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Abstract 56 

Background 57 

Tuberculosis (TB) is a major cause of death worldwide. TB research draws heavily on clinical 58 

cohorts which can be generated using electronic health records (EHR), but granular information 59 

extracted from unstructured EHR data is limited. The St. Michael’s Hospital TB database (SMH-60 

TB) was established to address gaps in EHR-derived TB clinical cohorts and provide researchers 61 

and clinicians with detailed, granular data related to TB management and treatment. 62 

Methods 63 

We collected and validated multiple layers of EHR data from the TB outpatient clinic at St. 64 

Michael’s Hospital, Toronto, Ontario, Canada to generate the SMH-TB database. SMH-TB 65 

contains structured data directly from the EHR, and variables generated using natural language 66 

processing (NLP) by extracting relevant information from free-text within clinic, radiology, and 67 

other notes. NLP performance was assessed using recall, precision and F1 score averaged across 68 

variable labels. We present characteristics of the cohort population using binomial proportions 69 

and 95% confidence intervals (CI), with and without adjusting for NLP misclassification errors. 70 

Results 71 

SMH-TB currently contains retrospective patient data spanning 2011 to 2018, for a total of 3298 72 

patients (N=3237 with at least 1 associated dictation). Performance of TB diagnosis and 73 

medication NLP rulesets surpasses 93% in recall, precision and F1 metrics, indicating good 74 

generalizability. We estimated 20% (95% CI: 18.4-21.2%) were diagnosed with active TB and 75 

46% (95% CI: 43.8-47.2%) were diagnosed with latent TB. After adjusting for potential 76 

misclassification, the proportion of patients diagnosed with active and latent TB was 18% (95% 77 

CI: 16.8-19.7%) and 40% (95% CI: 37.8-41.6%) respectively 78 

Conclusion 79 

SMH-TB is a unique database that includes a breadth of structured data derived from structured 80 

and unstructured EHR data. The data are available for a variety of research applications, such as 81 

clinical epidemiology, quality improvement and mathematical modelling studies. 82 

  83 
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Introduction  84 

Tuberculosis (TB) is the top infectious killer worldwide, resulting in 1.6 million deaths in 2017 85 

(1). 1.7 billion people carry the latent form of the infection, of whom 10% at minimum, will 86 

develop the active, infectious form of disease. Latent TB infection (LTBI) progression to active 87 

disease can be prevented and TB can be cured, with appropriate antibiotics taken over many 88 

months. TB is endemic in many low-income countries and particularly prevalent in Asia and 89 

Africa. The World Health Organization recommends the treatment of LTBI as part of the global 90 

“End TB Strategy”, and an achievable goal critical to TB elimination in high-income countries 91 

(2,3).  92 

Given the burden of active TB disease is disproportionately carried in low-resource settings, 93 

research addressing disease epidemiology, treatment (including clinical trials and programs of 94 

delivery), and the use and utility of innovative and point of care diagnostics is often completed in 95 

the populations of countries with highest burden of TB. The prevalence of LTBI on the other 96 

hand, is considerable even in high-income countries (CDC estimates 13,000,000 people living 97 

the USA have LTBI (4)) and thus research ranging from basic pathogenesis to program 98 

development can be conducted on the global population. Indeed while advances in biomedical 99 

research over the past 1 to 2 decades have delivered successes ranging from rapid point-of-care 100 

diagnostics testing for pulmonary TB to the development of novel therapeutics such as 101 

bedaquiline and delamanid, many questions remain, including, for example, discovering 102 

biomarkers that precisely indicate individuals at risk of LTBI activation and developing 103 

programs of TB care that ensure efficacy, are equitable and resilient (1,5).  104 

Many primary care practices and hospitals in high-income countries have curated electronic 105 

health record (EHR) data for research and surveillance (6–9), that improve ease of access to 106 

information and data sharing for collaborative work. The use of EHRs in hospital and office-107 

based clinical practices has risen substantially in the past decade, providing rich data sources that 108 

have the potential to simultaneously improve patient care and advance research initiatives 109 

(10,11). Most EHR-derived databases are however limited to structured data, such as 110 

demographic information collected at patient registration, laboratory tests and results and 111 

diagnostic codes used in physician billing. As such, the rich, granular data embedded within 112 

unstructured (text) data from dictated notes on both hospital admitted and clinic patients are 113 

excluded (12,13) unless these variables are abstracted via manual chart review (14,15) or natural 114 

language processing (NLP) (16–18). We developed the first digital retrospective clinical 115 

database that combines structured data, unstructured (text) data, and variables derived from 116 

transforming unstructured data to structured data using natural language rulesets, among patients 117 

assessed in an inner-city outpatient TB clinic at St Michaels Hospital (SMH) of Unity Health 118 

Toronto in Toronto, Ontario, Canada. 119 
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Approximately 2000 people (5.6 per 100,000 people) are diagnosed with active TB in Canada 120 

(19) annually and 1.3 million are estimated to have LTBI. The SMH TB clinic cares exclusively 121 

for individuals with suspected or diagnosed active TB and LTBI, seeing 1800-2200 patient-visits 122 

each year, and assessing and developing a diagnostic and management plan for 670-800 new 123 

patients each year.  124 

In this paper we describe the SMH-TB database, which aims to be a resource for scientists who 125 

are conducting research into many facets of TB, ranging from observational epidemiology to 126 

emulated trials and quality improvement and implementation science research. The purpose of 127 

this profile is to describe our methodology, present the cohort and the database validation. 128 

Access to the database is available to collaborators wishing to work with the research team of the 129 

SMH TB clinic. The NLP rulesets developed to extract variables from the unstructured data in 130 

the EHR are publicly available on GitHub (20). 131 

Materials and methods 132 

Cohort Description 133 

The database compiles all data available on all TB clinic patients (N=3298) treated at SMH from 134 

April 2011 to December 2018. The database contains socio-demographic information 135 

surrounding immigration, housing status, and insurance, and clinical information including 136 

laboratory and imaging results, co-morbidities, diagnoses and treatment. Ethics approval for 137 

development and validation of the database was obtained from the Unity Health Toronto 138 

Research Ethics Board (REB 19-080). Patient consent was not required or obtained as per the 139 

Tri-Council Policy Statement 2 (TCPS2), since only retrospective data were collected from 140 

clinical charts (21). 141 

Patients are referred to the TB outpatient clinic predominantly from Public Health Units in the 142 

Greater Toronto area (population of 6 million), Canada Immigration and Citizenship, 143 

Occupational Health and Safety Departments of Toronto area hospitals, community health care 144 

professionals (physicians, nurse-practitioners), and SMH staff physicians caring for an admitted 145 

patient or a patient in the emergency room (ER). When including a patient in our database we 146 

consider all available encounters, including inpatient admissions and ER visits. 147 

Data Collection 148 

St. Michael's Hospital EHR is managed by several systems. The Enterprise Data Warehouse 149 

(EDW) stores and manages structured data including patient demographics and medical test 150 

results. Soarian stores the unstructured patient data, which includes dictated clinical notes. SMH-151 

TB retrieved data of patients registered and assessed in the TB outpatient clinic to provide a 152 

comprehensive description of patient characteristics, disease, management and clinical trajectory. 153 
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SMH-TB is restricted to a start-date of April 2011, which is the date of initiation of EHR at 154 

SMH. Fig 1 shows the data flow and data sources for the SMH-TB database.  155 

Fig 1: Data sources for SMH-TB Database 156 

The SMH-TB database stores patient characteristics and encounter data in separate tables, which 157 

can be linked together using unique, de-identified patient or encounter IDs. Fig 2 presents the 158 

tables provided in SMH-TB, and the granularity of the data they contain. A detailed collection of 159 

all the variables available in the database is provided in Table 1. 160 

Fig 2: Patient-level and Encounter-level Data in SMH-TB 161 

Table 1: Variables available in SMH-TB from both structured and unstructured sources 162 

Demographics Tuberculosis Diagnosis 

Patient ID Known TB exposure* 

MRN BCG vaccination status* 

Sex TST performed* 

Date of birth TST induration* 

Street address TST interpretation* 

Postal codea IGRA performed* 

Country of origin* IGRA interpretation* 

Year of immigration* Diagnosis of active TB* 

Immigration status Diagnosis of LTBI* 

Housing status  

Insurance status Tuberculosis Medications 

Patient is a healthcare worker* Ever started isoniazid* 

 Ever started rifampin* 

Encounter Details Ever started pyrazinamide* 

Encounter ID Ever started ethionamide* 

Encounter type Ever started vitamin B6* 
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Encounter date  

Direct costb Medical Conditions and Comorbidities 

Indirect costc Autoimmune conditionsd* 

 Diabetes* 

Aggregate Variables 
Hematological malignancy* 

Number of sputum inductions Non-hematological malignancy* 

Number of chest x-rays Transplant performed* 

Number of chest computed tomography Renal failuree* 

Hospital admission during course of TB 
outpatient care 

Silicosis* 

Number of emergency room visits during 
course of TB outpatient care 

Hepatitis B 

 Hepatitis C 

Laboratory Results 
HIV status* 

AST  

ALT Microbiology Reports** 

CBC (Hb, Platelets, WBC) Radiology Reports** 

Cr Pathology Reports** 

Bilirubin  

MRN: Medical record number; AST: Aspartate transaminase; ALT: Alanine transaminase; CBC: 163 

Complete blood count; Hb: Hemoglobin; WBC: White blood cells; Cr: Creatinine; TB: Tuberculosis; 164 

BCG: Bacillus Calmette–Guérin; TST: Tuberculin sensitivity test; IGRA: Interferon gamma release 165 

assay; LTBI: Latent tuberculosis infection; HIV: Human immunodeficiency viruses 166 
aThe database only stores the Forward Sortation Area portion of the postal code of the patient’s residence. 167 
bDirect cost corresponds to health care services directly associated with the patient’s care including all 168 

nursing, allied health, diagnostic and therapeutic services, pharmaceutical and medical/surgical supplies 169 

for each visit. 170 
cIndirect cost corresponds to administrative and support services performed on behalf of all patients 171 

including information system and housekeeping overheads. 172 
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dAutoimmune conditions include: Sjogren’s syndrome, arthropathy, spondyloarthropathy, psoriatic 173 

arthritis, rheumatoid arthritis, reactive arthritis, mixed connective tissue disease, connective tissue disease, 174 

systemic lupus erythematosus, CREST syndrome, dermatomyositis, Wegener's granulomatosis, 175 

Goodpasture syndrome, vasculitis and psoriasis. 176 
eRenal failure includes: nephropathy, renal insufficiency and glomerulonephritis. 177 

*Variables collected from unstructured dictations and reports using natural language rulesets 178 

**Unstructured text from which variables will be generated using natural language rulesets 179 

Removing identifiable information 180 

There are two versions of SMH-TB. The full version includes indelible patient identifiers such as 181 

a patient’s provincial health insurance (Ontario Health Insurance Plan) number; their SMH-182 

specific medical record number; all patient encounters whose encounter record is specific to a 183 

given patient; laboratory test records whose encounter record is also specific to a given patient; 184 

and all unstructured text data per encounter per patient. The patient identifiers allow for a fully 185 

linked database, which can be updated and linked via future data extraction. The identifiable 186 

unstructured data are also retained to support the development and testing of additional natural 187 

language rulesets. 188 

The de-identified version of SMH-TB is the version that will be primarily used for research 189 

studies. It excludes the unstructured data and has been stripped of the following: hospital patient 190 

ID, hospital encounter ID, address and day and month of date of birth. Each patient and 191 

encounter is then re-coded with new unique IDs, and with the age in years on the date of the first 192 

TB clinic encounter 193 

Patient identification and validation 194 

The Decision Support Services (DSS) at SMH identified encounters which were coded as 195 

services provided in the TB outpatient clinic to identify all TB patients. We then randomly 196 

selected a list of 200 patients seen in the TB outpatient clinic (using clinic schedules with unique 197 

patient identifiers stored separately from the EDW) to manually validate the codes used by DSS 198 

to identify TB clinic outpatients, and validated that all (100%) identified patients were registered 199 

in the TB clinic. To ensure high specificity of our identification of TB clinic patients, we 200 

examined additional metadata (such as a mention of the TB clinic in the patient’s dictations) and 201 

removed patients without matching metadata. SMH-TB therefore may include the rare patient 202 

where the clinic visit codes in the EDW erroneously labelled a visit as a TB clinic visit, but this 203 

estimate is expected to be <0.2% because of the additional metadata checks. The hospital unique 204 

patient identifier for each individual was then cross referenced to lists of all individuals with 205 

inpatient stays and ER visits to derive TB patient data from all sites of contact for TB care. 206 

Data transformation (unstructured text to structured variables) 207 

Unstructured clinician dictations were used to create patient-level variables on demographics, TB 208 

diagnosis, TB medications and comorbidities. The data for these variables were extracted using 209 
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rule-based information extraction tool CHARTextract (22). CHARTextract uses regular 210 

expressions in order to perform pattern matching on text. Regular expressions have been used to 211 

perform data extraction and even classification due to their high expressivity (17,23,24). These 212 

capabilities come at the cost of a complex syntax, and thus rule creation typically involves the 213 

expertise of a clinician who understands the subject matter and an interpreter who can express 214 

the idea into regular expression syntax. We created a tiered rule system, where primary rules are 215 

used to filter text at the sentence level using a scoring system and secondary rules can be used to 216 

further enhance the weighting of the sentence. The tool applies the user-created rules to the data 217 

and extracts the variables on-the-fly. The interface displays mismatches between the tool 218 

prediction and the gold-standard label. Users can iterate on the rule creation process, allowing for 219 

easy refinement and quick development of the rules. Fig 3 shows a component of a ruleset for 220 

extracting diagnosis of active tuberculosis. 221 

Fig 3: Example of a component of a ruleset for extracting a variable (active TB diagnosis) 222 

from unstructured text in clinical dictations (using CHARTextract) 223 

In order to create the rulesets used by CHARTextract, two clinicians (JB, SM) from the TB 224 

outpatient clinic were consulted on dictation language and style. Clinicians (JB, SM, AA, and 225 

KC) and a medical student (CW) manually labeled dictations for 200 patients from a subset of 226 

the dataset to be used for validation. The set of 200 patients was selected from consecutive clinic 227 

visits based on registered patient lists external to the EHR. This was done using the QuickLabel 228 

tool which provides a user interface for streamlined labelling of specific variables, as well as the 229 

option to label multiple variables simultaneously (25). Refinement of the natural language 230 

rulesets was done by comparing the labels extracted by the rulesets via CHARTextract with the 231 

manual labels. The refined rulesets are available as a real-time source as additional variables 232 

from unstructured data (microbiology, radiology, and pathology reports) are generated (20). 233 

Evaluation of data extraction 234 

To measure the performance of our rulesets and evaluate their generalizability to unseen data, we 235 

calculated accuracy, recall, precision and F1 scores. Recall (sensitivity) measures the ability of 236 

the classifier to correctly distinguish true positive from false negative examples. Precision 237 

(positive predictive value) measures the ability of the classifier to correctly distinguish true 238 

positive from false positive examples. The F1 score computes a harmonic mean of precision and 239 

recall. Recall, precision and F1 score were averaged across variable labels.  240 

Binomial proportions estimated from extracted variables 241 

We used the refined rulesets to extract variables from the full dataset of patients with at least 1 242 

dictation (N=3237). We converted “Yes/No/Not recorded” and “Positive/Negative/Unknown/Not 243 

recorded” variables into binary 0-1 variables by assigning a value of 1 to patients with an 244 

extracted value of “Yes” or “Positive”, and a value of 0 otherwise. We estimated the proportion 245 

and 95% confidence intervals of patients for which the rulesets extracted “Yes” or “Positive” for 246 
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these variables using two methods: (1) logistic regression model without covariates, and (2) MC-247 

SIMEX model that accounts for the misclassification error in the extracted variables that was 248 

calculated from the set of 200 manually abstracted patients (26). Briefly, for a binary random 249 

variable Y, we estimate the probability P�Y � 1� using a logistic regression model without 250 

covariates, given by: 251 

��� � 1� � 	�
�� 

where h is the logistic function. Under the MC-SIMEX model, the binary random variable was 252 

observed with misclassification errors, denoted by ��. We estimate the probability P��� � 1� as: 253 

P��� � 1� � h�β�
�� 

where β
�

� is defined as: 254 

β
�

��λ� �  	���π��� 	�β�� � ��1 � �π��λ ��1 � 	�β���� 

π�� and π�� denote the specificity and sensitivity of ��, respectively, and λ is the 255 

misclassification parameter. The final estimate for β
�

� is computed by a simulation-extrapolation 256 

procedure described in (26).  257 

Results 258 

Population 259 

A patient overview based on demographics is presented in Table 2. 3298 patients were included 260 

in the database. The median age of the patients is 45 years, with an interquartile range of 34 to 261 

58. There is a higher percentage of females than males in the cohort, around 57%. At least 79% 262 

of the clinic patients were born outside of Canada, based on data extracted from patients’ 263 

dictations. The vast majority of patients were adequately housed, with publicly funded provincial 264 

health care insurance (OHIP). 265 

Table 2: Demographics of the patients included in the SMH-TB database, 2011-2018. 266 

Variable Value Number of patients who attended at least 1 
clinic visit (Total N=3298) 

Count Percentage 

Age-group in years 

(median: 45, IQR: 34-58)  

10-20 7 0.212 

20-30 422 12.8 

30-40 802 24.3 
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40-50 705 21.4 

50-60 575 17.4 

60-70 388 11.8 

70-80 245 7.42 

80-90 126 3.82 

90-100 30 0.910 

100-110 2 0.0606 

Sex Female 1884 57.1 

Male 1417 42.9 

Missinga 1 0.0303 

Born in Canada Born in Canada 247 7.48 

Born outside Canada 2619 79.3 

Missingb 436 13.2 

Underhousedc Yes 80 2.42 

No 3222 97.6 

Type of health insuranced Ontario Health Insurance Plan 
(OHIP) 

2859 86.6 

Uninsured Person Program 
(TB-UP)  

221 6.69 

Refugee Health Coverage 78 2.36 

University Health Insurance 
Plan (UHIP) 

41 1.24 

Self-payed 76 2.30 

Othere 27 0.819 

IQR: Interquartile range  267 
aMay be due to error in data entry at time of patient registration.  268 
bPatient dictations did not mention immigration status or country of birth, or no dictations were found. 269 
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cUnderhoused: includes patients living in homeless shelters, group homes or patients with no fixed 270 

address. 271 
dFor patients with more than one type of insurance, only the insurance type used for the latest encounter is 272 

displayed in this table. 273 
eIncludes any patients with an out-of-province insurance, or not recorded insurance type. 274 

 275 

Evaluation of data extraction 276 

A summary of the rulesets’ performance metrics for the 25 variables extracted from unstructured 277 

dictations is presented in Table 3. Diagnosis of active TB and LTBI rulesets had 97.5% and 96% 278 

accuracy, and 97.4% and 94.7% F1 score, respectively. Rulesets for extracting TB medications 279 

generally achieved above 90% accuracy, recall and precision metrics. 280 

Table 3: Summary of performance metrics on test set for variables extracted from 281 

unstructured dictations. Patients included in test set: N = 200. 282 

Variable True 
Positive* 

True 
Negative* 

Accuracy Recall Precision F1 Score 

Demographics 

Country of origin --  -- 0.970 0.987 0.987 0.986 

Year of 
immigration 

-- -- 0.805 0.834 0.891 0.850 

Patient is a 
healthcare worker 

29 171 0.940 0.850 0.897 0.871 

Tuberculosis Diagnosis 

Known TB 
exposure 

43 157 0.965 0.952 0.945 0.949 

BCG vaccination 
status 

89 111 0.865 0.852 0.887 0.859 

TST performed 100 100 0.990 0.990 0.990 0.990 

TST induration -- -- 0.985 0.954 0.960 0.957 

TST interpretation 86 114 0.980 0.978 0.981 0.980 

IGRA performed 14 186 1.00 1.00 1.00 1.00 
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IGRA 
interpretation 

5 195 1.00 1.00 1.00 1.00 

Diagnosis of 
active TB 

120 80 0.975 0.975 0.973 0.974 

Diagnosis of LTBI 49 151 0.960 0.953 0.941 0.947 

Tuberculosis Medications 

Ever started 
isoniazid 

150 50 0.960 0.933 0.959 0.945 

Ever started 
rifampin 

127 73 0.970 0.962 0.974 0.967 

Ever started 
pyrazinamide 

124 76 0.995 0.996 0.994 0.995 

Ever started 
ethambutol 

118 82 0.985 0.985 0.984 0.984 

Ever started 
vitamin B6 

147 53 0.990 0.987 0.987 0.987 

Medical Conditions and Comorbidities** 

Autoimmune 
conditions 

8 192 0.965 0.862 0.767 0.807 

Diabetes 26 174 0.945 0.870 0.883 0.876 

Hematological 
malignancy 

2 198 0.990 0.748 0.748 0.748 

Non-
hematological 
malignancy 

12 188 0.955 0.937 0.787 0.843 

Renal failure 8 192 0.975 0.807 0.849 0.827 

HIV status 2 198 0.995 0.998 0.833 0.899 

TB: Tuberculosis; BCG: Bacillus Calmette–Guérin; TST: Tuberculin sensitivity test; IGRA: Interferon 283 

gamma release assay; LTBI: Latent tuberculosis infection; HIV: Human immunodeficiency viruses 284 
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*True positives are defined as observations with a value of “Yes” or “Positive”; True negatives are 285 

defined as the complement of true positives; only applicable for extracted variables which have 286 

“Yes/No/Not recorded” or “Positive/Negative” values. 287 

**Patients that had undergone a transplant and patients diagnosed with silicosis were excluded from this 288 

table due to having no positive example in the test set.  289 

Binomial proportions estimated from extracted variables 290 

The estimated proportions and their 95% confidence intervals created from the “Yes/No/Not 291 

recorded” and “Positive/Negative” extracted variables are given in Table 4.  292 

Table 4: Binomial proportion estimate and 95% confidence interval (CI) using standard 293 

binary regression and MC-SIMEX model for binary variables created from extracted 294 

variables. Total patients with at least 1 dictation: N = 3237. 295 

 
Description 

Count 
(N=3237) 

Logistic regression 
estimate 
(95% CI) 

MC-SIMEX model estimate 
(95% CI) 

Demographics 

Healthcare workers 438 13.5% 
(12.4, 14.8) 

2.48% 
(2.02, 3.04) 

Tuberculosis Diagnosis 

Known TB exposure 706 21.8% 
(20.4, 23.3) 

16.8%  
(15.3, 18.3) 

Received BCG vaccination 1316 40.7%  
(39.0, 42.4) 

24.8% 
(23.0, 26.7) 

Performed a TST 2279 70.4%  
(68.8, 72.0) 

69.7%  
(68.1, 71.3) 

Received a positive TST 
interpretation 

2031 62.7% 
(61.1, 64.4) 

61.9%  
(60.2, 63.6) 

Performed an IGRA 296 9.14% 
(8.20, 10.2) 

9.14%  
(8.20, 10.2) 

Received a positive IGRA 
interpretation 

301 9.30%  
(8.35, 10.3) 

9.30%  
(8.35, 10.3) 

Diagnosed with active TB 640 19.8%  
(18.4, 21.2) 

18.2%  
(16.8, 19.7) 

Diagnosed with LTBI 1473 45.5%  
(43.8, 47.2) 

39.7%  
(37.8, 41.6) 
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Tuberculosis Medications 

Ever started on isoniazid 1314 40.6% 
(38.9, 42.3) 

45.6% 
(43.6, 47.5) 

Ever started on rifampin 548 16.9%  
(15.7, 18.3) 

17.6%  
(16.3, 19.1) 

Ever started on 
pyrazinamide 

349 10.8% 
(9.76, 11.9) 

9.99%  
(8.96, 11.1) 

Ever started on ethambutol 348 10.8%  
(9.73, 11.9) 

9.36%  
(8.32, 10.5) 

Ever started on vitamin B6 986 30.5%  
(28.9, 32.1) 

30.6% 
(29.0, 32.2) 

Medical Conditions and Comorbidities* 

Autoimmune conditions 167 5.16% 
(4.45, 5.98) 

0.259%  
(0.175, 0.383) 

Diabetes 179 5.53% 
(4.79, 6.37) 

0.358% 
(0.247, 0.517) 

Hematological malignancy 71 2.19% 
(1.74, 2.76) 

0.00625% 
(0.00320, 0.0122) 

Non-hematological 
malignancy 

140 4.32% 
(3.68, 5.08) 

0.860%  
(0.599, 1.23) 

Renal failure 65 2.01%  
(1.58, 2.55) 

0.00895%  
(0.00450, 0.0180) 

Diagnosed with HIV 175 5.41% 
(4.68, 6.24) 

5.43%  
(4.69, 6.26) 

No relevant medical 
conditions/comorbidities** 

2569 79.4% 
(77.9, 80.7) 

89.3% 
(87.9, 90.6) 

MC-SIMEX: Misclassification Simulation Extraction; CI: Confidence interval; TB: Tuberculosis; BCG: 296 

Bacillus Calmette–Guérin; TST: Tuberculin sensitivity test; IGRA: Interferon gamma release assay; 297 

LTBI: Latent tuberculosis infection; HIV: Human immunodeficiency viruses 298 

*Patients that had undergone a transplant and patients diagnosed with silicosis were excluded from this 299 

table due to having no positive example in the test set. 300 
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**Includes any patient with an extracted value of “No/Not recorded/Negative” for all medical 301 

conditions/comorbidities listed in the table. 302 

After accounting for misclassification errors, the proportion of patients with an active TB 303 

diagnosis was 18.2% and the proportion of patients with an LTBI diagnosis was 39.7%. 69.7% 304 

of patients had performed a tuberculin sensitivity test and 61.9% of all patients had a positive 305 

result for the test. The proportions of patients who were ever started on isoniazid, rifampin or B6 306 

were 45.6%, 17.6% and 30.6% percent, respectively. 307 

Discussion 308 

To facilitate research on TB clinical epidemiology, diagnostics, clinical care and program 309 

implementation, quality improvement, and linkage for future therapeutics trials and biomarker 310 

studies, we developed a retrospective database of TB clinic patients using structured and 311 

unstructured EHR data. The cohort and database are unique in the transformation of unstructured 312 

data into structured variables using natural language rulesets with excellent performance when 313 

validated against manual chart abstraction. The rulesets are open access, and the database is 314 

accessible for research and open for collaboration with approval from local research ethics board. 315 

The strength of the SMH-TB database comes from the inclusion of granular data, achieved by 316 

extracting it from unstructured sources using natural language processing. While the database 317 

contains standard structured data accessible in a wide variety of EHRs, a large and unique 318 

component of our data comes directly from unstructured dictated clinic notes, which contain a 319 

vast number of variables that can be used for a broad range of research topics, including, for 320 

example, clinical epidemiology and modelling studies. The NLP rulesets allow us to create 321 

granular patient-level variables from unstructured data accurately and efficiently, reducing the 322 

amount of time spent on manual abstraction to a minimum. Moreover, the large amount of 323 

unstructured raw data is a tremendous resource for evaluating and deploying machine learning 324 

and deep learning models capable of automatically extracting meaningful variables from clinical 325 

notes (27–29). Machine learning models and workflows can be developed to leverage the 326 

structured and extracted variables for predictive modeling and early warning systems (30–32). 327 

The breadth of data provided makes this a unique and powerful tool in both clinical and 328 

computational research. 329 

The main limitations of the SMH-TB database include issues that arise from missing or incorrect 330 

data and the limited availability of data for certain variables leading to non-robust natural 331 

language rulesets. Data errors can be due to both human and algorithmic mistakes. Much of the 332 

burden of including relevant data in clinical dictations lies with the clinician attending the patient 333 

and dictating the note. In the absence of a standardized format, as was the case in the SMH TB 334 

clinic, variables may not be dictated in a manner that enables their capture by the NLP tools, or 335 

are not dictated at all. The creation of a shared set of guidelines and standard formatting for TB 336 
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clinic dictations, containing all variables relevant to the database, will ensure all data required are 337 

captured with future database updates. 338 

When the unstructured data undergoes information extraction, mislabeling of variables can occur 339 

due to certain rulesets having subpar performance. This issue is especially apparent for variables 340 

with scarce availability of labels. For example, in our validation dataset there were no patients 341 

with silicosis. The ruleset for classifying silicosis was adapted from other immunosuppressive 342 

conditions and expert knowledge in disease. While it is possible that such rulesets are overly 343 

confident in assigning a “No” label to patients even if they present with the condition in 344 

question, given the rarity of the event in the patient population it was not possible to provide 345 

further cases for perfection of refinement of the NLP ruleset. As such, we have indicated the 346 

metrics of our variables (Table 3), so that researchers can understand the limitations of the data 347 

with which they are working. The 200 charts sampled for ruleset refinement were consecutive 348 

patients from a set of clinic visits and may not have been sufficient for less common variables 349 

such as comorbidities. That is, further ruleset refinement will be needed with additional charts 350 

with purposive sampling of true positives of infrequent variables.   351 

Conclusion 352 

In summary, here we describe the SMH-TB cohort and database which aim to be a resource for 353 

scientists who are conducting research into many facets of TB. The database is unique in that it 354 

contains highly granular socio-demographic and clinical patient data derived from structured and 355 

unstructured EHR data extracted using NLP rule sets. The validated rule sets are provided open 356 

access for use and the data base is intended to be available for collaborative studies. 357 

Data Availability 358 

The validated NLP rulesets are publicly available for use from: https://github.com/mishra-lab/tb-359 

nlp-rulesets. Data collected in SMH-TB contains sensitive patient information and as such, 360 

researchers interested in conducting TB-related research using the data are welcome to contact 361 

the corresponding author and submit a request. The study team welcomes collaboration and use 362 

of the database, and all external requests will be screened to ensure adequate data exists to enable 363 

a collaboration. The project will then undergo the approval process of the Research and Ethics 364 

Board (REB) of Unity Health Toronto. Data provided to researchers can either be the de-365 

identified version of the SMH-TB database, or the full identifiable version, based on their 366 

research needs and REB approval. 367 
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