It is made available under a CC-BY 4.0 International license .

PLOS ONE Submission

Landsman et al.

1 2 3	Cohort profile: St. Michael's Hospital Tuberculosis Database (SMH-TB), a retrospective cohort of electronic health record data and variables extracted using natural language processing
4 5 6 7	David Landsman ¹ , Ahmed Abdelbasit ² , Christine Wang ² , Michael Guerzhoy ^{3, 4, 5} , Ujash Joshi ⁴ , Shaun Mathew ⁶ , Chloe Pou-Prom ⁷ , David Dai ⁷ , Victoria Pequegnat ⁸ , Joshua Murray ⁷ , Kamalprit Chokar ⁹ , Michaelia Banning ⁷ , Muhammad Mamdani ^{5, 7, 10, 11, 12} , Sharmistha Mishra ^{¶, 1, 2, 11} , Jane Batt ^{*,¶, 13, 14}
8 9 10 11 12 13 14 15 16 17 18 19 20 21 20 21 22 23 24	 MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada Department of Medicine, University of Toronto, Toronto, Ontario, Canada Princeton University, Princeton, New Jersey, United States University of Toronto, Toronto, Ontario, Canada Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada Department of Computer Science, Ryerson University, Toronto, Ontario, Canada Department of Computer Science, Ryerson University, Toronto, Ontario, Canada Unity Health Toronto, Toronto, Ontario, Canada Decision Support Services, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada Division of Respirology, Department of Medicine, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada Leslie Dan Faculty of Pharmacy, University of Toronto, Canada, Toronto, Ontario, Canada Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
24 25 26 27 28	 Vector Institute, Toronto, Ontario, Canada Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
29	[¶] These authors contributed equally to this work.
30	*Corresponding author: Jane Batt, MD, PhD
31 32	E-mail: Jane.batt@utoronto.ca
33 34	

PLOS ONE Submission

It is made available under a CC-BY 4.0 International license . $Landsman \ et \ al.$

35 Author Contributions

- 36 David Landsman Data Curation, Formal Analysis, Investigation, Methodology, Software,
- 37 Validation, Visualization, Writing Original Draft Preparation, Writing Review & Editing
- 38 Ahmed Abdelbasit Data Curation, Investigation, Validation, Writing Original Draft
- 39 Preparation, Writing Review & Editing
- 40 Christine Wang Data Curation, Investigation, Validation, Writing Review & Editing
- 41 Michael Guerzhoy Investigation, Methodology, Software, Writing Review & Editing
- 42 Ujash Joshi Investigation, Methodology, Software, Writing Review & Editing
- 43 Shaun Mathew Investigation, Methodology, Software, Writing Review & Editing
- 44 Chloe Pou-Prom Investigation, Methodology, Software, Writing Review & Editing
- 45 David Dai Investigation, Methodology, Software, Writing Review & Editing
- 46 Victoria Pequegnat Data Curation, Resources, Validation, Writing Review & Editing
- 47 Joshua Murray Investigation, Methodology, Software, Writing Review & Editing
- 48 Kamalprit Chokar Data Curation, Writing Review & Editing
- 49 Michaelia Banning Project Administration, Writing Review & Editing
- 50 Muhammad Mamdani Project Administration, Writing Review & Editing
- 51 Sharmistha Mishra Conceptualization, Data Curation, Funding Acquisition, Investigation,
- 52 Methodology, Project Administration, Resources, Supervision, Validation, Writing Review &
- 53 Editing
- 54 Jane Batt Conceptualization, Data Curation, Funding Acquisition, Investigation, Methodology,
- 55 Project Administration, Resources, Supervision, Validation, Writing Review & Editing

PLOS ONE Submission

It is made available under a CC-BY 4.0 International license . Landsman et al.

56 Abstract

57 Background

- Tuberculosis (TB) is a major cause of death worldwide. TB research draws heavily on clinical
- cohorts which can be generated using electronic health records (EHR), but granular information
- 60 extracted from unstructured EHR data is limited. The St. Michael's Hospital TB database (SMH-
- TB) was established to address gaps in EHR-derived TB clinical cohorts and provide researchers
- and clinicians with detailed, granular data related to TB management and treatment.

63 *Methods*

- 64 We collected and validated multiple layers of EHR data from the TB outpatient clinic at St.
- 65 Michael's Hospital, Toronto, Ontario, Canada to generate the SMH-TB database. SMH-TB
- 66 contains structured data directly from the EHR, and variables generated using natural language
- 67 processing (NLP) by extracting relevant information from free-text within clinic, radiology, and
- 68 other notes. NLP performance was assessed using recall, precision and F_1 score averaged across
- 69 variable labels. We present characteristics of the cohort population using binomial proportions
- and 95% confidence intervals (CI), with and without adjusting for NLP misclassification errors.

71 *Results*

- 52 SMH-TB currently contains retrospective patient data spanning 2011 to 2018, for a total of 3298
- patients (N=3237 with at least 1 associated dictation). Performance of TB diagnosis and
- 74 medication NLP rulesets surpasses 93% in recall, precision and F₁ metrics, indicating good
- 75 generalizability. We estimated 20% (95% CI: 18.4-21.2%) were diagnosed with active TB and
- 46% (95% CI: 43.8-47.2%) were diagnosed with latent TB. After adjusting for potential
- misclassification, the proportion of patients diagnosed with active and latent TB was 18% (95%
- 78 CI: 16.8-19.7%) and 40% (95% CI: 37.8-41.6%) respectively

79 Conclusion

- 80 SMH-TB is a unique database that includes a breadth of structured data derived from structured
- 81 and unstructured EHR data. The data are available for a variety of research applications, such as
- clinical epidemiology, quality improvement and mathematical modelling studies.

83

PLOS ONE Submission

It is made available under a CC-BY 4.0 International license . $Landsman \ et \ al.$

84 Introduction

- Tuberculosis (TB) is the top infectious killer worldwide, resulting in 1.6 million deaths in 2017
- 86 (1). 1.7 billion people carry the latent form of the infection, of whom 10% at minimum, will
- 87 develop the active, infectious form of disease. Latent TB infection (LTBI) progression to active
- disease can be prevented and TB can be cured, with appropriate antibiotics taken over many
- 89 months. TB is endemic in many low-income countries and particularly prevalent in Asia and
- 90 Africa. The World Health Organization recommends the treatment of LTBI as part of the global
- 91 "End TB Strategy", and an achievable goal critical to TB elimination in high-income countries
- 92 (2,3).
- 93 Given the burden of active TB disease is disproportionately carried in low-resource settings,
- 94 research addressing disease epidemiology, treatment (including clinical trials and programs of
- delivery), and the use and utility of innovative and point of care diagnostics is often completed in
- the populations of countries with highest burden of TB. The prevalence of LTBI on the other
- 97 hand, is considerable even in high-income countries (CDC estimates 13,000,000 people living
- the USA have LTBI (4)) and thus research ranging from basic pathogenesis to program
- 99 development can be conducted on the global population. Indeed while advances in biomedical
- 100 research over the past 1 to 2 decades have delivered successes ranging from rapid point-of-care
- 101 diagnostics testing for pulmonary TB to the development of novel therapeutics such as
- 102 bedaquiline and delamanid, many questions remain, including, for example, discovering
- 103 biomarkers that precisely indicate individuals at risk of LTBI activation and developing
- 104 programs of TB care that ensure efficacy, are equitable and resilient (1,5).
- 105 Many primary care practices and hospitals in high-income countries have curated electronic
- 106 health record (EHR) data for research and surveillance (6–9), that improve ease of access to
- 107 information and data sharing for collaborative work. The use of EHRs in hospital and office-
- 108 based clinical practices has risen substantially in the past decade, providing rich data sources that
- 109 have the potential to simultaneously improve patient care and advance research initiatives
- 110 (10,11). Most EHR-derived databases are however limited to structured data, such as
- 111 demographic information collected at patient registration, laboratory tests and results and
- 112 diagnostic codes used in physician billing. As such, the rich, granular data embedded within
- unstructured (text) data from dictated notes on both hospital admitted and clinic patients are
- excluded (12,13) unless these variables are abstracted via manual chart review (14,15) or natural
- 115 language processing (NLP) (16–18). We developed the first digital retrospective clinical
- 116 database that combines structured data, unstructured (text) data, and variables derived from
- transforming unstructured data to structured data using natural language rulesets, among patients
- assessed in an inner-city outpatient TB clinic at St Michaels Hospital (SMH) of Unity Health
- 119 Toronto in Toronto, Ontario, Canada.

It is made available under a CC-BY 4.0 International license .

PLOS ONE Submission

Landsman et al.

- Approximately 2000 people (5.6 per 100,000 people) are diagnosed with active TB in Canada
- 121 (19) annually and 1.3 million are estimated to have LTBI. The SMH TB clinic cares exclusively
- 122 for individuals with suspected or diagnosed active TB and LTBI, seeing 1800-2200 patient-visits
- each year, and assessing and developing a diagnostic and management plan for 670-800 new
- 124 patients each year.
- 125 In this paper we describe the SMH-TB database, which aims to be a resource for scientists who
- are conducting research into many facets of TB, ranging from observational epidemiology to
- emulated trials and quality improvement and implementation science research. The purpose of
- 128 this profile is to describe our methodology, present the cohort and the database validation.
- 129 Access to the database is available to collaborators wishing to work with the research team of the
- 130 SMH TB clinic. The NLP rulesets developed to extract variables from the unstructured data in
- the EHR are publicly available on GitHub (20).

132 Materials and methods

133 Cohort Description

- 134 The database compiles all data available on all TB clinic patients (N=3298) treated at SMH from
- 135 April 2011 to December 2018. The database contains socio-demographic information
- surrounding immigration, housing status, and insurance, and clinical information including
- 137 laboratory and imaging results, co-morbidities, diagnoses and treatment. Ethics approval for
- development and validation of the database was obtained from the Unity Health Toronto
- 139 Research Ethics Board (REB 19-080). Patient consent was not required or obtained as per the
- 140 Tri-Council Policy Statement 2 (TCPS2), since only retrospective data were collected from
- 141 clinical charts (21).
- 142 Patients are referred to the TB outpatient clinic predominantly from Public Health Units in the
- 143 Greater Toronto area (population of 6 million), Canada Immigration and Citizenship,
- 144 Occupational Health and Safety Departments of Toronto area hospitals, community health care
- 145 professionals (physicians, nurse-practitioners), and SMH staff physicians caring for an admitted
- patient or a patient in the emergency room (ER). When including a patient in our database we
- 147 consider all available encounters, including inpatient admissions and ER visits.

148 Data Collection

- 149 St. Michael's Hospital EHR is managed by several systems. The Enterprise Data Warehouse
- 150 (EDW) stores and manages structured data including patient demographics and medical test
- results. Soarian stores the unstructured patient data, which includes dictated clinical notes. SMH-
- 152 TB retrieved data of patients registered and assessed in the TB outpatient clinic to provide a
- 153 comprehensive description of patient characteristics, disease, management and clinical trajectory.

It is made available under a CC-BY 4.0 International license . Landsman et al.

- 154 SMH-TB is restricted to a start-date of April 2011, which is the date of initiation of EHR at
- 155 SMH. Fig 1 shows the data flow and data sources for the SMH-TB database.

156 Fig 1: Data sources for SMH-TB Database

PLOS ONE Submission

- 157 The SMH-TB database stores patient characteristics and encounter data in separate tables, which
- 158 can be linked together using unique, de-identified patient or encounter IDs. Fig 2 presents the
- tables provided in SMH-TB, and the granularity of the data they contain. A detailed collection of
- all the variables available in the database is provided in Table 1.

161 Fig 2: Patient-level and Encounter-level Data in SMH-TB

162 Table 1: Variables available in SMH-TB from both structured and unstructured sources

Demographics	Tuberculosis Diagnosis
Patient ID	Known TB exposure*
MRN	BCG vaccination status*
Sex	TST performed*
Date of birth	TST induration*
Street address	TST interpretation*
Postal code ^a	IGRA performed*
Country of origin*	IGRA interpretation*
Year of immigration*	Diagnosis of active TB*
Immigration status	Diagnosis of LTBI*
Housing status	
Insurance status	Tuberculosis Medications
Patient is a healthcare worker*	Ever started isoniazid*
	Ever started rifampin*
Encounter Details	Ever started pyrazinamide*
Encounter ID	Ever started ethionamide*
Encounter type	Ever started vitamin B6*

It is made available under a CC-BY 4.0 International license .

PLOS ONE Submission

Landsman et al.

Medical Conditions and Comorbidities
Autoimmune conditions ^d *
Diabetes*
Hematological malignancy*
Non-hematological malignancy*
Transplant performed*
Renal failure ^e *
Silicosis*
Hepatitis B
Hepatitis C
HIV status*
Microbiology Reports**
Radiology Reports**
Pathology Reports**
-

163 MRN: Medical record number; AST: Aspartate transaminase; ALT: Alanine transaminase; CBC:

164 Complete blood count; Hb: Hemoglobin; WBC: White blood cells; Cr: Creatinine; TB: Tuberculosis;

165 BCG: Bacillus Calmette–Guérin; TST: Tuberculin sensitivity test; IGRA: Interferon gamma release

166 assay; LTBI: Latent tuberculosis infection; HIV: Human immunodeficiency viruses

^aThe database only stores the Forward Sortation Area portion of the postal code of the patient's residence.

^bDirect cost corresponds to health care services directly associated with the patient's care including all

169 nursing, allied health, diagnostic and therapeutic services, pharmaceutical and medical/surgical supplies

170 for each visit.

^cIndirect cost corresponds to administrative and support services performed on behalf of all patients

including information system and housekeeping overheads.

It is made available under a CC-BY 4.0 International license .

PLOS ONE Submission

Landsman et al.

- ^dAutoimmune conditions include: Sjogren's syndrome, arthropathy, spondyloarthropathy, psoriatic
- 174 arthritis, rheumatoid arthritis, reactive arthritis, mixed connective tissue disease, connective tissue disease,
- 175 systemic lupus erythematosus, CREST syndrome, dermatomyositis, Wegener's granulomatosis,
- 176 Goodpasture syndrome, vasculitis and psoriasis.
- ^eRenal failure includes: nephropathy, renal insufficiency and glomerulonephritis.
- 178 *Variables collected from unstructured dictations and reports using natural language rulesets
- 179 **Unstructured text from which variables will be generated using natural language rulesets

180 *Removing identifiable information*

- 181 There are two versions of SMH-TB. The full version includes indelible patient identifiers such as
- a patient's provincial health insurance (Ontario Health Insurance Plan) number; their SMH-
- 183 specific medical record number; all patient encounters whose encounter record is specific to a
- 184 given patient; laboratory test records whose encounter record is also specific to a given patient;
- and all unstructured text data per encounter per patient. The patient identifiers allow for a fully
- 186 linked database, which can be updated and linked via future data extraction. The identifiable
- unstructured data are also retained to support the development and testing of additional natural
- 188 language rulesets.
- 189 The de-identified version of SMH-TB is the version that will be primarily used for research
- 190 studies. It excludes the unstructured data and has been stripped of the following: hospital patient
- 191 ID, hospital encounter ID, address and day and month of date of birth. Each patient and
- 192 encounter is then re-coded with new unique IDs, and with the age in years on the date of the first
- 193 TB clinic encounter

194 *Patient identification and validation*

- 195 The Decision Support Services (DSS) at SMH identified encounters which were coded as
- services provided in the TB outpatient clinic to identify all TB patients. We then randomly
- 197 selected a list of 200 patients seen in the TB outpatient clinic (using clinic schedules with unique
- 198 patient identifiers stored separately from the EDW) to manually validate the codes used by DSS
- to identify TB clinic outpatients, and validated that all (100%) identified patients were registered
- 200 in the TB clinic. To ensure high specificity of our identification of TB clinic patients, we
- examined additional metadata (such as a mention of the TB clinic in the patient's dictations) and
- removed patients without matching metadata. SMH-TB therefore may include the rare patient
- where the clinic visit codes in the EDW erroneously labelled a visit as a TB clinic visit, but this
- estimate is expected to be <0.2% because of the additional metadata checks. The hospital unique
- 205 patient identifier for each individual was then cross referenced to lists of all individuals with
- inpatient stays and ER visits to derive TB patient data from all sites of contact for TB care.

207 Data transformation (unstructured text to structured variables)

Unstructured clinician dictations were used to create patient-level variables on demographics, TB
 diagnosis, TB medications and comorbidities. The data for these variables were extracted using

It is made available under a CC-BY 4.0 International license .

PLOS ONE Submission

Landsman et al.

- rule-based information extraction tool CHARTextract (22). CHARTextract uses regular
- 211 expressions in order to perform pattern matching on text. Regular expressions have been used to
- 212 perform data extraction and even classification due to their high expressivity (17,23,24). These
- capabilities come at the cost of a complex syntax, and thus rule creation typically involves the
- expertise of a clinician who understands the subject matter and an interpreter who can express
- the idea into regular expression syntax. We created a tiered rule system, where primary rules are
- used to filter text at the sentence level using a scoring system and secondary rules can be used to
- further enhance the weighting of the sentence. The tool applies the user-created rules to the data
- and extracts the variables on-the-fly. The interface displays mismatches between the tool
- 219 prediction and the gold-standard label. Users can iterate on the rule creation process, allowing for
- easy refinement and quick development of the rules. Fig 3 shows a component of a ruleset for
- 221 extracting diagnosis of active tuberculosis.

Fig 3: Example of a component of a ruleset for extracting a variable (active TB diagnosis) from unstructured text in clinical dictations (using CHARTextract)

- In order to create the rulesets used by CHARTextract, two clinicians (JB, SM) from the TB
- outpatient clinic were consulted on dictation language and style. Clinicians (JB, SM, AA, and
- KC) and a medical student (CW) manually labeled dictations for 200 patients from a subset of
- the dataset to be used for validation. The set of 200 patients was selected from consecutive clinic
- visits based on registered patient lists external to the EHR. This was done using the QuickLabel
- tool which provides a user interface for streamlined labelling of specific variables, as well as the
- option to label multiple variables simultaneously (25). Refinement of the natural language
- rulesets was done by comparing the labels extracted by the rulesets via CHARTextract with the
- manual labels. The refined rulesets are available as a real-time source as additional variables
- from unstructured data (microbiology, radiology, and pathology reports) are generated (20).

234 Evaluation of data extraction

- 235 To measure the performance of our rulesets and evaluate their generalizability to unseen data, we
- calculated accuracy, recall, precision and F1 scores. Recall (sensitivity) measures the ability of
- the classifier to correctly distinguish true positive from false negative examples. Precision
- 238 (positive predictive value) measures the ability of the classifier to correctly distinguish true
- positive from false positive examples. The F₁ score computes a harmonic mean of precision and
- recall. Recall, precision and F_1 score were averaged across variable labels.

241 Binomial proportions estimated from extracted variables

- 242 We used the refined rulesets to extract variables from the full dataset of patients with at least 1
- 243 dictation (N=3237). We converted "Yes/No/Not recorded" and "Positive/Negative/Unknown/Not
- recorded" variables into binary 0-1 variables by assigning a value of 1 to patients with an
- extracted value of "Yes" or "Positive", and a value of 0 otherwise. We estimated the proportion
- and 95% confidence intervals of patients for which the rulesets extracted "Yes" or "Positive" for

It is made available under a CC-BY 4.0 International license . PLOS ONE Submission Landsman et al.

- these variables using two methods: (1) logistic regression model without covariates, and (2) MC-
- 248 SIMEX model that accounts for the misclassification error in the extracted variables that was
- calculated from the set of 200 manually abstracted patients (26). Briefly, for a binary random
- variable Y, we estimate the probability P(Y = 1) using a logistic regression model without
- covariates, given by:

$$P(Y=1) = h(\beta_0)$$

- where h is the logistic function. Under the MC-SIMEX model, the binary random variable was
- observed with misclassification errors, denoted by Y^* . We estimate the probability $P(Y^* = 1)$ as:

$$P(Y^* = 1) = h(\beta_0^*)$$

254 where β_0^* is defined as:

$$\beta_0^{*}(\lambda) = h^{-1} \Big[\pi_{11}^{\lambda} h(\beta_0) + (1 - \pi_{00}^{\lambda}) \Big(1 - h(\beta_0) \Big) \Big]$$

- 255 π_{00} and π_{11} denote the specificity and sensitivity of Y^* , respectively, and λ is the
- 256 misclassification parameter. The final estimate for β_0^* is computed by a simulation-extrapolation
- 257 procedure described in (26).

258 **Results**

259 **Population**

A patient overview based on demographics is presented in Table 2. 3298 patients were included

in the database. The median age of the patients is 45 years, with an interquartile range of 34 to

58. There is a higher percentage of females than males in the cohort, around 57%. At least 79%

of the clinic patients were born outside of Canada, based on data extracted from patients'

- dictations. The vast majority of patients were adequately housed, with publicly funded provincial
- health care insurance (OHIP).

266	Table 2: Demographics of the patients included in the SMH-TB database, 2011-2018.
-----	---

Variable	Value	Number of patient clinic visit (Total I	s who attended at least 1 N=3298)
		Count	Percentage
Age-group in years	10-20	7	0.212
(median: 45, IQR: 34-58)	20-30	422	12.8
	30-40	802	24.3

It is made available under a CC-BY 4.0 International license .

PLOS ONE Submission

Landsman et al.

	40-50	705	21.4
	50-60	575	17.4
	60-70	388	11.8
	70-80	245	7.42
	80-90	126	3.82
	90-100	30	0.910
	100-110	2	0.0606
Sex	Female	1884	57.1
	Male	1417	42.9
	Missing ^a	1	0.0303
Born in Canada	Born in Canada	247	7.48
	Born outside Canada	2619	79.3
	Missing ^b	436	13.2
Underhoused ^c	Yes	80	2.42
	No	3222	97.6
Type of health insurance ^d	Ontario Health Insurance Plan (OHIP)	2859	86.6
	Uninsured Person Program (TB-UP)	221	6.69
	Refugee Health Coverage	78	2.36
	University Health Insurance Plan (UHIP)	41	1.24
	Self-payed	76	2.30
	Other ^e	27	0.819

267 IQR: Interquartile range

^aMay be due to error in data entry at time of patient registration.

^bPatient dictations did not mention immigration status or country of birth, or no dictations were found.

It is made available under a CC-BY 4.0 International license .

PLOS ONE Submission

Landsman et al.

- ²⁷⁰ ^cUnderhoused: includes patients living in homeless shelters, group homes or patients with no fixed
- address.
- ^dFor patients with more than one type of insurance, only the insurance type used for the latest encounter is
- 273 displayed in this table.
- ^eIncludes any patients with an out-of-province insurance, or not recorded insurance type.
- 275

276 Evaluation of data extraction

A summary of the rulesets' performance metrics for the 25 variables extracted from unstructured

dictations is presented in Table 3. Diagnosis of active TB and LTBI rulesets had 97.5% and 96%

accuracy, and 97.4% and 94.7% F_1 score, respectively. Rulesets for extracting TB medications

280 generally achieved above 90% accuracy, recall and precision metrics.

Table 3: Summary of performance metrics on test set for variables extracted from

unstructured dictations. Patients included in test set: N = 200.

Variable	True Positive*	True Negative*	Accuracy	Recall	Precision	F ₁ Score
Demographics						
Country of origin			0.970	0.987	0.987	0.986
Year of immigration			0.805	0.834	0.891	0.850
Patient is a healthcare worker	29	171	0.940	0.850	0.897	0.871
Tuberculosis Diag	nosis					
Known TB exposure	43	157	0.965	0.952	0.945	0.949
BCG vaccination status	89	111	0.865	0.852	0.887	0.859
TST performed	100	100	0.990	0.990	0.990	0.990
TST induration			0.985	0.954	0.960	0.957
TST interpretation	86	114	0.980	0.978	0.981	0.980
IGRA performed	14	186	1.00	1.00	1.00	1.00

It is made available under a CC-BY 4.0 International license .

PLOS ONE Submission

Landsman et al.

IGRA	5	195	1.00	1.00	1.00	1.00
interpretation						
Diagnosis of active TB	120	80	0.975	0.975	0.973	0.974
Diagnosis of LTBI	49	151	0.960	0.953	0.941	0.947
Tuberculosis Medi	cations					
Ever started isoniazid	150	50	0.960	0.933	0.959	0.945
Ever started rifampin	127	73	0.970	0.962	0.974	0.967
Ever started pyrazinamide	124	76	0.995	0.996	0.994	0.995
Ever started ethambutol	118	82	0.985	0.985	0.984	0.984
Ever started vitamin B6	147	53	0.990	0.987	0.987	0.987
Medical Condition	s and Co	morbidities [*]	**			
Autoimmune conditions	8	192	0.965	0.862	0.767	0.807
Diabetes	26	174	0.945	0.870	0.883	0.876
Hematological malignancy	2	198	0.990	0.748	0.748	0.748
Non- hematological malignancy	12	188	0.955	0.937	0.787	0.843
Renal failure	8	192	0.975	0.807	0.849	0.827
HIV status	2	198	0.995	0.998	0.833	0.899

283 TB: Tuberculosis; BCG: Bacillus Calmette–Guérin; TST: Tuberculin sensitivity test; IGRA: Interferon

284 gamma release assay; LTBI: Latent tuberculosis infection; HIV: Human immunodeficiency viruses

It is made available under a CC-BY 4.0 International license .

PLOS ONE Submission

Landsman et al.

- *True positives are defined as observations with a value of "Yes" or "Positive"; True negatives are
- defined as the complement of true positives; only applicable for extracted variables which have
- 287 "Yes/No/Not recorded" or "Positive/Negative" values.
- 288 **Patients that had undergone a transplant and patients diagnosed with silicosis were excluded from this
- table due to having no positive example in the test set.

290 Binomial proportions estimated from extracted variables

- 291 The estimated proportions and their 95% confidence intervals created from the "Yes/No/Not
- recorded" and "Positive/Negative" extracted variables are given in Table 4.

Table 4: Binomial proportion estimate and 95% confidence interval (CI) using standard

- binary regression and MC-SIMEX model for binary variables created from extracted
- variables. Total patients with at least 1 dictation: N = 3237.

Description	Count (N=3237)	Logistic regression estimate (95% CI)	MC-SIMEX model estimate (95% CI)					
Demographics	Demographics							
Healthcare workers	438	13.5% (12.4, 14.8)	2.48% (2.02, 3.04)					
Tuberculosis Diagnosis								
Known TB exposure	706	21.8% (20.4, 23.3)	16.8% (15.3, 18.3)					
Received BCG vaccination	1316	40.7% (39.0, 42.4)	24.8% (23.0, 26.7)					
Performed a TST	2279	70.4% (68.8, 72.0)	69.7% (68.1, 71.3)					
Received a positive TST interpretation	2031	62.7% (61.1, 64.4)	61.9% (60.2, 63.6)					
Performed an IGRA	296	9.14% (8.20, 10.2)	9.14% (8.20, 10.2)					
Received a positive IGRA interpretation	301	9.30% (8.35, 10.3)	9.30% (8.35, 10.3)					
Diagnosed with active TB	640	19.8% (18.4, 21.2)	18.2% (16.8, 19.7)					
Diagnosed with LTBI	1473	45.5% (43.8, 47.2)	39.7% (37.8, 41.6)					

It is made available under a CC-BY 4.0 International license .

PLOS ONE Submission

Landsman et al.

Tuberculosis Medications			
Ever started on isoniazid	1314	40.6% (38.9, 42.3)	45.6% (43.6, 47.5)
Ever started on rifampin	548	16.9% (15.7, 18.3)	17.6% (16.3, 19.1)
Ever started on pyrazinamide	349	10.8% (9.76, 11.9)	9.99% (8.96, 11.1)
Ever started on ethambutol	348	10.8% (9.73, 11.9)	9.36% (8.32, 10.5)
Ever started on vitamin B6	986	30.5% (28.9, 32.1)	30.6% (29.0, 32.2)
Medical Conditions and Co	omorbiditi	es*	·
Autoimmune conditions	167	5.16% (4.45, 5.98)	0.259% (0.175, 0.383)
Diabetes	179	5.53% (4.79, 6.37)	0.358% (0.247, 0.517)
Hematological malignancy	71	2.19% (1.74, 2.76)	0.00625% (0.00320, 0.0122)
Non-hematological malignancy	140	4.32% (3.68, 5.08)	0.860% (0.599, 1.23)
Renal failure	65	2.01% (1.58, 2.55)	0.00895% (0.00450, 0.0180)
Diagnosed with HIV	175	5.41% (4.68, 6.24)	5.43% (4.69, 6.26)
No relevant medical conditions/comorbidities**	2569	79.4% (77.9, 80.7)	89.3% (87.9, 90.6)

296 MC-SIMEX: Misclassification Simulation Extraction; CI: Confidence interval; TB: Tuberculosis; BCG:

297 Bacillus Calmette–Guérin; TST: Tuberculin sensitivity test; IGRA: Interferon gamma release assay;

298 LTBI: Latent tuberculosis infection; HIV: Human immunodeficiency viruses

299 *Patients that had undergone a transplant and patients diagnosed with silicosis were excluded from this

table due to having no positive example in the test set.

PLOS ONE Submission

It is made available under a CC-BY 4.0 International license . Landsman et al.

- 301 **Includes any patient with an extracted value of "No/Not recorded/Negative" for all medical
- 302 conditions/comorbidities listed in the table.
- After accounting for misclassification errors, the proportion of patients with an active TB
- diagnosis was 18.2% and the proportion of patients with an LTBI diagnosis was 39.7%. 69.7%
- of patients had performed a tuberculin sensitivity test and 61.9% of all patients had a positive
- result for the test. The proportions of patients who were ever started on isoniazid, rifampin or B6
- were 45.6%, 17.6% and 30.6% percent, respectively.

308 **Discussion**

- 309 To facilitate research on TB clinical epidemiology, diagnostics, clinical care and program
- 310 implementation, quality improvement, and linkage for future therapeutics trials and biomarker
- 311 studies, we developed a retrospective database of TB clinic patients using structured and
- unstructured EHR data. The cohort and database are unique in the transformation of unstructured
- data into structured variables using natural language rulesets with excellent performance when
- validated against manual chart abstraction. The rulesets are open access, and the database is
- accessible for research and open for collaboration with approval from local research ethics board.
- The strength of the SMH-TB database comes from the inclusion of granular data, achieved by
- extracting it from unstructured sources using natural language processing. While the database
- contains standard structured data accessible in a wide variety of EHRs, a large and unique
- component of our data comes directly from unstructured dictated clinic notes, which contain a
- vast number of variables that can be used for a broad range of research topics, including, for
- example, clinical epidemiology and modelling studies. The NLP rulesets allow us to create
- 322 granular patient-level variables from unstructured data accurately and efficiently, reducing the
- amount of time spent on manual abstraction to a minimum. Moreover, the large amount of
- unstructured raw data is a tremendous resource for evaluating and deploying machine learning
- and deep learning models capable of automatically extracting meaningful variables from clinical
- notes (27–29). Machine learning models and workflows can be developed to leverage the
- structured and extracted variables for predictive modeling and early warning systems (30–32).
- The breadth of data provided makes this a unique and powerful tool in both clinical and
- 329 computational research.
- 330 The main limitations of the SMH-TB database include issues that arise from missing or incorrect
- data and the limited availability of data for certain variables leading to non-robust natural
- language rulesets. Data errors can be due to both human and algorithmic mistakes. Much of the
- burden of including relevant data in clinical dictations lies with the clinician attending the patient
- and dictating the note. In the absence of a standardized format, as was the case in the SMH TB
- clinic, variables may not be dictated in a manner that enables their capture by the NLP tools, or
- are not dictated at all. The creation of a shared set of guidelines and standard formatting for TB

It is made available under a CC-BY 4.0 International license . Landsman et al.

clinic dictations, containing all variables relevant to the database, will ensure all data required arecaptured with future database updates.

When the unstructured data undergoes information extraction, mislabeling of variables can occur 339 due to certain rulesets having subpar performance. This issue is especially apparent for variables 340 with scarce availability of labels. For example, in our validation dataset there were no patients 341 with silicosis. The ruleset for classifying silicosis was adapted from other immunosuppressive 342 343 conditions and expert knowledge in disease. While it is possible that such rulesets are overly confident in assigning a "No" label to patients even if they present with the condition in 344 question, given the rarity of the event in the patient population it was not possible to provide 345 further cases for perfection of refinement of the NLP ruleset. As such, we have indicated the 346 metrics of our variables (Table 3), so that researchers can understand the limitations of the data 347 with which they are working. The 200 charts sampled for ruleset refinement were consecutive 348 349 patients from a set of clinic visits and may not have been sufficient for less common variables such as comorbidities. That is, further ruleset refinement will be needed with additional charts 350 with purposive sampling of true positives of infrequent variables. 351

352 Conclusion

PLOS ONE Submission

In summary, here we describe the SMH-TB cohort and database which aim to be a resource for

scientists who are conducting research into many facets of TB. The database is unique in that it

contains highly granular socio-demographic and clinical patient data derived from structured and

unstructured EHR data extracted using NLP rule sets. The validated rule sets are provided open

access for use and the data base is intended to be available for collaborative studies.

358 Data Availability

359 The validated NLP rulesets are publicly available for use from: <u>https://github.com/mishra-lab/tb-</u>

360 <u>nlp-rulesets</u>. Data collected in SMH-TB contains sensitive patient information and as such,

researchers interested in conducting TB-related research using the data are welcome to contact

the corresponding author and submit a request. The study team welcomes collaboration and use

- of the database, and all external requests will be screened to ensure adequate data exists to enable
- a collaboration. The project will then undergo the approval process of the Research and Ethics
- Board (REB) of Unity Health Toronto. Data provided to researchers can either be the de-
- 366 identified version of the SMH-TB database, or the full identifiable version, based on their
- research needs and REB approval.

368 Funding

Supported by the Ontario Early Researcher Award Number ER17-13-043 (to SM). The funders

had no role in study design, data collection and analysis, decision to publish, or preparation of

the manuscript.

PLOS ONE Submission

It is made available under a CC-BY 4.0 International license . Landsman et al.

372 Acknowledgements

- 373 We thank Dr. Natasha Sabur for supporting arbitration for rulesets; Julie Seemangal (TB
- 374 Outpatient Clinic Co-Lead) and Grace Bezaliel for supporting verification of algorithms to
- 375 classify patients seen in the TB clinic.

376

It is made available under a CC-BY 4.0 International license . Landsman et al.

377 **References**

PLOS ONE Submission

- Reid MJA, Arinaminpathy N, Bloom A, Bloom BR, Boehme C, Chaisson R, et al. Building a tuberculosis-free world: The Lancet Commission on tuberculosis. Lancet Lond Engl. 2019 Mar 30;393(10178):1331–84.
- Uplekar M, Weil D, Lönnroth K, Jaramillo E, Lienhardt C, Dias HM, et al. WHO's new End TB Strategy. The Lancet. 2015 May 2;385(9979):1799–801.
- Lönnroth K, Migliori GB, Abubakar I, D'Ambrosio L, Vries G de, Diel R, et al. Towards
 tuberculosis elimination: an action framework for low-incidence countries. Eur Respir J.
 2015 Apr 1;45(4):928–52.
- 4. CDC. Deciding When to Treat Latent TB Infection [Internet]. 2018 [cited 2020 Aug 25].
 Available from: https://www.cdc.gov/tb/topic/treatment/decideltbi.htm
- 5. Kim PS, Makhene M, Sizemore C, Hafner R. Viewpoint: Challenges and Opportunities in
 Tuberculosis Research. J Infect Dis. 2012 May 15;205(suppl_2):S347–52.
- Busingye D, Gianacas C, Pollack A, Chidwick K, Merrifield A, Norman S, et al. Data
 Resource Profile: MedicineInsight, an Australian national primary health care database. Int J
 Epidemiol. 2019 Dec 1;48(6):1741–1741h.
- Garies S, Birtwhistle R, Drummond N, Queenan J, Williamson T. Data Resource Profile:
 National electronic medical record data from the Canadian Primary Care Sentinel
 Surveillance Network (CPCSSN). Int J Epidemiol. 2017 Aug 1;46(4):1091–1092f.
- Finer S, Martin HC, Khan A, Hunt KA, MacLaughlin B, Ahmed Z, et al. Cohort profile: East London genes & health (ELGH), a community-based population genomics and health study of British Bangladeshi and British Pakistani people. Int J Epidemiol [Internet]. [cited 2020 Mar 2]; Available from: https://academic.oup.com/ije/advancearticle/doi/10.1093/ije/dyz174/5555939
- 401 9. Ashfaq A, Lönn S, Nilsson H, Eriksson JA, Kwatra J, Yasin ZM, et al. Data resource profile:
 402 Regional healthcare information platform in Halland, Sweden, a dedicated environment for
 403 healthcare research. Int J Epidemiol [Internet]. [cited 2020 Mar 2]; Available from:
 404 https://academic.oup.com/ije/advance-article/doi/10.1093/ije/dyz262/5701527
- 405 10. Office of the National Coordinator for Health Information Technology. Office-based
 406 Physician Electronic Health Record Adoption [Internet]. 2019 [cited 2020 Apr 7]. Available
 407 from: dashboard.healthit.gov/quickstats/pages/physician-ehr-adoption-trends.php
- Henry J, Pylypchuk Y, Searcy T, Patel V. Adoption of electronic health record systems among US non-federal acute care hospitals: 2008–2015. ONC Data Brief. 2016;35:1–9.

PLOS ONE Submission

It is made available under a CC-BY 4.0 International license . Landsman et al.

- Learning 12. Chan KS, Fowles JB, Weiner JP. Review: Electronic Health Records and the Reliability and
 Validity of Quality Measures: A Review of the Literature. Med Care Res Rev. 2010 Oct
 1;67(5):503–27.
- 13. Nicholson A, Tate AR, Koeling R, Cassell JA. What does validation of cases in electronic
 record databases mean? The potential contribution of free text. Pharmacoepidemiol Drug
 Saf. 2011;20(3):321–4.
- 416 14. Khan K, Campbell A, Wallington T, Gardam M. The impact of physician training and
 417 experience on the survival of patients with active tuberculosis. CMAJ Can Med Assoc J.
 418 2006 Sep 26;175(7):749–53.
- Long R, Heffernan C, Gao Z, Egedahl ML, Talbot J. Do "Virtual" and "Outpatient" Public
 Health Tuberculosis Clinics Perform Equally Well? A Program-Wide Evaluation in Alberta,
 Canada. PLoS ONE [Internet]. 2015 Dec 23 [cited 2020 Apr 7];10(12). Available from:
 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689372/
- 423 16. Baldwin KB. Evaluating Healthcare Quality Using Natural Language Processing. J Healthc
 424 Qual. 2008;30(4):24–9.
- 17. Luo Y, Thompson WK, Herr TM, Zeng Z, Berendsen MA, Jonnalagadda SR, et al. Natural
 Language Processing for EHR-Based Pharmacovigilance: A Structured Review. Drug Saf.
 2017;40(11):1075–89.
- 428 18. Wang Y, Wang L, Rastegar-Mojarad M, Moon S, Shen F, Afzal N, et al. Clinical
 429 information extraction applications: A literature review. J Biomed Inform. 2018 Jan 1;77:34–
 430 49.
- 431 19. WHO. Tuberculosis country profiles [Internet]. World Health Organization; [cited 2020 Apr
 432 7]. Available from: http://www.who.int/tb/country/data/profiles/en/
- 433 20. Landsman D, LKS-CHART. Tuberculosis NLP Rulesets [Internet]. GitHub. [cited 2020 Jul
 434 1]. Available from: https://github.com/mishra-lab/tb-nlp-rulesets
- 435 21. Government of Canada. Tri-Council Policy Statement: Ethical Conduct for Research
 436 Involving Humans TCPS 2 (2018) [Internet]. 2019 [cited 2020 Aug 27]. Available from:
 437 https://ethics.gc.ca/eng/policy-politique_tcps2-eptc2_2018.html
- 438 22. LKS-CHART. CHARTextract [Internet]. CHARTextract. [cited 2020 Jun 29]. Available
 439 from: https://lks-chart.github.io/CHARTextract-docs/
- 23. Rosier A, Burgun A, Mabo P. Using regular expressions to extract information on pacemaker
 implantation procedures from clinical reports. AMIA Annu Symp Proc. 2008;2008:81–5.
- 442 24. Finley G, Edwards E, Robinson A, Brenndoerfer M, Sadoughi N, Fone J, et al. An automated
 443 medical scribe for documenting clinical encounters. In: Proceedings of the 2018 Conference
 444 of the North American Chapter of the Association for Computational Linguistics:
- 445 Demonstrations [Internet]. New Orleans, Louisiana: Association for Computational

PLOS ONE Submission

It is made available under a CC-BY 4.0 International license . Landsman et al.

- Linguistics; 2018 [cited 2020 Jun 29]. p. 11–15. Available from:
- 447 https://www.aclweb.org/anthology/N18-5003
- 448 25. Joshi U. QuickLabel [Internet]. 2019 [cited 2020 Jun 29]. Available from:
 449 https://github.com/Sabrewarrior/QuickLabel
- 450 26. Küchenhoff H, Mwalili SM, Lesaffre E. A General Method for Dealing with
 451 Misclassification in Regression: The Misclassification SIMEX. Biometrics. 2006;62(1):85–
 452 96.

- 456 28. Wu Y, Jiang M, Lei J, Xu H. Named Entity Recognition in Chinese Clinical Text Using
 457 Deep Neural Network. Stud Health Technol Inform. 2015;216:624–8.
- 458 29. Fries J. Brundlefly at SemEval-2016 Task 12: Recurrent Neural Networks vs. Joint Inference
 459 for Clinical Temporal Information Extraction. In: Proceedings of the 10th International
 460 Workshop on Semantic Evaluation (SemEval-2016) [Internet]. San Diego, California:
 461 Association for Computational Linguistics; 2016 [cited 2020 Aug 25]. p. 1274–1279.
 462 Available from: https://www.aclweb.org/anthology/S16-1198
- 30. Miotto R, Li L, Kidd BA, Dudley JT. Deep Patient: An Unsupervised Representation to
 Predict the Future of Patients from the Electronic Health Records. Sci Rep. 2016 May
 17;6(1):26094.
- 466 31. Tran T, Nguyen TD, Phung D, Venkatesh S. Learning vector representation of medical
 467 objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM). J Biomed
 468 Inform. 2015 Apr 1;54:96–105.
- 469 32. Choi E, Bahadori MT, Schuetz A, Stewart WF, Sun J. Doctor AI: Predicting Clinical Events
 470 via Recurrent Neural Networks. JMLR Workshop Conf Proc. 2016 Aug;56:301–18.

471

^{453 27.} Jagannatha AN, Yu H. Structured prediction models for RNN based sequence labeling in
454 clinical text. Proc Conf Empir Methods Nat Lang Process Conf Empir Methods Nat Lang
455 Process. 2016 Nov;2016:856–65.





