamins 

Hemoglobin and Porphyrin 

Metabolism 

N/A -0.612 0.007 

Serine Amino Acid Glycine, Serine and Threonine 

Metabolism 

HMDB00187 -1.594 0.010 

Dimethylguanidino 

valeric acid (DMGV) 

Amino Acid Urea cycle; Arginine and 

Proline Metabolism 

N/A 0.325 0.011 

N-acetyltryptophan Amino Acid Tryptophan Metabolism HMDB13713 -0.918 0.012 

Glycoursodeoxycholate Lipid Secondary Bile Acid 

Metabolism 

HMDB00708 0.051 0.012 

N-acetylneuraminate Carbohydrate Aminosugar Metabolism HMDB00230 0.470 0.013 

Dihomo-

linoleoylcarnitine (C20:2) 

Lipid Fatty Acid Metabolism (Acyl 

Carnitine, Polyunsaturated) 

N/A -0.745 0.013 

N-acetyltyrosine Amino Acid Tyrosine Metabolism HMDB00866 -0.713 0.014 

Branched chain 14:0 

dicarboxylic acid 

Lipid Fatty Acid, Dicarboxylate N/A -0.201 0.014 

1-carboxyethylvaline Amino Acid Leucine, Isoleucine and Valine 

Metabolism 

N/A 0.408 0.015 

(14 or 15)-

methylpalmitate (a17:0 or 

i17:0) 

Lipid Fatty Acid, Branched N/A 0.227 0.017 

Isoursodeoxycholate Lipid Secondary Bile Acid 

Metabolism 

HMDB00686 0.059 0.018 

Glucuronate Carbohydrate Aminosugar Metabolism HMDB00127 0.396 0.019 

Glucose Carbohydrate Glycolysis, Gluconeogenesis, 

and Pyruvate Metabolism 

HMDB00122 1.107 0.019 

Linoleoylcarnitine 

(C18:3) 

Lipid Fatty Acid Metabolism (Acyl 

Carnitine, Polyunsaturated) 

N/A -0.534 0.020 

1-methylhistidine Amino Acid Histidine Metabolism HMDB00001 0.580 0.020 

Trigonelline (N'-

methylnicotinate) 

Cofactors and 

Vitamins 

Nicotinate and Nicotinamide 

Metabolism 

HMDB00875 -0.227 0.020 

Palmitoyl ethanolamide Lipid Endocannabinoid HMDB02100 0.067 0.020 

Hypoxanthine Nucleotide Purine Metabolism, 

(Hypo)Xanthine/Inosine 

containing 

HMDB00157 0.482 0.022 

Biliverdin Cofactors and 

Vitamins 

Hemoglobin and Porphyrin 

Metabolism 

HMDB01008 -0.436 0.022 

Linoleoylcarnitine 

(C18:2) 

Lipid Fatty Acid Metabolism (Acyl 

Carnitine, Polyunsaturated) 

HMDB06469 -0.814 0.023 

3-methylhistidine Amino Acid Histidine Metabolism HMDB00479 0.140 0.025 

N-acetylarginine Amino Acid Urea cycle; Arginine and 

Proline Metabolism 

HMDB04620 -0.755 0.026 

4-guanidinobutanoate Amino Acid Guanidino and Acetamido 

Metabolism 

HMDB03464 0.347 0.026 

1-carboxyethylisoleucine Amino Acid Leucine, Isoleucine and Valine 

Metabolism 

N/A 0.307 0.026 

Cysteinylglycine disulfide Amino Acid Glutathione Metabolism HMDB00709 1.562 0.027 

Guanidinoacetate Amino Acid Creatine Metabolism HMDB00128 -1.125 0.027 

N2-acetyl,N6-

Methyllysine 

Amino Acid Lysine Metabolism N/A -0.213 0.028 

Lysine Amino Acid Lysine Metabolism HMDB00182 -1.395 0.031 

1,6-anhydroglucose Xenobiotics Food Component/Plant HMDB00640 0.097 0.032 

Pyrraline Xenobiotics Food Component/Plant HMDB33143 0.190 0.032 
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Mannose Carbohydrate Fructose, Mannose and 

Galactose Metabolism 

HMDB00169 0.633 0.032 

Ectoine Xenobiotics Chemical N/A 0.123 0.036 

6-bromotryptophan Amino Acid Tryptophan Metabolism N/A -0.758 0.037 

1-linoleoyl-GPA (18:2) Lipid Lysophospholipid HMDB07856 -0.371 0.039 

Eicosenoylcarnitine 

(C20:1) 

Lipid Fatty Acid Metabolism (Acyl 

Carnitine, Monounsaturated) 

N/A -0.557 0.039 

Erucate (22:1n9) Lipid Long Chain Monounsaturated 

Fatty Acid 

HMDB02068 0.346 0.040 

Bilirubin Cofactors and 

Vitamins 

Hemoglobin and Porphyrin 

Metabolism 

HMDB00054 -0.432 0.042 

Stearoyl ethanolamide Lipid Endocannabinoid HMDB13078 0.070 0.043 

3-phenylpropionate 

(hydrocinnamate) 

Xenobiotics Benzoate Metabolism HMDB00764 -0.178 0.043 

beta-hydroxyisovalerate Amino Acid Leucine, Isoleucine and Valine 

Metabolism 

HMDB00754 0.723 0.045 

Myo-inositol Lipid Inositol Metabolism HMDB00211 0.944 0.045 

Gulonate Cofactors and 

Vitamins 

Ascorbate and Aldarate 

Metabolism 

HMDB03290 0.575 0.047 

Gluconate Xenobiotics Food Component/Plant HMDB00625 0.539 0.047 

Tryptophan Amino Acid Tryptophan Metabolism HMDB00929 -1.139 0.048 

1-carboxyethylleucine Amino Acid Leucine, Isoleucine and Valine 

Metabolism 

N/A 0.350 0.048 

alpha-ketobutyrate Amino Acid Methionine, Cysteine, SAM 

and Taurine Metabolism 

HMDB00005 0.268 0.049 

Lanthionine Amino Acid Methionine, Cysteine, SAM 

and Taurine Metabolism 

N/A -0.229 0.049 

Super-pathways and sub-pathways were defined by Metabolon’s Discovery HD4™ platform; Metabolite IDs provided by the 394 
Human Metabolome Database (HMDB); γCoefficients of the predictor variables (metabolites) in the mixed-effects linear regression 395 
model from discovery cohort (n = 128). Sign and magnitude of the coefficient indicate direction and strength of the correlation 396 
(between the metabolite and DAS28-CRP), respectively; δP-values were retrieved from the corresponding regression coefficients; 397 
N/A, not available. 398 
 399 

 400 
Figure 4. GLM with feature selection provides improved DAS28-CRP prediction accuracy in an independent validation 401 
group (12 samples). (A) Performance of GLMs in predicting quantitative disease activity were evaluated on samples of an 402 
independent validation group. Distributions of absolute errors from models with and without a feature selection scheme were 403 
compared to identify the more robust model. (B) Selection of metabolic features prior to model training resulted in higher predictive 404 
performance, as evidenced by the stronger correlation between observed and predicted DAS28-CRPs. Three samples predicted to 405 
have negative DAS28-CRP values are omitted from the scatter-plot. Dashed violet line indicates ‘y = x’, i.e., an exact match between 406 
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the observed and predicted values. 95% confidence interval for ρ with feature selection: [0.18, 0.90]; without feature selection: [-407 
0.44, 0.68]. 408 
 409 

Commonly Identified Metabolites from Two Different Analytic Approaches 410 

To summarize the findings above, we found that, from the 686 total detectable metabolites in a metabolomic 411 

profile, 33 (4.8%) were differentially abundant between higher and lower disease activity; and 51 (7.4%) were 412 

significantly associated with DAS28-CRP (Fig. 5). These separate findings amounted to a total of 67 unique 413 

metabolites, among which 40 were found to have no association with the use of prednisone, methotrexate, 414 

other non-methotrexate csDMARDs, TNFi-bDMARDs, or non-TNFi-bDMARDs (Materials and Methods). 415 

Notably, eight metabolites (6-bromotryptophan, bilirubin (E,E), biliverdin, glucuronate, N-acetyltryptophan, 416 

N-acetyltyrosine, serine, and trigonelline) were not only consistently detected across both analytic approaches, 417 

but also found to have no association with any treatment use; these results strongly suggest key metabolic 418 

pathways and modules potentially contributing to, or serving as indicators of, RA pathogenesis independent 419 

of confounding treatment effects. Consistent with this idea, additional studies into the metabolites found in 420 

this study (the majority of which have yet to be linked to RA) may be able to provide new insight into the 421 

perturbed physiological metabolic processes—which are then in turn reflected in blood—underlying disease 422 

progression in RA. 423 

 424 

 425 
Figure 5. Venn diagram of all plasma metabolites identified through the multi-approach discovery strategy. A total of 67 426 
unique metabolites were identified, among which 40 were found to have no association with the use of treatment. Notably, eight 427 
metabolites (6-bromotryptophan, bilirubin (E,E), biliverdin, glucuronate, N-acetyltryptophan, N-acetyltyrosine, serine, and 428 
trigonelline) in bold were not only consistently detected across both analytic approaches, but also found to have no association with 429 
any treatment use. Colored circles indicate metabolites whose abundances associate with treatment use. Metabolites with red 430 
triangles were found to have increasing abundances with worsening disease activity, whereas metabolites with blue triangles were 431 
found to have decreasing abundances with worsening disease activity. 432 
 433 

Metabolites Associated with CRP Patient Groups 434 

16 (10)34 (22)
17 

(8)

glycerolphosphoethanolamine ▼
glycerophosphorylcholine (GPC) ▼
palmitoylcarnitine (C16) ▼
carnitine ▼
3-amino-2-piperidone ▼
methionine ▼
retinal ▼
N-acetylasparagine ▼
3-hydroxydecanoylcarnitine ▼
gamma-glutamylmethionine ▼
stearoylcarnitine (C18) ▼
10-undecenoate (11:1n1) ▼
N-acetyl-2-aminooctanoate ▼
N-acetylcitrulline ▼
N2,N5-diacetylornithine ▼
N-acetylglutamine ▼

* Numbers in parentheses indicate metabolites showing 
no association with use of any treatment

linoleoylcarnitine (C18:2) ▼
linoleoylcarnitine (C18:3) ▼
N-acetylarginine ▼
eicosenoylcarnitine (C20:1) ▼
trigonelline (N'-methylnicotinate) ▼
N-acetyltyrosine ▼
bilirubin (E,E) ▼
biliverdin ▼

6-bromotryptophan ▼
N2-acetyl,N6-methyllysine ▼
N-acetyltryptophan ▼
dihomo-linoleoylcarnitine (C20:2) ▼
lysine ▼
serine ▼
trytophan ▼
glucuronate ▲
hypoxanthine ▲

Differentially Abundant Metabolites between 

Higher and Lower Disease Activity Groups

glycoursodeoxycholate ▲
isoursodeoxycholate ▲
palmitoyl ethanolamide ▲
stearoyl ethanolamide ▲
1,6-anhydroglucose ▲
beta-hydroxyisovalerate ▲
myo-inositol ▲
cysteinylglycine disulfide ▲
3-methylhistidine ▲
pyrraline ▲
ectoine ▲
mannose ▲
alpha-ketobutyrate ▲
1-carboxyethylisoleucine ▲
erucate (22:1n9) ▲
4-guanidinobutanoate ▲
1-carboxyethylleucine ▲
1-carboxyethylvaline ▲
3-hydroxystearate ▲
N-acetylneuraminate ▲
trimethylamine N-oxide ▲
1-methylhistidine ▲
dimethylguanidino valeric acid (DMGV) ▲
(14 or 15)-methylpalmitate (a17:0 or i17:0) ▲
branched chain 14:0 dicarboxylic acid ▼
3-phenylpropionate (hydrocinnamate) ▼

gluconate ▲
gulonate ▲
glucose ▲
guanidinoacetate ▼
bilirubin ▼
phenol sulfate ▼
1-linoleoyl-GPA (18:2) ▼
lanthionine ▼

Metabolites Associated 

with DAS28-CRPMethotrexate
Prednisone

non-methotrexate csDMARDs
TNFi-bDMARDs

non-TNFi-bDMARDs

Associates with Treatment Use
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Elevated levels of C-reactive protein (CRP) in the blood is well known to often indicate increased 435 

inflammatory conditions, which may be caused by a wide variety of acute (e.g., infections) and chronic 436 

disorders (e.g., rheumatoid arthritis, inflammatory bowel disease). In RA patients, CRP levels have been 437 

observed to increase after acute mental stress tasks [51], and also to be linked to risk of cardiovascular disease 438 

[52]. Furthermore, several serum metabolites were found to reflect inflammatory activity in patients with early 439 

arthritis [53]. 440 

We further investigated the aforementioned 67 plasma metabolites to see whether any were differentially 441 

abundant between two CRP patient groups, i.e., ‘high-CRP’ (CRP > 3.0 mg/L, n = 52) and ‘low-CRP’ (CRP 442 

≤ 3.0 mg/L, n = 76) (Materials and Methods). While controlling for potential confounding variables, we 443 

identified eight total metabolites that were significantly associated with CRP patient group. More specifically, 444 

the abundances of mannose, beta-hydroxyisovalerate, (14 or 15)-methylpalmitate (a17:0 or i17:0), erucate 445 

(22:1n9), 10-undecenoate (11:1n1), N-acetylcitrulline were higher in high-CRP, while those of serine and 446 

linoleoylcarnitine (C18:3) were lower in high-CRP (Fig. 6). Application of these plasma metabolites, which 447 

were found to be connected to both RA disease activity and circulating CRP levels, may lead to the 448 

development of new clinical laboratory tests to further enable precision medicine for RA patients. 449 

 450 

 451 
Figure 6. Metabolites differentially abundant between two CRP patient groups. Among the 67 total metabolites identified 452 
through our multi-approach analysis on the discovery cohort (n = 128), eight metabolites were identified to have significant 453 
associations with CRP group while controlling for confounding variables (regression coefficient for CRP, P < 0.05) (A) Metabolites 454 
with higher abundances in the high-CRP group: mannose, beta-hydroxyisovalerate, (14 or 15)-methylpalmitate (a17:0 or i17:0), 455 
erucate (22:1n9), 10-undecenoate (11:1n1), and N-acetylcitrulline. (B) Metabolites with higher abundances in the low-CRP group: 456 
serine and linoleoylcarnitine (C18:3).  457 
 458 

Plasma metabolites associate with clinical improvement in RA 459 
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Based upon the European League Against Rheumatism (EULAR) response criteria for DAS28-CRP [54], we 460 

found that sixteen of the 64 patients in the discovery cohort showed moderate or good improvement in disease 461 

activity from visit 1 to visit 2, while the remaining 48 patients did not show clinical improvement at the time 462 

of their second visit. This discovery provided an entry point for the following analysis: For each of these two 463 

patient groups, i.e., ‘Improved’ (n = 16) and ‘Non-improved’ (n = 48) patients, we aimed to identify 464 

metabolites whose abundances significantly changed from visit 1 to visit 2, while controlling for the same 465 

confounding factors (mixed-effects regression model, P < 0.05). As a result, we identified eleven metabolites 466 

whose abundances significantly changed in the Improved patient group (Additional file 6), while nineteen 467 

metabolites showed significant changes in the Non-improved patient group (Additional file 7). The following 468 

three metabolites, which were discovered in our previous analyses on the 128 plasma metabolome samples of 469 

the discovery cohort, were detected once again: erucate (22:1n9), a metabolite identified to be associated with 470 

both DAS28-CRP and CRP patient group, was identified to be significantly different between visit 1 and visit 471 

2 in patients who did not show clinical improvement (Non-improved); 3-amino-2-piperidone, a metabolite 472 

identified to be differentially abundant between higher and lower disease activity in our study, was identified 473 

to be significantly different between visit 1 and visit 2 in patients who showed clinical improvement 474 

(Improved); and gamma-glutamylmethionine, a metabolite identified to be differentially abundant between 475 

higher and lower disease activity, was identified to be significantly different between visit 1 and visit 2 in the 476 

Non-improved group. These results allow us to expand our future direction to investigate metabolites 477 

associated with clinical improvement in patients with RA. 478 

 479 

Discussion 480 

 481 

Dysfunctions in cellular and tissue metabolism are involved in a broad range of autoimmune disorders [55-482 

58], including RA [59-61]. These metabolic implications highlight the importance of investigating which 483 

biochemical functions and metabolic states are altered during the onset and progression of disease. To this 484 

end, metabolomics platforms (and the accompanying wealth of data) can present unique opportunities for 485 

discovering novel disease ‘molecular signatures’ [62], which can be interpreted through the lens of annotated 486 

biochemical relationships. Moreover, high-throughput profiling can enable the identification of circulating 487 

pro-inflammatory (disease-triggering) and anti-inflammatory (disease-protective) metabolites in RA, as 488 

elaborated upon by Coras et al. [63]; such discoveries may facilitate the design of either dietary or gut 489 

microbiome-based intervention strategies to improve wellness or alter the course of disease for RA patients. In 490 

this study, by performing a global metabolomic profiling analysis on 128 plasma samples obtained from 64 491 

patients with RA, we identified biochemical signatures associated with, and predictive of, disease activity. 492 

Mainly, through a combination of statistical approaches for metabolic signature discovery, we identified 493 

several metabolites that: i) differ significantly between lower and higher disease activity groups; and ii) 494 

significantly associate with DAS28-CRP. Of note, our study is the first to leverage biochemical features from 495 

a plasma metabolomic profile to predict quantitative disease activity. 496 

Interestingly, we identified eight metabolites (6-bromotryptophan, bilirubin (E,E), biliverdin, glucuronate, 497 

N-acetyltryptophan, N-acetyltyrosine, serine, and trigonelline) that were commonly found across different 498 

statistical approaches, possibly capturing representative metabolite signals of RA progression. We discussed 499 

above the reported roles of bilirubin and biliverdin in RA. Moreover, these two metabolites were previously 500 

reported for their cytoprotective and anti-inflammatory effects [64-68], and even suggested as an “RA 501 

protective factor” by Fischman et al. [47]. Interestingly, high concentrations of bilirubin and biliverdin were 502 

reported in other inflammatory disorders, such as atherosclerotic diseases [69] and autoimmune encephalitis 503 
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[67]. In regards to the other six metabolites, clear and definitive connections with RA have not yet been 504 

established. However, if our results on bilirubin and biliverdin were to serve as benchmarks for reliably 505 

identifying plasma metabolites important to RA disease activity, then these remaining metabolites may be 506 

deemed as leading candidates for future investigations. 507 

Glucuronate was found to show elevated abundance in higher disease activity than in lower disease activity. 508 

This glucose-derivative is involved in the detoxification of xenobiotics via glucuronidation in the mammalian 509 

liver. Interestingly, this process can be reversed by gut bacteria harboring -D-glucuronidases [70], and 510 

thereby releasing (potentially toxic) exogenous compounds into the gut lumen and subsequently into 511 

circulation [71, 72]. In that respect, examining a possible role involving dysbiosis in the gut microbiota—512 

combined with metabolomic approaches to infer relationships between gut microbes and blood metabolites in 513 

RA, as shown by Chen et al. [73]—may help elucidate a microbial-based mechanism explaining the observed 514 

alterations in plasma glucuronate. 515 

Serine was seen to decrease with worsening disease activity. In line with our results, albeit in an RA mouse 516 

model with collagen-induced arthritis (CIA), plasma levels of serine and other free amino acids were found to 517 

have significantly decreased in the CIA group compared to control mice [74]. In another study wherein 518 

synovial fluid of RA patients were examined for citrullinated proteins (which is widely known to result in a 519 

rise in anti-citrullinated protein antibodies in RA), Tilvawala et al. found increased citrullination in a wide 520 

array of serine protease inhibitors (Serpins) and serine proteases [75]; in the same study, the investigators 521 

demonstrated in vitro that citrullinating serine protease inhibitors nearly abolishes their inhibitory activity 522 

towards their target proteases. Although we have yet to uncover whether a decrease in plasma serine levels 523 

(with worsening disease activity) is linked to citrullination of serine proteases in synovial fluid, we speculate 524 

that changes in serine may reflect dysregulated protein degradation during systemic inflammatory activity and 525 

joint destruction in RA. 526 

We note a few limitations of this study: First, we acknowledge that our study includes a relatively small 527 

number of samples within each disease activity group of the discovery cohort and the validation cohort. 528 

Nevertheless, we were able to detect statistically significant metabolites in all analytical strategies, 529 

demonstrating that our data provides reasonably sufficient statistical power. Certainly, a much larger cohort 530 

would have been ideal; however, this is a small pilot study on our stored plasma samples, and obtaining an 531 

additional cohort is outside of its scope. Encouragingly, despite the low sample size of the validation cohort, 532 

we were able to successfully show that feature selection is a necessary step in the model-training process, and 533 

we expect this finding to translate well to larger cohorts in our future studies. Nevertheless, in order to more 534 

meticulously examine the role of blood metabolites in RA, future investigations will warrant a higher number 535 

of samples and more detailed subject characteristics. Second, to define RA disease activity, we solely used 536 

the DAS28-CRP scoring system, which is dependent upon acute-phase responses that may not accurately 537 

reflect patients who have an inflammation-free state [24]. Our future plans include performing our analytical 538 

pipeline with other RA disease activity metrics (e.g., clinical disease activity index (CDAI), simple disease 539 

activity index (SDAI)) to test the robustness of our findings. Third, all of our multivariate analyses followed 540 

adjustment for patient age and sex only. Other potential confounders that may affect the concentration of blood 541 

metabolites, such as diet, exercise habits, lifestyle factors, time of the day of sample collection, and gut 542 

microbiome, were not considered as predictor variables in our analyses. Fourth, comorbidity can certainly be 543 

a significant confounding factor. Alternatively, comorbidities could theoretically be contributors or mediators 544 

to inflammatory disease activity in patients with RA. At this stage, it would have been premature to adjust 545 

statistically for the effects of particular comorbidities or for the presence of multi-morbidity (i.e., multiple 546 

chronic conditions) before carefully investigating for their potential interaction with plasma metabolites and 547 
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RA disease activity. This may lead to ‘over-adjustment’ and falsely concluding that certain metabolites are 548 

not significant when they may, in fact, be very important. Future studies will be necessary to explore potential 549 

interactions between comorbidities, RA disease activity, and plasma metabolite levels in RA. Last, despite the 550 

similarities in our findings with previous investigations (as noted above), many of our results are reported for 551 

the first time and remain to be validated by others. Possible causes of discrepancies with the work of others 552 

include the comparatively small number of samples in this pilot study; technical and biological sources of 553 

random noise; the uniqueness of our recruited patient cohort; variabilities in detection protocols and 554 

instrument sensitivity; and use of alternate statistical techniques and potential over-fitting. Future efforts, by 555 

us and others, are likely to elucidate truly robust signal and collectively strengthen the confidence in our novel 556 

findings. 557 

Despite the aforementioned limitations, our study establishes the far-reaching utility of using cutting-edge 558 

technological and analytical approaches for plasma metabolomic profiling and justifies analogous 559 

investigations at larger scales. The identified metabolites could be a reflection of the perturbed metabolic 560 

processes concurrent with worsening disease activity, and our findings will inspire future studies into how 561 

inflammation and pain in RA are coupled to physiological metabolism. Moreover, our identified sets of 562 

signature metabolites offer a promising glimpse into biomolecular marker panels for diagnosing disease 563 

activity of RA patients solely through blood (thereby complementing current diagnostic approaches), with the 564 

overall aim to make such assessments faster, cheaper, and less invasive. In turn, studies such as ours are 565 

expected to contribute towards fully realizing the potential of virtual and digital healthcare by foregoing the 566 

need for patients to physically arrive at the clinic to meet their primary care provider in person. 567 

As the gut microbiome has been recognized to be implicated in RA [73, 76-78]—possibly through 568 

complex mechanisms underlying microbe-microbe and host-microbe biochemical cross-talk [79]—integrated 569 

profiling of both stool metagenome and blood metabolome would provide an in-depth, comprehensive view 570 

of functional dysbiosis during RA onset and progression. Interestingly, a recent study showed that blood 571 

metabolites can be predictive of gut microbiome alpha-diversity [80]. Such investigations into integrating 572 

across multiple data types of the same phenotype can help to amplify the primary biological signal of interest 573 

relative to noise, as well as provide actionable insights. In conclusion, the results reported herein are poised 574 

to eventually improve disease management and outcomes of patients with RA and other rheumatic diseases, 575 

as well as to provide novel means of monitoring health and wellness [81]. 576 
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