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Abstract 
Background: Rheumatoid arthritis (RA) is a chronic, autoimmune disorder characterized by joint 
inflammation and pain. In patients with RA, metabolomic approaches, i.e., high-throughput profiling of small-
molecule metabolites, on plasma or serum has thus far enabled the discovery of biomarkers for clinical 
subgroups, risk factors, and predictors of treatment response. Despite these recent advancements, the 
identification of blood metabolites that are predictive of quantitative disease activity remains an important 
challenge in precision medicine for RA. Herein, we use global plasma metabolomic profiling analyses to 
detect metabolites associated with, and predictive of, quantitative disease activity in patients with RA. 
 
Methods: Ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was 
performed on a discovery cohort consisting of 128 plasma samples from 64 RA patients. The resulting 
metabolomic profiles were analyzed with two different strategies to find metabolites associated with Disease 
Activity Score-28 using C-reactive protein (DAS28-CRP). Mixed-effects regression models were used to 
identify metabolites differentially abundant between two disease activity groups (‘lower’, DAS28-CRP ≤ 3.2; 
and ‘higher’, DAS28-CRP > 3.2); and to identify metabolites significantly associated with DAS28-CRP scores. 
A generalized linear model (GLM) was constructed for estimating DAS28-CRP using plasma metabolite 
abundances. For associating metabolites with CRP (an indicator of inflammation), metabolites differentially 
abundant between two patient groups (‘low-CRP’, CRP ≤ 3.0 mg/L; ‘high-CRP’, CRP > 3.0 mg/L) were 
investigated. 
  
Results: We identified 33 metabolites differentially abundant between lower and higher disease activity groups 
(P < 0.05). Additionally, we identified 51 metabolites associated with DAS28-CRP (P < 0.05). A GLM based 
upon these 51 metabolites resulted in higher prediction accuracy (mean absolute error [MAE]±SD: 1.51±1.77) 
compared to a GLM without feature selection (MAE±SD: 2.02±2.21). The predictive value of this feature set 
was further demonstrated on a validation cohort of twelve plasma samples, wherein we observed a stronger 
correlation between predicted vs. actual DAS28-CRP (with feature selection: Spearman’s ρ = 0.69, 95% CI: 
[0.18, 0.90]; without feature selection: Spearman’s ρ = 0.18, 95% CI: [-0.44, 0.68]). Lastly, among all 
identified metabolites, the abundances of eight were significantly associated with CRP patient groups while 
controlling for potential confounders (P < 0.05). 
 
Conclusion: We demonstrate for the first time the prediction of quantitative disease activity in RA using 
plasma metabolomes. The metabolites identified herein provide insight into circulating pro-/anti-
inflammatory metabolic signatures that can reflect disease activity and inflammatory status in patients with 
RA. 
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1. Introduction 
 
Rheumatoid arthritis (RA) is a chronic, autoimmune inflammatory disease primarily affecting the small 
diarthrodial joints and other organ systems [1-4] that can eventually lead to bone/cartilage erosion, joint 
deformity, loss in mobility, and organ damage [5]. Known to be associated with a variety of factors, such as 
genetic susceptibility [6], age [7], sex [8], smoking status [9], and dietary habits [10], RA is diagnosed in 
nearly 5 per 1000 adults worldwide, and women are 2 to 3 times more likely to develop RA than men [5]. In 
addition, as is the case with many complex and progressive disorders, patients with RA exhibit vast 
heterogeneity in clinical symptoms (e.g., joint inflammation, swelling, pain, stiffness) [11], and in responses 
to methotrexate and other disease-modifying anti-rheumatic drugs (DMARDs) [12]. Furthermore, immune 
cells (mainly, B-cells, T-cells, and macrophages) and cytokines are known to be implicated in RA 
pathogenesis [13]. For example, Haringman et al. observed that the abundance of macrophages in synovial 
tissue was positively correlated with disease activity [14], and Chung et al. identified significant differences 
in levels of multiple cytokines (e.g., IL-6, IL-11, LIF) between RA and healthy controls [15]. In this regard, 
further understanding of the pathophysiological mechanisms that drive either progression or remission in RA 
disease activity would be important for identifying prognostic factors and developing more effective 
treatments [5, 16]. 

Having practical measures of disease activity is essential for determining the course of RA treatment and 
for monitoring patient response [3]. To this end, several studies have suggested strategies to quantify (or 
categorize) RA disease activity by using clinical and inflammatory core components, which include, but are 
not limited to, the number of tender and swollen joints, erythrocyte sedimentation rate (ESR), serum C-reactive 
protein (CRP) levels, and patients’ pain levels [17-20]. Among these various strategies, the modified Disease 
Activity Score that considers 28 joints (DAS28) with either ESR (DAS28-ESR) or CRP (DAS28-CRP) is 
currently one of the most well-recognized and recommended measures in RA [20]. 

An emerging area of RA research is in using high-throughput metabolomic profiling approaches, which 
comprehensively measure all small-molecule biochemicals in a biological specimen (e.g., plasma, serum, 
urine, synovial fluid, etc.) to enable biomarker discovery and novel insights into the biochemical processes 
governing disease pathophysiology [11, 21-23]. In particular, recent studies have demonstrated the promise 
of using such metabolomic technologies on patient-derived biospecimens for classifying patients with RA 
according to their disease activity categories [21, 24, 25], and for identifying metabolic signatures predictive 
of treatment response [26-29]. For instance, Teitsma et al. used metabolomic profiling in serum samples from 
early RA patients to identify metabolites and metabolic pathways that were significantly associated with 
sustained, drug-free remission (DAS28 < 2.6) after tocilizumab- or methotrexate-based therapy [24]. Likewise, 
Sasaki et al. identified 15 and 20 metabolites in plasma and urine, respectively, that were differentially 
abundant between active RA (DAS28-ESR ≥ 3.2) and inactive RA (DAS28-ESR < 3.2) [25]. These findings 

suggest that a wider application of global metabolomic profiling—coupled with advanced analytics [30]—can 
lead to the discovery of novel and predictive biomarkers that complement current standard laboratory tests for 
assessing disease activity in RA. 

To date, a global metabolomic profiling analysis to demonstrate the predictive value of blood 
biochemicals in estimating disease activity scores in RA, has remained elusive. In this study, on 128 plasma 
metabolomic profiles from 64 RA patients, we utilize a multi-approach analysis to uncover metabolites that 
reflect and predict disease activity in RA. First, we identify metabolites that are differentially abundant 
between ‘higher’ (DAS28-CRP ≥ 3.2) and ‘lower’ (DAS28-CRP < 3.2) disease activity groups. Next, we 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.13.20193664doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.13.20193664
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

pinpoint specific metabolites that significantly associate with DAS28-CRP. Interestingly, a few of the 
metabolites identified through these two approaches were able to differentiate between two groups of patients 
divided according to their C-reactive protein (CRP) levels in blood (‘high-CRP’, CRP > 3.0 mg/L; ‘low-CRP’, 

CRP ≤ 3.0 mg/L); these metabolites may possibly reflect metabolic perturbations affected by worsening 

inflammatory activity. Finally, we utilize a machine-learning technique to predict DAS28-CRP with plasma 
metabolite abundances. In this regard, we find that the feature selection step led to improved performance in 
predicting quantitative disease activity, and this translated reasonably well to a validation cohort. Taken 
together, our findings described herein support a key role for high-throughput metabolomic technologies in 
identifying blood-borne metabolic signatures of RA disease activity and lay the groundwork for monitoring 
disease progression and systemic inflammation using blood samples alone. 
 
2. Materials and Methods 
 
2.1 Study Population, Subject Enrollment, Sample Collection, and Demographic Characteristics. 
The study population consisted of consecutive patients with RA attending the outpatient practice of the 
Division of Rheumatology at Mayo Clinic in Rochester, Minnesota. Eligibility required patients to be adults 
18 years of age or older with a clinical diagnosis of RA by a rheumatologist, fulfilling the American College 
of Rheumatology/European League Against Rheumatism 2010 revised classification criteria for RA [2]. 
Patients were excluded if they did not comprehend English, were unable to provide written informed consent, 
or were members of a vulnerable population (e.g., incarcerated subjects). This led to a total of 76 patients 
fulfilling the eligibility criteria, who were partitioned into two groups (Table 1): for the discovery cohort of 
this study, 64 patients with available blood samples from at least 2 outpatient visits 6–12 months apart were 
included (128 total samples); for the validation cohort, 12 patients with blood samples from a single outpatient 
visit were included (12 total samples). Demographic and clinical data, including the numbers of tender and 
swollen joints, patient and evaluator global assessments, CRP (mg/L), body mass index (BMI, kg/m2), 
smoking status, and results for rheumatoid factor (RF, IU/mL) and anti-cyclic citrullinated peptide antibodies 
(anti-CCP), were collected from the electronic medical records. The patient samples (140 in total) in the study 
had established disease with mean age 63.54 (range: 32–86), and 69% were female. Disease activity varied 
from remission to high disease activity, with a DAS28-CRP mean of 3.0 (range: 1.2–7.0). All patients provided 
written informed consent. The study was approved by the Mayo Clinic institutional review board (no. 14-
000616 and no. 14-000680). 
 
Table 1. Demographic characteristics of study participants. 

 Discovery Cohorta Validation Cohortb 
Number of RA patients/samples 64/128 12/12 
Sex of RA patients (female/male) 44/20 9/3 
 Visit 1 Visit 2 - 
DAS28-CRP 

Mean ± SD 
Range (min–max) 

 
3.1±1.3 
1.5–7.0 

 
3.0±1.4 
1.2–6.6 

 
2.4±1.3 
1.7–5.9 

Age (years) 
Mean ± SD 
Range (min–max) 

 
62.7±10.5 
32–85 

 
63.5±10.6 
33–86 

 
67.8±10.6 
54–84 

BMI 
Mean ± SD 

 
30.6±5.7 

 
31.1±6.2 

 
27.0±4.1 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.13.20193664doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.13.20193664
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

Range (min–max) 
N/A (n) 

22.4–45.3 
6 

22.8–47.8 
6 

19.0–33.3 
2 

Smoking History (n) 
Current (active within 3 months) 
Former 
Never 
N/A 

 
7 
31 
25 
1 

 
5 
32 
27 
0  

 
1 
3 
7 
1 

CRP (mg/L) 
Mean ± SD 
Range (min–max) 

 
8.91±16.8 
0.29–113 

 
8.0±12.7 
0.7–84 

 
11.5±21.7 
1.0–77.1 

RFg (n) 
Positive 
Negative 
N/A 

 
36 
15 
13 

 
- 
- 
- 

 
6 
2 
4 

Anti-CCPg (n) 
Positive 
Negative 
N/A 

 
44 
13 
7 

 
- 
- 
- 

 
5 
1 
6 

Treatment  
Methotrexate use (n, %) 
Methotrexate dose (mg/week) 

median 

IQR [Q1, Q3] 
Prednisone use (n, %) 
Prednisone dose (mg/day) 

median 
IQR 

TNFi-bDMARDs𝛿 (n, %) 
non-TNFi-bDMARDse (n, %) 
non-methotrexate csDMARDsl (n, %) 

 
48 (75%) 
 
20.0 
[15.0, 25.0] 
29 (45%) 
 
5.0 
[5.0, 7.0] 
23 (36%) 
6 (9%) 
20 (31%) 

 
49 (77%) 
 
20.0 
[15.0, 25.0] 
28 (44%) 
 
5.0 
[5.0, 5.0] 
21 (33%) 
7 (11%) 
27 (42%) 

 
7 (58%) 
 
22.5 
[17.5,25.0] 
4 (33%) 
 
5.0 
[5.0, 5.0] 
3 (25%) 
1 (8%) 
1 (8%) 

aTraining group. Plasma samples were obtained from patients at two different time-points; bTest group. Plasma samples were 
obtained from patients at a single time-point; N/A, Not available; gReported only for the first visit; 𝛿adalimumab, certolizumab, 
etanercept, and infliximab. eabatacept, rituximab, and tocilizumab; lazathioprine, hydroxychloroquine, leflunomide, and 
sulfasalazine; RF, rheumatoid factor; Anti-CCP, anti-cyclic citrullinated peptide antibodies; IQR, inter-quartile range; bDMARDs, 
biologic disease-modifying anti-rheumatic drugs; non-methotrexate csDMARDs, conventional synthetic disease-modifying anti-
rheumatic drugs; an expanded table with further information on demographic and clinical characteristics is provided in 
Supplementary Table 1 and Supplementary Table 2. 
 
2.2 Metabolomic Profiling. 
Untargeted metabolomic profiling of plasma samples through ultra-high performance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS) was performed by Metabolon Inc. (Durham, NC, USA)’s 
Discovery HD4™ platform. Detailed descriptions of all methods regarding metabolomic profiling are 
available in Supplementary Information. 
 
2.3 Analysis Workflow. 
Figure 1 provides a summary of the analytic strategy used on the 128 plasma samples of the discovery cohort 
to identify associations between metabolites and RA disease activity. The analysis workflow consists of two 
complementary approaches: The first approach identifies metabolites that are differentially abundant between 
higher and lower disease activity groups, which were determined by DAS28-CRP scores [18-20, 31] (Fig. 
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1A); the second approach uses linear regression to model the relationship between DAS28-CRP and 
metabolite abundances, allowing the detection of key biochemical features that associate with quantitative 
disease activity (Fig. 1B). To test the predictive accuracy of these selected features when incorporated into a 
generalized linear model, an additional cohort of metabolomic profiles of 12 plasma samples (from 12 RA 
patients obtained at single time-points) was collected as an independent validation set. 
 

 
 
Figure 1. A multi-approach discovery strategy to identify metabolites indicative of RA disease activity. (A) Differentially 
abundant metabolites between higher and lower disease activity groups were identified using a mixed-effects logistic regression 
model adjusted for patient age and sex, as well as for Patient ID to control for having multiple samples from the same patient. (B) 
A selection scheme to identify metabolites associated with DAS28-CRP. Metabolites were selected with mixed-effects linear 
regression. To further demonstrate their association with DAS28-CRP, these metabolites were used to construct a generalized linear 
model for predicting DAS28-CRP. Predictive performance of the model was evaluated using a cross-validation technique (on the 
discovery cohort) and a validation cohort. 
 
2.4 Statistical Analysis of Metabolomic Profiling Data. 
 
2.4.1. Data Pre-processing. 
Statistical analyses on untargeted metabolomic data were performed using scaled imputed data provided by 
Metabolon, Inc. Briefly, the raw data were normalized to account for inter-day variation, which is a result of 
UPLC-MS/MS runs over multiple days, then the peak intensities were rescaled to set each metabolite’s median 
equal to 1. Missing values were then imputed with the minimum observed value of the metabolite across all 
samples, finally yielding the scaled imputed data. In addition, metabolites with missing values in over 80% of 
the entire samples were removed, resulting in 686 metabolites remaining for further analysis. R (v3.6.1), lme4 

Identification of
differentially abundant metabolites

Key metabolite selection 
associated with DAS28-CRP

1. Assign disease activity group to each sample:
• Lower (DAS28-CRP ≤ 3.2)
• Higher (DAS28-CRP > 3.2)

2. Use mixed-effects logistic regression

A) B)

128 plasma metabolomic samples 
(from 64 RA patients)

3. Measure predictive accuracy: Report mean absolute error (MAE)

12  plasma metabolomic samples 
(from 12 RA patients)

Modified leave-one-out
cross-validation

Validation on an 
independent test set

2. Evaluate predictive performance of selected metabolites using 
a generalized linear model

1. Use mixed-effects linear regression for metabolite selection
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package (v1.1.21) [32], Python3 (v3.7.5), and sklearn (v0.22.2) were used to perform all data pre-processing 
and statistical analyses. 
 
2.4.2. Delineation of RA Disease Activity Groups. 
Following previous reports [18-20, 31], samples from RA patients were divided into two disease activity 
groups based upon DAS28-CRP: ‘lower’ (DAS28-CRP ≤ 3.2, n = 76) and ‘higher’ (DAS28-CRP > 3.2, n = 
52). These pre-defined two disease activity groups were used as the nominal response variable in a mixed-
effects logistic regression model to identify differentially abundant metabolites between the two groups. 
 
2.4.3 Identification of Differentially Abundant Metabolites while controlling for confounding factors. 
The following patient characteristics were examined to identify potential confounding factors in the 
association between plasma metabolites and disease activity (i.e., higher or lower disease activity): age, sex, 
BMI, smoking history, and treatment use (for methotrexate, prednisone, non-methotrexate csDMARDs, TNFi-
bDMARDs, and non-TNFi-bDMARDS). Based upon the Fisher’s exact test, patient age (age ≤ 60, age > 60) 

and sex (male, female) were observed to have statistically significant associations with the two disease activity 
groups; the P-value for age and sex was P = 0.01 (odds ratio [OR] = 2.74, 95% confidence interval [CI] = 
1.15–6.73) and P = 0.02 (OR = 0.37, 95% CI = 0.14–0.88), respectively. On the other hand, no statistically 
significant associations were observed between these two disease activity groups and BMI (BMI ≤ 30, BMI 

> 30; P = 0.32), smoking history (smoked at least once, never smoked; P = 0.36), or treatment use (user, non-
user) for methotrexate (P = 0.83), prednisone (P = 0.58), TNFi-bDMARDs, i.e., adalimumab, certolizumab, 
etanercept, and infliximab (P = 0.18), non-TNFi-bDMARDs, i.e., abatacept, rituximab, and tocilizumab (P = 
0.76), or other non-methotrexate csDMARDs, i.e., azathioprine, hydroxychloroquine, leflunomide, and 
sulfasalazine (P = 0.71). In addition, no significant changes in treatment use were observed between the two 
visits; P-values of the associations between treatment use and time-point based upon McNemar’s Chi-squared 
test for paired nominal data were as follows: methotrexate (P = 1), prednisone (P = 1), TNFi-bDMARDs (P 
= 0.75), non-TNFi-bDMARDs (P = 1), and non-methotrexate csDMARDs (P = 0.07). Therefore, the mixed-
effects logistic regression model was adjusted for age and sex as fixed effects, but not for all other 
aforementioned covariates. In accordance with these results, age and sex have been previously reported to be 
connected to RA disease activity [33-35]. Additionally, patient ID was considered as a random effect in the 
model to account for intra-subject variance due to having repeated measurements from a single patient. 
Metabolites whose corresponding coefficients of the regression model were of P-value < 0.05 were considered 
as having statistically significant differences. 
 
2.4.4 Selection of Metabolites Associated with DAS28-CRP. 
Selection of metabolites associated with DAS28-CRP was performed with a mixed-effects linear regression 
model (DAS28-CRP as the continuous response variable) controlling for fixed effects (scaled metabolite 
abundances, patients’ age and sex) and for random effects (patient ID). Satterthwaite’s degrees of freedom 
method supported by lmerTest (v3.1.1) [36] was applied to test for the statistical significance (P-value) of 
associations between metabolites and DAS28-CRP. P-values were retrieved from the corresponding 
regression coefficients of the predictor variables. 
 
2.4.5 Evaluation of Predictive Performance of DAS28-CRP-associated Metabolites. 
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A generalized linear model (GLM) was used to estimate DAS28-CRP scores using the aforementioned 
significantly associated metabolites as predictor variables. Predictive performance of the parameterized model 
was evaluated by two different techniques: First, a modified leave-one-out cross-validation approach was 
applied to the samples of the training group. More specifically, in each cross-validation loop, both samples 
from the same patient were allocated as an internal validation set, while all remaining samples (126 samples 
from 63 patients) were used to select metabolites significantly associated with DAS28-CRP (P < 0.05). These 
selected biochemical features were then included in a GLM for predicting DAS28-CRP scores of the 
remaining two samples (of the internal validation group) from their metabolite abundances; the second 
approach considers testing a GLM, which was composed of the DAS28-CRP-associated metabolites identified 
from all 128 samples of the training group, on the independent validation group of 12 plasma samples. For 
both techniques, model performance was reported using mean absolute error (MAE). 
 
2.4.6 Identification of Metabolites Associated with Treatment Use. 
A marginal, mixed-effects linear regression model was used to relate metabolite abundance with treatment 
use. Scaled metabolite abundance, treatment use, and patient ID was set as the response variable, predictor 
variable (fixed effect), and random effect, respectively. Use of the following treatments was assessed 
individually: methotrexate, prednisone, non-methotrexate csDMARDs, TNFi-bDMARDs, and non-TNFi-
bDMARDs (names of drugs included in each treatment group are provided in the footnote of Table 1). P-
values were retrieved from the corresponding regression coefficient of the predictor variable (i.e., use or non-
use), and a significance of P < 0.05 was reported as statistically significant. 
 
2.4.7. Identification of Differentially Abundant Metabolites Between Two CRP Groups. 
Metabolites identified in 2.4.3 and 2.4.4 were further investigated to find those associated with patient groups 
delineated by CRP levels. First, all samples were divided into two groups as follows: ‘high-CRP’ (CRP > 3.0 

mg/L, n = 52) and ‘low-CRP’ (CRP ≤ 3.0 mg/L, n = 76). Next, a marginal, mixed-effects linear regression 
model was used to define the abundance of a metabolite based upon the following fixed effects: CRP group, 
sex, age, smoking history, and treatment with prednisone, methotrexate, non-methotrexate csDMARDs, 
TNFi-bDMARDs; or non-TNFi-bDMARDs. Additionally, patient ID was treated as a random effect. Any 
covariates whose association with metabolite abundance was statistically significant (i.e., P-value of the 
corresponding regression coefficient < 0.05) were included in an adjusted mixed model for metabolite 
abundance. Finally, metabolites were considered as differentially abundant between the two CRP groups if 
the association between metabolite abundance and CRP group was still found to be significant in the adjusted 
model (P < 0.05).  
 
2.5 Data and Code Availability. 
Raw metabolomic datasets, as well as source codes used to reproduce the results in this study, are available at 
https://github.com/jaeyunsung/RA_plasma_metabolomics_2020. 
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3. Results 
 
3.1 Differentially Abundant Metabolites between Higher and Lower Disease Activity Groups. 
As shown in Figure 1, we first sought metabolites that were significantly different in abundance between two 
major disease activity groups. For this, we divided the 128 metabolomic profiles into two major categories 
(‘higher’ vs. ‘lower’) based upon the reported disease activity of the corresponding patient at the time of 
sample collection (Materials and Methods). Using a mixed-effects logistic regression model (Materials and 
Methods), we identified 33 metabolites as differentially abundant between higher (n = 52) and lower (n = 76) 
DAS28-CRP groups (Fig. 2). Most of these metabolites (31 of 33) were observed to have significantly 
increased abundances in lower disease activity whereas the remaining two (glucuronate and hypoxanthine) 
were found to be significantly increased in higher disease activity. Notably, of the 31 metabolites increased in 
lower disease activity, 7 metabolites (3-hydroxydecanoylcarnitine, dihomo-linoleoylcarnitine (C20:2), 
eicosenoylcarnitine (C20:1), linoleoylcarnitine (C18:3), linoleoylcarnitine (C18:2), stearoylcarnitine (C18), 
palmitoylcarnitine (C16)) are a part of acylcarnitine metabolism, and represent a 3.6-fold enrichment in 
metabolites involved in this particular pathway (P = 1.9 ´ 10-3, hypergeometric test). 
 

 
Figure 2. Plasma metabolites differentiating between higher and lower disease activity groups in RA. A total of 2 and 31 
metabolites were found to be significantly increased in higher (DAS28-CRP > 3.2, n = 52) and lower (DAS28-CRP ≤ 3.2, n = 76) 

disease activity groups, respectively. Each point corresponds to a metabolite (686 total). Differentially abundant metabolites were 
found using a mixed-effects logistic regression model, for which age and sex were adjusted. Metabolites with P-value < 0.05 (based 
upon the corresponding coefficient of the regression model) were considered as significantly different. P-values and fold-changes 
for all metabolites are listed in Supplementary Table 3. Metabolites in bold have been previously described in the literature for 
their associations with RA. 
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N2-acetyl,N6-methyllysine (|log2(FC)| = 1.11, P = 1.26 ´ 10-2) and trigonelline (N’-methylnicotinate) 
(|log2(FC)| = 0.74, P = 2.09 ´ 10-2), which were both found to have increased abundance in lower disease 
activity, were the top two metabolites having the largest fold-changes between the two groups. Although the 
direct relevance of N2-acetyl,N6-methyllysine to RA is currently not well understood, N2-acetyl,N6-
methyllysine is part of the lysine metabolism pathway, which has been reported to be associated with RA in 
the following studies: i) according to Teitsma et al., serum metabolites associated with lysine degradation 
were observed to have a higher concentration in early RA patients who achieved sustained drug-free remission 
(after Tocilizumab- or Methotrexate-based treatment) compared to those who never achieved a drug-free 
status [24]; and ii) Yang et al. reported that metabolic products of lysine degradation (carnitine and pipecolic 
acid) were significantly increased in RA patients than normal subjects [37].  

In regards to trigonelline, which is a product of niacin (vitamin B3) metabolism, this alkaloid has been 
suggested to have therapeutic potential for diabetes and central nervous system disease [38], and also reported 
to demonstrate anti-inflammatory properties in mice [39]. In accordance with our results showing decreased 
abundance of trigonelline in higher disease activity, trigonelline could be of interest in future studies on 
inflammatory responses in RA.  

Biliverdin (|log2(FC)| = 0.48, P = 1.38 ´ 10-2) and bilirubin (E,E) (|log2(FC)| = 0.43, P = 1.18 ´ 10-2), 
which are known metabolic products of the heme catabolic pathway, were also observed to have significantly 
increased abundances in lower disease activity. In particular, biliverdin has been shown to: i) inhibit the 
activation of pro-inflammatory transcription factors, including NFkB both in vitro and in vivo [40-44]; ii) 
inhibit the proliferation of primary T cells stimulated with anti-CD3 and anti-CD28 monoclonal antibodies by 
inhibiting NFAT/NF-kB activation in a mouse model of heart transplantation [45]; and iii) improve corneal 
inflammation mediated by heme-oxygenase 2 (HO-2) deficiency in a transgenic mouse model [41]. Moreover, 
bilirubin, which is derived from the reduction of biliverdin by biliverdin reductase, has been reported as a 
potential biomarker for RA in line with our findings. For example, Peng et al. observed a decreased 
concentration of serum bilirubin in RA patients compared to healthy controls, as well as in RA patients with 
worsening disease activity [46]. Additionally, Fischman et al. found that total bilirubin levels are inversely 
related to RA disease activity even after adjusting for multiple confounders (e.g., age, sex, race), and discussed 
the possibility of bilirubin (a known anti-oxidant) having a physiologic anti-inflammatory effect [47]. This 
point is further elaborated upon by Jangi et al [48], who have described in detail the immunosuppressive 
properties of unconjugated bilirubin in RA and other inflammatory disorders. The full list of differentially 
abundant metabolites and their associated pathways are shown in Supplementary Table 3. 
 
3.2 Metabolic Feature Selection Improves DAS28-CRP Prediction Accuracy. 
Having uncovered metabolites demonstrating altered abundance between two major disease activity groups, 
we next asked whether quantitative disease activity can be predicted with plasma metabolomes. As untargeted 
metabolomic profiling can yield a considerable amount of noise and random fluctuations in observed signals 
[49], it is necessary to first select informative metabolic features that reliably capture relevant aspects of the 
phenotype of interest [50]. For this, we used mixed-effects linear regression models to select metabolites 
significantly associated with DAS28-CRP. Afterwards, the abundances of the selected metabolic features were 
incorporated into a GLM to predict DAS28-CRP. For comparison purposes, a GLM constructed without 
metabolic feature selection, and thereby taking into consideration all features of a metabolomic profile. Details 
regarding GLM construction and performance evaluation are provided in Materials and Methods. 
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When applying a modified leave-one-out cross-validation technique to the training group samples (n = 
128), we found that the GLM incorporating metabolites that were significantly associated with DAS28-CRP 
outperformed the model without feature selection (i.e., using all metabolites). As shown in Figure 3, the 
distribution of absolute errors between the observed and predicted DAS28-CRP scores was smaller (with 
respect to the cumulative area under the error curve) for the GLM with feature selection than that without 
feature selection. To this point, the prediction MAE (±SD) of the GLM with and without feature selection was 
1.51 (±1.89) and 2.02 (±2.52), respectively. 

 
Figure 3. Evaluation of DAS28-CRP predictive performance in cross-validation. A modified leave-one-out cross-validation 
approach was used on the samples of the training group (n = 128) to test the performance of a generalized linear model (GLM) in 
predicting DAS28-CRP scores from metabolite abundances. Distributions of absolute errors from models with and without a feature 
selection scheme were compared to identify the more robust model. The GLM with the feature selection scheme performed better 
(MAE±SD: 1.51±1.89) than the model without feature selection (MAE±SD: 2.02±2.52). 
 

Having confirmed that feature selection can lead to a more accurate prediction model in cross-validation, 
we applied the same scheme to all metabolome samples of the discovery cohort to obtain a final set of 
metabolites associated with DAS28-CRP (P < 0.05). After adjusting for potential confounding factors 
(Materials and Methods), this resulted in a collection of 51 plasma metabolites (Table 2). These metabolites 
were used to construct a GLM, whose predictive accuracy was tested on an independent validation cohort (n 
= 12) of plasma metabolomic profiles from twelve RA patients (importantly, this additional cohort was not 
drawn from the same population distribution from which the features were derived). On this previously unseen 
cohort, the GLM constructed with only the 51 selected metabolites performed considerably better than the 
model without the feature selection scheme by over two-fold (Fig. 4A); the prediction MAE of the GLM with 
and without feature selection was 0.97 (±0.47) and 2.01 (±2.18), respectively. Likewise, when the actual and 
predicted DAS28-CRPs were plotted together for both GLMs (Fig. 4B), we found that the model with the 
selection scheme performed more favorably; a stronger correlation between the disease activity scores was 
observed in the model with feature selection (Spearman’s ρ = 0.69, P = 1.40 ´ 10-2, 95% CI: [0.18, 0.90]) 
compared to the model without (Spearman’s ρ = 0.18, P = 5.72 ´ 10-2 , 95% CI: [-0.44, 0.68]). 
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Table 2. Plasma metabolites significantly associated with DAS28-CRP. 
aSuper-pathways and sub-pathways were defined by Metabolon’s Discovery HD4™ platform; bMetabolite IDs provided by the 
Human Metabolome Database (HMDB); γCoefficients of the predictor variables (metabolites) in the mixed-effects linear regression 
model. Sign and magnitude of the coefficient indicate direction and strength of the correlation (between the metabolite and DAS28-
CRP), respectively. δP-values were retrieved from the corresponding regression coefficients; N/A, not available. 
 

 
Figure 4. GLM with feature selection provides improved DAS28-CRP prediction accuracy in an independent validation 
group. (A) Performance of a GLM in predicting quantitative disease activity was evaluated on samples of an independent validation 
group (n = 12). Distributions of absolute errors from models with and without a feature selection scheme were compared to identify 
the more robust model. (B) Selection of metabolic features prior to model training resulted in higher predictive performance, as 
evidenced by the stronger correlation between observed and predicted DAS28-CRP. Three samples predicted to have negative 
DAS28-CRP values are omitted from the scatter-plot. Dashed violet line indicates ‘y = x’, i.e., an exact match between the observed 
and predicted values. 95% confidence interval for ρ with feature selection: [0.18, 0.90]; without feature selection: [-0.44, 0.68]. 
 
3.3 Commonly Identified Metabolites from Two Different Analytic Approaches. 
To summarize the findings above, we found that from 686 total metabolites in a metabolomic profile, 33 (4.8%) 
were differentially abundant between higher and lower disease activity; and 51 (7.4%) were significantly 
associated with DAS28-CRP scores (Fig. 5). These separate findings amounted to a total of 67 unique 
metabolites, among which 40 were found to have no association with the use of prednisone, methotrexate, 
other non-methotrexate csDMARDs, TNFi-bDMARDs, or non-TNFi-bDMARDs (Materials and Methods). 
Notably, eight metabolites (6-bromotryptophan, bilirubin (E,E), biliverdin, glucuronate, N-acetyltryptophan, 
N-acetyltyrosine, serine, and trigonelline) were not only consistently detected across both analytic approaches, 
but also found to have no association with any treatment use; these results strongly suggest key metabolic 
mechanisms potentially contributing to, or serving as indicators of, RA pathogenesis independent of 
confounding treatment effects. Consistent with this idea, additional studies into the metabolites found in this 
study (the majority of which have yet to be linked to RA) may be able to provide new insight into the perturbed 
physiological metabolic processes—which are then in turn reflected in blood—underlying disease progression 
in RA. 
 
3.4. Metabolites Associate with Patient Groups Divided According to CRP Levels. 
Elevated levels of C-reactive protein (CRP) in the blood often indicate increased inflammatory conditions, 
which may be caused by a wide variety of acute (e.g., infections) and chronic disorders (e.g., rheumatoid 
arthritis, inflammatory bowel disease). In RA patients, CRP levels were observed to increase after acute mental 
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stress tasks [51], and also to be linked to risk of cardiovascular disease [52]. Furthermore, several serum 
metabolites were found to reflect inflammatory activity in patients with early arthritis [53].  

We further investigated the aforementioned 67 plasma metabolites to see whether any were differentially 
abundant between two CRP patient groups, i.e., ‘high-CRP’ (CRP > 3.0 mg/L, n = 52) and ‘low-CRP’ (CRP 
≤ 3.0 mg/L, n = 76) (Materials and Methods). While controlling for potential confounding variables, we 
identified eight total metabolites that were significantly associated with CRP patient group. More specifically, 
the abundances of mannose, beta-hydroxyisovalerate, (14 or 15)-methylpalmitate (a17:0 or i17:0), erucate 
(22:1n9), 10-undecenoate (11:1n1), N-acetylcitrulline were higher in high-CRP, while those of serine and 
linoleoylcarnitine (C18:3) were lower in high-CRP (Fig. 6). Application of these plasma metabolites—found 
to be connected to both disease activity and inflammatory status—may lead to the development of new clinical 
laboratory tests to further enable precision medicine for RA patients. 
 

 
Figure 6. Metabolites differentially abundant between two CRP patient groups. Among the 67 total metabolites identified 
through our multi-approach discovery strategy, eight metabolites were identified to have significant associations with CRP group 
while controlling for confounding variables (regression coefficient for CRP, P < 0.05). (A) Metabolites with higher abundances in 
the high-CRP group: mannose, beta-hydroxyisovalerate, (14 or 15)-methylpalmitate (a17:0 or i17:0), erucate (22:1n9), 10-
undecenoate (11:1n1), and N-acetylcitrulline. (B) Metabolites with higher abundances in the low-CRP group: serine and 
linoleoylcarnitine (C18:3). Low-CRP (n = 76), CRP < 3.0 mg/L; high-CRP (n = 52), CRP >3.0 mg/L. 
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4. Discussion 
Dysfunctions in cellular and tissue metabolism are involved in a broad range of autoimmune disorders [54-
57], including RA [58-60] These metabolic implications highlight the importance to investigate which 
biochemical functions and metabolic states are altered during the onset and progression of disease. To this 
end, metabolomics platforms (and the accompanying wealth of data) can present unique opportunities for 
discovering novel disease signatures, which can be interpreted through the lens of annotated biochemical 
relationships. Moreover, high-throughput profiling can enable the identification of circulating pro-
inflammatory (disease-triggering) and anti-inflammatory (disease-protective) metabolites in RA, as elaborated 
upon by Coras et al. [61]; such discoveries may facilitate the design of either dietary or gut microbiome-based 
intervention strategies to improve wellness or alter the course of disease for RA patients. In this study, by 
performing a global metabolomic profiling analysis on 128 plasma samples obtained from 64 patients with 
RA, we identified biochemical signatures associated with, and predictive of, disease activity. Mainly, through 
a combination of statistical approaches for metabolic signature discovery, we identified several metabolites 
that: i) differ significantly between lower and higher disease activity groups; and ii) significantly associate 
with DAS28-CRP. Of note, our study is the first to leverage biochemical features from a plasma metabolomic 
profile to predict quantitative disease activity.  

Interestingly, we identified eight metabolites (6-bromotryptophan, bilirubin (E,E), biliverdin, glucuronate, 
N-acetyltryptophan, N-acetyltyrosine, serine, and trigonelline) that were commonly found across different 
statistical approaches, possibly capturing representative metabolite signals of RA progression. We discussed 
above the reported roles of bilirubin and biliverdin in RA. Moreover, these two metabolites were previously 
reported for their cytoprotective and anti-inflammatory effects [62-66], and even suggested as an “RA 
protective factor” by Fischman et al. [47]. Interestingly, high concentrations of bilirubin and biliverdin were 
reported in other inflammatory disorders, such as atherosclerotic diseases [67] and autoimmune encephalitis 
[65]. In regards to the other six metabolites, clear and definitive connections with RA have not yet been 
established. However, if our results on bilirubin and biliverdin were to serve as benchmarks for reliably 
identifying plasma metabolites important to RA disease activity, then these remaining metabolites may be 
deemed as leading candidates for further investigations. 

Glucuronate was found to show elevated abundance in higher disease activity than in lower disease activity. 
This glucose-derivative is involved in the detoxification of xenobiotics via glucuronidation in the mammalian 
liver. Interestingly, this process can be reversed by gut bacteria harboring b-D-glucuronidases [68], and 
thereby releasing (potentially toxic) exogenous compounds into the gut lumen and subsequently into 
circulation [69, 70]. In that respect, examining a possible role involving dysbiosis in the gut microbiota—
combined with metabolomic approaches to infer relationships between gut microbes and blood metabolites in 
RA, as shown by Chen et al. [71]—may help elucidate a microbial-based mechanism explaining the observed 
alterations in plasma glucuronate. 

Serine was seen to decrease with worsening disease activity. In line with our results, albeit in an RA mouse 
model with collagen-induced arthritis (CIA), plasma levels of serine and other free amino acids were found to 
have significantly decreased in the CIA group compared to control mice [72]. In another study wherein 
synovial fluid of RA patients were examined for citrullinated proteins (which is widely known to result in a 
rise in anti-citrullinated protein antibodies in RA), Tilvawala et al. found increased citrullination in a wide 
array of serine protease inhibitors (Serpins) and serine proteases [73]; in the same study, the investigators 
demonstrated in vitro that citrullinating serine protease inhibitors nearly abolishes their inhibitory activity 
towards their target proteases. Although we have yet to uncover whether a decrease in plasma serine levels 
(with worsening disease activity) is linked to citrullination of serine proteases in synovial fluid, we speculate 
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that changes in serine may reflect dysregulated protein degradation during systemic inflammatory activity and 
joint destruction in RA. 

We note a few limitations of this study: First, we acknowledge that our study includes a relatively small 
number of samples within each disease activity group. Nevertheless, we were able to detect statistically 
significant metabolites in all three analytical strategies, demonstrating that our data provides reasonably 
sufficient statistical power; Second, to define RA disease activity, we solely used the DAS28-CRP scoring 
system, which is dependent upon acute-phase responses that may not accurately reflect patients who have an 
inflammation-free state [24]. Our future plans include performing our analytical pipeline with other RA 
disease activity metrics (e.g., clinical disease activity index (CDAI), simple disease activity index (SDAI)) to 
test the robustness of our findings; Lastly, all of our multivariate analyses followed adjustment for patient age 
and sex only. Other potential confounders that may affect the concentration of blood metabolites, such as diet, 
exercise habits, comorbidities, and gut microbiome, were not considered as predictor variables in our analyses 
due to sparseness in data collection on relatively small sample sizes (thereby assuming lack of adequate 
statistical power). In order to more meticulously examine the role of blood metabolites in RA, future 
investigations will warrant a higher number of samples and more detailed subject characteristics. 

Despite the aforementioned limitations, our study establishes the far-reaching utility of using cutting-edge 
technological and analytical approaches for plasma metabolomic profiling and advancing precision medicine 
in RA. Moreover, our identified sets of signature metabolites offer a promising glimpse into biomolecular 
marker panels for diagnosing the disease activity of RA patients solely through blood (thereby complementing 
current diagnostic approaches), with the overall aim to make such assessments faster, cheaper, and/or less 
invasive. Looking forward, our study justifies analogous investigations at larger scales, and opens up the 
possibility of developing novel blood tests that could lead to improved management and outcomes of patients 
with RA and other rheumatic diseases. 
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