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Abstract 

Background. Machine learning (ML) models are beginning to proliferate in psychiatry, however 

machine learning models in psychiatric genetics have not always accounted for ancestry. Using 

an empirical example of a proposed genetic test for OUD, and exploring a similar test for 

tobacco dependence and a simulated binary phenotype, we show that genetic prediction using 

ML is vulnerable to ancestral confounding. 

Methods. We utilize five ML algorithms trained with 16 brain reward-derived “candidate” SNPs 

proposed for commercial use and examine their ability to predict OUD vs. ancestry in an out-of-

sample test set (N=1000, stratified into equal groups of n=250 cases and controls each of 

European and African ancestry). We rerun analyses with 8 random sets of allele-frequency 

matched SNPs. We contrast findings with 11 genome-wide significant variants for tobacco 

smoking. To document generalizability, we generate and test a random phenotype.  

Results. None of the 5 ML algorithms predict OUD better than chance when ancestry was 

balanced but were confounded with ancestry in an out-of-sample test. In addition, the algorithms 

preferentially predicted admixed subpopulations. Random sets of variants matched to the 

candidate SNPs by allele frequency produced similar bias. Genome-wide significant tobacco 

smoking variants were also confounded by ancestry. Finally, random SNPs predicting a random 

simulated phenotype show that the bias attributable to ancestral confounding could impact any 

ML-based genetic prediction. 

Conclusions. Researchers and clinicians are encouraged to be skeptical of claims of high 

prediction accuracy from ML-derived genetic algorithms for polygenic traits like addiction, 

particularly when using candidate variants.  

 

Key Words: Opioid Use Disorder, Machine Learning, Algorithmic Bias, Ancestry, Candidate 

Genes  
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1.Introduction. Machine learning (ML) applications are increasingly used to leverage big data 

from electronic health records to classify patient populations (Ellis et al., 2019). In the realm of 

direct to consumer (DTC) and physician-guided genetic testing, ML approaches are gathering 

momentum, especially for psychiatric disorders.  Currently, several commercial entities offer 

genetic testing for psychiatric disorders, and some have begun to offer controversial and 

scientifically disproven proposals for genetic embryo selection for behavioral and psychiatric 

traits (Karavani et al., 2019). While most genetic tests within psychiatry are aimed at medication 

efficacy in patients (e.g., pharmacogenetic or pharmacokinetic testing), a few recent tests target 

prediction of future psychiatric disorders.  Alongside the potential ethical challenges of such 

predictions (Hooker, 2021) lie the scientific limitations. The genetic “inputs” that are used by 

these tests typically comprise of “candidate gene variants” that are scored using pattern 

recognition software, powered with “artificial intelligence” frameworks, such as machine 

learning (ML). Most candidate variants have not borne out in unbiased genome-wide association 

studies (GWASs) (Border et al., 2019; Johnson et al., 2017). Yet, they tend to be popular as 

genetic markers of disease risk in commercial assays (e.g., Keri Donaldson, et al. 2017) . 

Exacerbating the problem of false positive candidate variant findings, past work on ML 

algorithms in psychiatric genetics has shown that these models may not systematically account 

for genetic ancestry (Bracher-Smith et al., 2020). As a consequence, patients and physicians are 

now confronted with products that may be unrelated to disease, but rather serve as panels of 

ancestry informative markers.  

One psychiatric illness that is being targeted by ML-based genetic algorithms is opioid 

use disorder (OUD), a complex trait associated with high disease burden, and estimated to affect 

2% of the adult population (Saha et al., 2016). Predictive tools that aim to identify at-risk 
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individuals for prevention and early intervention are being developed (Ellis et al., 2019), and 

because OUDs are moderately heritable (h2 = 30-70%; Sun et al., 2012), incorporating genetic 

variation into a predictive tool has great appeal. In addition, because opioids comprise front-line 

pain management drugs, biomarkers that index risk of OUD in this setting are of potential 

interest. Industry-selected candidate variants (e.g., in dopamine and serotonin candidate genes) 

are routinely favored by those developing purported prediction tools for addiction, despite the 

scientific consensus regarding the weaknesses inherent to selection of candidate genes (Border et 

al., 2019; Duncan and Keller, 2011; Johnson et al., 2017). However, OUD is highly polygenic 

with a large number of variants of small effect contributing to its heritability. The largest 

genome-wide association study (GWAS) of OUD to date (15,756 OUD cases and 99,039 

controls) identified only one genome-wide significant variant, rs1799971, in the gene encoding 

the mu opioid receptor (OPRM1) (Zhou et al., 2020); the effect size associated with this variant 

was small (β = -0.066 [SE = 0.012]). Current estimates of the total single nucleotide 

polymorphism (SNP)-based heritability of OUD is 11% (SE = 1.8%)(Zhou et al., 2020), putting 

a limit on overall predictive ability using common variants. Thus, we hypothesized that when 

ML algorithms utilize unsubstantiated candidate variants and do not properly account for 

population stratification, they produce predictions of disease outcome that are spurious and can 

cause mis-diagnosis.  

In contrast to OUD, loci for tobacco phenotypes are numerous (Liu et al., 2019). Similar 

to OUD, the top genome-wide significant variants for tobacco smoking were in candidate genes 

(e.g., variants in CHRNA5, CYP2A6). These GWAS-validated candidate variants may have 

measurable impact on smoking cessation (Chen et al., 2020). Whether the selection of GWAS-

validated candidate variants ameliorates challenges of ancestrally confounded ML prediction 
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remains unevaluated. To investigate whether genome-wide significant variants that may also 

have been candidate variants would overcome limitations of the OUD genetic test, we selected 

the 11 lead SNPs from the largest GWAS of cigarettes smoked per day for a comparison analysis 

(Liu et al., 2019). To further demonstrate the generalizability of ancestral confounding in ML, 

we simulated random genotypes and phenotypes to document that ancestral confounding 

produces seemingly accurate prediction even when the phenotype is random noise and the 

variants are selected randomly from the genome.   

OUD and tobacco smoking are leading contributors to mortality – precision medicine 

efforts to preempt progression to drug misuse or intervene with tailored treatments will likely 

continue to incorporate genetic data. While a good predictor could aid physicians by providing 

them with additional information on which to base personalized treatment options, inaccurate 

predictive tests pose substantial hazards. For OUD in particular, the possible harms attributable 

to a false positive result include both the withholding of beneficial medication and discrimination 

(e.g., employer bias). Such tests must be rigorously evaluated. Here, we examine two critical 

considerations in genetic prediction tools, particularly those developed using ML: population 

stratification and variant (feature) selection.  First, we test the prediction accuracy of ML models 

with candidate variants that comprise a commercial genetic test (previously Life Kit Predict from 

Prescient Medicine, now available from Solvd Health: https://solvdhealth.com/oud/). We 

examine accuracy as genetic ancestry is progressively accounted for. We also test the impact of 

mismatched ancestry as a predictor of degree of admixture in African Americans.  Next, to test if 

a better choice of genetic variants ameliorates the problem, we select 11 variants implicated by 

the largest GWAS of cigarettes per day and use the same ML models to predict tobacco 

dependence, as assessed with the Fagerström Test for Nicotine Dependence. We also use random 
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sets of genetic variants (that have been matched by allele frequency to the original variants) to 

see how these randomly selected SNPs compare to the candidate SNPs across different 

subsamples for a simulated trait. We hypothesize that ML algorithms will preferentially identify 

ancestral confounding over traits of interest, regardless of the quality of the genetic variants. 

 

2.Methods 

2.1 Selection of direct-to-consumer test methodology for comparison 

We identified current consumer/physician-oriented genetic tests by conducting a web 

search within Google for “Genetic Testing for Psychiatry” and “Genetic Testing for Addiction” 

and selecting all tests from the first five pages.  Supplemental Table 1 shows a list of the 12 

tests that were found, and known mechanisms for evaluation.  The methodology presented in the 

current study was based on those used by Solvd Health (previously Life Kit Predict®), a 

physician guided genetic testing kit for OUD.  This test was selected because (a) it purports to 

predict, with 97% accuracy, risk for OUD, a complex trait that has been shown to be highly 

polygenic and influenced by environment, (b) is accompanied by a training procedure that was 

published and therefore, can be recapitulated. While not completely transparent, this was the 

only test with enough information to allow us to evaluate the test, as described below.  

The genetic component of Solvd Health’s prediction algorithm relies on 15 or 16 

candidate single nucleotide polymorphisms (SNPs) depending on the version of the test 

(Donaldson, et al. 2017), most of which are used in other DTC tests (see Supplemental Table 1) 

and have often been labeled in the psychiatric genetics literature as “candidate genes” (Border et 

al., 2019; Johnson et al., 2017). Only one of these SNPs (OPRM1*rs1799971) has been shown 

by GWAS to affect OUD risk; the very small effect size of this variant (beta= -0.066, p=1.51e-
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10) is unlikely to predict OUD risk to a great degree. With the exception of rs1799971, none of 

these candidate SNPs have been associated at genome-wide significant levels (p<5E-8) 

(Supplemental Table 2) with any complex trait in the GWAS Atlas (Watanabe et al., 2019) 

(Supplemental Table 3). However, the MAFs of many of the candidate SNPs vary greatly 

across ancestral populations (Figure 1).  That is, taken individually, they tend to be associated 

with one’s ancestral population, but not to a trait. Accordingly, it was our expectation that sets 

of these markers would also necessarily be associated to population rather than trait, regardless 

of the sophistication of the interposed statistical methodology. 

2.2 Sample description  

We tested the approach using data from subjects recruited at five sites across the eastern 

United States as part of the Yale-Penn study of the genetics of substance dependence and 

comorbid psychiatric and behavioral phenotypes (McCarthy et al., 2016). All participants were 

interviewed with the Semi-Structured Assessment for Drug Dependence and Alcoholism 

(Consortium et al., 2016) and provided written informed consent through a protocol approved by 

the institutional review board at each participating site – Yale Human Research Protection 

Program (protocols 9809010515, 0102012183, and 9010005841), University of Pennsylvania 

Institutional Review Board, University of Connecticut Health Center Institutional Review Board, 

Medical University of South Carolina Institutional Review Board for Human Research, and the 

McLean Hospital Institutional Review Board. Funding agencies did not play any role in the 

study. 

 

2.3 Genotyping and quality control 

 

The Yale-Penn phase 1 sample was genotyped using the Illumina HumanOmni1-Quad 

array. Individuals with mismatched sex or genotype call rate < 98% were removed; SNPs with 
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genotype call rate < 98% or minor allele frequency < 0.01 were removed before imputation. 

Imputation was performed using Minimac3 (McCarthy et al., 2016) and the Haplotype Reference 

Consortium reference panel implemented in the Michigan Imputation Server 

(https://imputationserver.sph.umich.edu/index.html). More details on the Yale-Penn sample can 

be found elsewhere (Zhou et al., 2017). 

Genetic ancestral group was defined by principal component (PC) analysis on genotyped 

SNPs (pruning by linkage disequilibrium of r2 > 0.2) and the 1000 Genome phase 3 reference 

panels (Auton et al., 2015) using EIGENSOFT (Patterson et al., 2006; Price et al., 2006a). The 

first 10 PCs were used to cluster the participants into African-American and European-American 

groups and to remove outliers from the 2 groups. 

European-ancestry proportions in African-American samples were estimated using 

ADMIXTURE (Alexander et al., 2009). SNPs were included in ancestry prediction following the 

developer’s recommended independent SNP selection procedures. ADMIXTURE’s cross-

validation (CV) procedure was used to determine the most appropriate K – the most sensible 

number of component ancestries with which to model unknown sample ancestries. Based on 

lowest CV error and failure to substantially reduce CV error with additional K, we chose K=2 as 

appropriate for these data. The mean European ancestry for the African-Americans included in 

this study was 23.2%. 

 

2.4 Selection of random sets of 16 variants.  

We calculated, in the Yale-Penn sample, the minor allele frequency (MAF) of the SNPs 

in Donaldson et al. (2017) using PLINKv1.90 over a total sample of 5,057 individuals (3286 

African American and 1768 European American). For comparison, in addition to the SNPs used 

by Donaldson et al. (2017) we identified 8 lists of random SNPs - each SNP from Donaldson et 
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al. was replaced by a random SNP with matched MAF in the 2 populations; all random SNPs 

were unique. 

 

2.5 Machine learning training procedure  

Each of the 16 alleles was dummy coded for homozygosity or heterozygosity status to 

allow for interactions among different levels of dosage of each minor allele from each SNP with 

minor allele dosages of other SNPs (i.e., to measure epistasis, if present). Each supervised ML 

algorithm was trained separately in the same training set, which varied from 500 to 1000 

individuals based on k iterations of the learning curve (see Figure 2).  The training and test sets 

were initially analyzed in a way that assured that they were completely confounded by 

population differences, with all cases of European ancestry and all controls of African ancestry. 

At each iteration of the learning curve, we added 10 individuals of African descent to the cases 

and 10 individuals of European descent to the controls, through 26 steps, to reach completely 

balanced samples (see Figure 2).  

For our analysis, we chose 5 broad algorithm-generating methods as a survey of 

supervised ML, because they have been used by academic and commercial entities to attempt to 

predict OUD. All were implemented in the Caret package in R version 3.6.110: (1) (extreme) 

Gradient Boosted Machines (GBM), which incorporate population stochastic gradient descent 

procedures that are ubiquitous in industry; (2) Linear and (3) nonlinear (radial basis function) 

Support Vector Machines (SVM) to compare predictive accuracy from different kernels; (4) 

Random Forests (RF) to represent more complex tree structures; and (5) Elastic Nets (EN) for 

representation of (flexible) linear regression models. All models were trained with 10-fold cross 

validation and a hyperparameter grid-search in the training set. All Area Under the Curve (AUC) 
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and pseudo r2 were extracted from the non-overlapping test set. Learning curves were plotted at 

all iterations. 

 

2.6 Generalizability of confounding tested using Tobacco Dependence and a random binary 

phenotype 

 To examine the generalizability of this confounding beyond the test case of OUD 

prediction, we examined prediction of tobacco dependence, measured by the Fagerstrom Test of 

Nicotine Dependence (FTND).  Cases were defined as scores ≥4 and controls with scores <4 

(Heatherton, et al., 1991). Eleven genome-wide significant lead variants for cigarettes per day 

were selected from the Liu et al. (2019) cigarettes per day GWAS and the Quach et al. (2020) 

GWAS of FTND. We used both the cigarettes per day and the FTND GWAS because they are 

genetically correlated at .95 and share some of the same lead SNPs (Quach et al., 2020): 

rs3743078, rs16969968, rs56113850, rs58379124, rs215600, rs3025383, rs2072659, rs7951365, 

rs7431710, rs11725618, rs45568238.  We limited our learning curves to 140 subjects in each 

ancestral group and case/control group (instead of 250), as this sample size allowed for ancestral 

balance needed for the learning curve approach (as there are only 140 control of European 

ancestry available). We also trained the models within the European American (EA) and African 

American (AA) subsamples. Data on 658 cases (AA = 302, EA = 356) and 342 controls (AA = 

198, EA = 142) were used in training and testing sets, respectively.  

 To explore the problem further, we generated a random binary phenotype by drawing 

from a binomial distribution. That is, the phenotype was essentially random noise and therefore 

not truly predictable. We matched the number of cases and controls for our random variable by 

genetic ancestry, such that we ended with the same split in cases and controls by ancestry as was 
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used in our OUD demonstration.  We then took the 8 random SNP set permutations and used 

them to predict the random noise. Because we used random SNPs with random outcomes, the 

effects provide an empirical NULL hypothesis: what the data look like when the result is by 

definition meaningless. We hypothesized that this empirical null will still show high effect sizes 

at high confounding, i.e., even random noise can seemingly be “accurately” predicted when the 

sample is confounded.  

 

3. Results 

3.1 Evaluation of a modern OUD prediction kit in the presence of confounding by ancestry.  

For our empirical test, all models were trained using the panel of 16 SNPs referenced in 

Donaldson et al. (Donaldson, et al. 2017), the basis for Solvd Health’s OUD test kit, and were 

trained to predict OUD in the Yale-Penn sample. These 16 variants demonstrate substantial allele 

frequency differences across ancestries (Figure 1). As shown in Figure 3A for all 5 ML 

methods, prediction of OUD case status was apparently high (AUC > 0.8) when the sample was 

fully confounded (that is, when predictions were essentially predictions of genetic ancestry), and 

case-status prediction decreased as samples were better ancestrally balanced, until the prediction 

was no better than expected by chance alone in a balanced sample (AUC approached 0.5). At 

every iteration of every ML approach, the 16 variants predicted genomic ancestry much better 

than they predicted OUD. 

 

3.2 Random SNPs predict OUD as well as biologically plausible SNPs due to confounding.  

All iterations with 8 permutations of random SNPs matched on minor allele frequency to 

those in Donaldson et al. (2017) performed similarly to the published candidate SNPs (Figure 
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3B shows 1 permutation, the other 7 are shown as Supplemental Figure 1). Across all iterations 

of all permutations the ML models using random SNPs were apparently predictive of OUD when 

confounded by ancestry, with decreasing prediction as ancestral balance improved. They were 

better predictors of ancestry than OUD. Therefore, the candidate variants perform no better than 

randomly selected variants with the same ancestral allele frequencies.  

 

3.3 Confounded models are better at detecting subpopulation within minority populations than 

diagnosis. 

As African Americans include substantial European admixture (Jordan et al., 2019) we 

examined whether the 16 OUD variants used by Solvd Health predict the extent of European 

(genetic) admixture within the African American cases and controls. We chose the 15th iteration 

(Figure 3) of the learning curve as it had the greatest balance of ancestry that still offered some 

prediction of OUD that was greater than chance. Across all approaches, ML models designed to 

predict OUD were up to 5 times better predictors of the percent of European admixture in 

African-American individuals than of OUD (i.e., case status) (Figure 4).  

3.4 Genome-wide significant variants for Nicotine Dependence show similar bias.  

 Using variants discovered in a large, un-biased GWAS of tobacco smoking (Liu et al., 

2019; Quach et al., 2020) showed the same pattern: when models were confounded by ancestry, 

genetic prediction of nicotine dependence appeared to be accurate but the apparent accuracy fell 

to zero as we balanced ancestral groups within cases and controls (Supplemental Figure 2). At 

all iterations, the model was better at predicting ancestry than nicotine dependence, even with 

SNPs that were genome-wide significant. Finally, we trained the prediction model within each 

ancestral population and found that AUC values did not exceed .504 in the European sample 
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(Supplemental Table 4), suggesting no prediction even when training within the discovery 

ancestral population. 

3.5 Ancestral confounding leads to random genotypes making apparently accurate predictions of 

random phenotypes, mirroring results for OUD.     

We next took the 8 random sets of SNPs (above) and used them to predict a randomly 

generated phenotype.  For a randomly generated phenotype, at perfect confounding by major 

geographic ancestral group, we get high apparent predictive accuracy of random noise, but as we 

balanced the training and test sets by ancestry, our model performs as expected, with prediction 

no better than a coin flip (Figure 3C).  Across all iterations (Supplemental Figure 3), all 

models trained to predict random noise were stronger predictors of ancestry than random noise, 

suggesting that even if the outcome is meaningless, we can gain the appearance of meaningful 

results in the presence of ancestral confounding.  

 

4. Discussion 

ML models trained either on a handful of selected candidate variants or across the whole 

genome are strongly sensitive to confounding by genetic ancestry (Polimanti et al., 2015). We 

demonstrate these underlying problems for a specific genetic test for OUD, but our simulations 

demonstrate that the confound is generalizable – once ancestry is accounted for, these ML 

models offer no evidence of predictive ability greater than chance. Our findings argue for great 

caution when evaluating results of other ML-based genomic analyses that do not explicitly and 

fully account for ancestral confounding.  

In the field of ML, our results fall under the study of “algorithmic bias” (Hooker, 2021).  

Examples in healthcare research outside genetics (Obermeyer et al., 2019) show that pattern 
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recognition with little understanding of underlying phenomena (e.g., social population 

stratification) may produce biased results. Here, we demonstrated that in the context of genomic 

data, this algorithmic bias was generated by population stratification, a well-characterized 

phenomenon in statistical genetics (Price et al., 2006b) that is yet to be widely dealt with by ML 

in psychiatric genetics (Bracher-Smith et al., 2020).   

As human genetics has shown, this challenge is surmountable. Most ML algorithms allow 

for some form of de-confounding, typically as a multi-step or multi-model procedures. While 

typical ML pipelines employ multiple algorithms and simply select the best, more extensive 

individual attention to the choice of algorithm is needed to evaluate confounding in the face of 

known covariates.  Several avenues may be pursued based on the choice of a model. For 

example, in this paper (and in those models used by industry professionals) gradient boosted 

machines were used, which can (but have yet to) include sample weights in the model training 

procedure.  Corrections for support vector machines also exist, and remove statistical 

dependence in the model training procedure (Li et al., 2011).  Extensive work with each 

algorithm will best determine future routes for de-confounding, and needs to be an essential part 

of model training beyond just predictive accuracy.  To cut across algorithms here, we show 

stratified analysis with learning curves.  In particular, learning curves should be purposefully 

developed with ancestral stratification in mind to ensure that lingering cryptic admixture does 

not confound predictions. Finally, statistical procedures will only take us so far, and careful 

considerations of samples and confounding, as is standard in GWAS literature, is critical to 

reduce confounding in genetic testing practices. However, restricting analyses to one continental 

ancestry (e.g., Europeans only) is not the solution to ancestrally confounded analyses. While that 

may attenuate gross confounding, we show that cryptic admixture remains an issue. Instead, 
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larger training and testing samples of diverse ancestral populations are needed to accelerate 

genomic discovery and ensure that when aggregated effect sizes are large enough, precision 

medicine will benefit all global communities (Martin et al., 2017).  

Even with appropriate adjustment for admixture, it is unlikely that candidate variants that 

are not substantiated by well-powered GWAS will produce any meaningful prediction of OUD. 

Recent meta-analyses of depression (Border et al., 2019), schizophrenia (Johnson et al., 2017), 

and executive function (Hatoum et al., 2019) overwhelmingly show that the vast majority of 

candidate variants in psychiatry do not rise to levels of genome-wide significance. An exception 

is addiction, where GWAS have recapitulated candidate gene findings. Unfortunately, as shown 

by our analyses of nicotine dependence, even these genome-wide significant variants fail to 

circumvent the issue of ancestral confounding within ML models. An alternative might involve 

incorporating information across the genome. For instance, polygenic risk scores (PRS) for 

tobacco smoking have produced promising findings, including in clinical settings (Chen et al., 

2018). However, even PRS with appropriate control for ancestry in the largest samples to date 

offer limited clinical utility (Liu et al., 2019).   

Several limitations are noteworthy. First, the original publication by Donaldson et al. 

(2017), did not provide detailed characteristics of the samples in which the algorithms were 

developed and tested, nor the specific procedures used. This is not atypical for “proprietary” 

commercial products, but made it challenging to fully approximate their analytic pipeline; hence 

we tested 5 different ML approaches. Standards for reporting such product development, such as 

the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or 

Diagnosis (TRIPOD)(Collins et al., 2015), would allow researchers to better evaluate claims of 

genetic prediction, particularly using methods such as machine learning.  Second, we focused on 
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one existing product and did not evaluate all possible methods for genetic prediction, for 

example, polygenic risk scores (PRS). As noted above, PRS offer an opportunity to study 

aggregated genome-wide genetic susceptibility, but have their own caveats (e.g., additivity; see: 

Bogdan et al., 2018; Dudbridge, 2013; Martin et al., 2017). This work focuses squarely on one 

approach for genetic prediction as it increasingly gains momentum in allied health fields – use of 

candidate genes and ML. Limitations notwithstanding, this work shows that using a handful of 

candidate variants in a ML framework that is naïve to genetic confounders is likely to produce 

biased prediction that misclassifies individuals, especially in ancestrally mixed samples. 

5. Conclusions  

 Opioids are useful for pain management, but are also highly addictive. Against the 

backdrop of the opioid epidemic, the desire for tests that can provide insight into the likelihood 

of patients developing OUD is understandable, and DTC or physician-guided testing seems 

appealing. However, to avoid problems of under-treatment, that might disproportionately affect 

people of admixed ancestry, it is critical that any proposed test be fully vetted to ensure that it 

properly accounts for potential confounding by ancestry and accurately predicts the trait of 

interest.  
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Figure Legends 
 
Figure 1.   Population allele frequencies (from GNomad (Karczewski et al., 2020)) for the 

candidate alleles in Donaldson et al.( Donaldson et al., 2017) Solvd Health® 

(https://solvdhealth.com/oud/; accessed July 12th, 2021) across different major geographic 

ethnic groups showing substantial variation in frequency across global populations.  

 

Figure 2. Learning curve procedure for all analyses. We had a complete and non-overlapping 

training and test set, each of 1000 subjects with 250 cases and controls of European and 

African descent. (A) For the first iteration we started with 250 subjects of European descent 

(tan) that were OUD cases, and 250 subjects of African descent (blue) that were controls.  (B) 

At each iteration, we added 10 OUD individuals of African descent to the cases and 10 controls 

of European descent to the controls. We estimated the model in the training data and used it to 

predict OUD status in the non-overlapping test set. (C) By the final iteration, we had a training 

and test set that was balanced by major geographic ancestry and OUD status.  

 

Figure 3. Learning curves from models trained to predict opioid dependence from 16 “reward-

related” SNPs (Donaldson et al., 2017). The curves are plotted by AUC based on their 

prediction of opioid dependence (orange) and geographic ancestry (blue) as the samples start 

from complete population confounding become more balanced by major geographic ancestry 

(European American or African American) until completely balanced. Each data point 

represents a larger and more balanced sample size by adding 20 individuals, 10 African 

American cases and 10 European American controls (as measured on the x-axis).  (A) A priori 

Candidate SNPs predicting Opioid Use Disorder. (B) Set 1 of randomly selected (MAF matched) 

SNPs predicting Opioid Use Disorder. (C)  Set 1 of Random (MAF match) SNPs predicting a 

random phenotype binary phenotype.  Across all perspectives, the prediction is entirely driven 

by major geographic ancestry.  
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Figure 4. Bar plots of the pseudo r2 from a logistic regression comparing the predictions of 

opioid dependence and percentage of European ancestry in a sample of 250 African American 

individuals from the Yale-Penn Test set. Pseudo r2 was used instead of AUC because the 

percentage of European descent is a continuous variable and this put both predictions on the 

same scale.  
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Figure 1.   Population allele frequencies (from GNomad(Karczewski et al., 2020)) for the 
candidate alleles in Donaldson et al.(Keri Donaldson, Laurence Demers, Joe Lopez, 2017) 
LifeKit Predict® (https://prescientmedicine.com/technologies/lifekit-predict/; accessed 
September 8th, 2020) across different major geographic ethnic groups showing substantial 
variation in frequency across global populations.  
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Figure 2. Learning curve procedure for all analyses. We had a complete and non-overlapping 
training and test set, each of 1000 subjects with 250 cases and controls of European and 
African descent. (A) For the first iteration we started with 250 subjects of European descent 
(tan) that were OUD cases, and 250 subjects of African descent (blue) that were controls.  (B) 
At each iteration, we added 10 OUD individuals of African descent to the cases and 10 controls 
of European descent to the controls. We estimated the model in the training data and used it to 
predict OUD status in the non-overlapping test set. (C) By the final iteration, we had a training 
and test set that was balanced by major geographic ancestry and OUD status.  
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Figure 3. Learning curves from models trained to predict opioid dependence from 16 “reward-
related” SNPs(Keri Donaldson, Laurence Demers, Joe Lopez, 2017). The curves are plotted by 
AUC based on their prediction of opioid dependence (orange) and geographic ancestry (blue) 
as the samples start from complete population confounding become more balanced by major 
geographic ancestry (European American or African American) until completely balanced. Each 
data point represents a larger and more balanced sample size by adding 20 individuals, 10 
African American cases and 10 European American controls (as measured on the x-axis).  (A) 
A priori Candidate SNPs predicting Opioid Use Disorder. (B) Set 1 of randomly selected (MAF 
matched) SNPs predicting Opioid Use Disorder. (C)  Set 1 of Random (MAF match) SNPs 
predicting a random phenotype binary phenotype.  Across all perspectives, the prediction is 
entirely driven by major geographic ancestry. 
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Figure 4. Bar plots of the pseudo r2 from a logistic regression comparing the predictions of 
opioid dependence and percentage of European ancestry in a sample of 250 African American 
individuals from the Yale-Penn Test set. Pseudo r2 was used instead of AUC because the 
percentage of European descent is a continuous variable and this put both predictions on the 
same scale.  
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