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Abstract: 27 

Polygenic scores (PGSs), which assess the genetic risk of individuals for a disease, are 28 

calculated as a weighted count of risk alleles identified in genome-wide association studies 29 

(GWASs). PGS methods differ in terms of which DNA variants are included in the score and 30 

the weights assigned to them. PGSs are evaluated in independent target samples of 31 

individuals with known disease status. Evaluation of new PGS methods are made using 32 

simulated data or single target cohort, however, in real data sets there can be heterogeneity 33 

between target sample cohorts, which could reflect a number of real or artefactual factors. 34 

The Psychiatric Genomics Consortium working groups for schizophrenia (SCZ) and major 35 

depressive disorder (MDD) bring together many independently collected case-control cohorts 36 

for GWAS meta-analysis. These resources are used here in repeated application of leave-one-37 

cohort-out GWAS analyses, generating robust conclusions for PGS prediction applied across 38 

multiple target (left-out) cohorts. Eight PGS methods (P+T, SBLUP, LDpred-Inf, LDpred-39 

funct, LDpred, PRS-CS, PRS-CS-auto, SBayesR) are compared. We found that SBayesR had 40 

the highest prediction evaluation statistics in most comparisons. For SCZ across 30 target 41 

cohorts, the SBayesR PGS achieved a mean area under the receiver operator characteristic 42 

curve (AUC) of 0.733, and explained 9.9% of variance on the liability scale. For MDD across 43 

26 target cohorts, the AUC and variance explained were 0.601 and 4.0%, respectively. The 44 

variance explained by the SBayesR PGS was 46% and 43% higher for SCZ and MDD, 45 

respectively, compared to the basic p-value thresholding P+T method. 46 

  47 
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 3 

Introduction 48 

 49 

Polygenic scores (PGSs), which assess the genetic risk of individuals for a disease1; 2, are 50 

calculated as a weighted count of genetic risk alleles in the genome of an individual, with the 51 

risk alleles and their weights typically derived from the results of genome-wide association 52 

studies (GWAS).3 PGS can be calculated for any trait or disease with sufficiently powered 53 

GWAS (‘discovery samples’). For many common complex genetic disorders, such as 54 

cancers4; 5 and heart disease6; 7, there is increasing interest in trialling PGS for early disease 55 

detection, prevention and intervention8; 9. In the context of psychiatric disorders, it has been 56 

argued10 that PGS may have utility in the context of youth mental health clinics, where young 57 

people present with symptoms that have not yet crystallised to portray a clear treatment 58 

pathway. A high PGS could nudge clinic decision making for those presenting in this 59 

prodromal state. 60 

 61 

There are now many methods to calculate PGSs, and the methods differ in terms of two key 62 

criteria: which DNA variants to include (DNA variants here are limited to single nucleotide 63 

polymorphisms, SNPs, but can include other DNA variants tested for association with a trait) 64 

and what weights to allocate to them. While stringent thresholds are set to declare 65 

significance for association of individual SNPs in GWAS, PGSs are robust to inclusion of 66 

some false positives, and the maximum prediction from PGSs tested in target samples (i.e., 67 

GWAS samples independent of the GWAS discovery sample) may include nominally 68 

associated SNPs. The optimum method to decide which SNPs to select and what weights to 69 

allocate them, may differ between traits depending on the sample size of the discovery 70 

GWAS and on the genetic architecture of the trait (the number, frequencies and effect sizes 71 

of causal variants), particularly given the linkage disequilibrium (LD) structure between 72 
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SNPs. Often, when new PGS methods are introduced, comparisons are made between a 73 

limited set of methods using simulated data, together with application to some real data 74 

examples. However, it can be difficult to compare across the new methods, particularly 75 

because in real data there can be heterogeneity in PGS evaluation statistics between target 76 

samples, not encountered in idealised simulations. The reasons for this heterogeneity are 77 

usually unknown but could reflect a number of factors such as phenotype definition, 78 

ascertainment strategies of cases and controls, cohort-specific ancestry within the broad 79 

classification of ancestry defined by the GWAS discovery samples (e.g., European), or 80 

technical artefacts in genotype generation. 81 

  82 

Here, we compare eight PGS methods (P+T3; 11, SBLUP12, LDpred-Inf13, LDpred13, LDpred-83 

funct14, PRS-CS15, PRS-CS-auto15 and SBayesR16 in Table 1 ). Some of these methods (P+T, 84 

LDpred and PRS-CS) require a tuning sample, a GWAS cohort with known trait status that is 85 

independent of both discovery and target samples, used to select parameters needed to 86 

generate the PGSs in the target sample. Briefly, P+T (pruning with a p-value threshold) uses 87 

the GWAS effect size estimates as SNP weights and includes independent SNPs (defined by 88 

an LD r2 filter for a given chromosomal window distance) with association p-values lower 89 

than a threshold (chosen after application in a tuning sample). P+T is the most commonly 90 

used and basic method, and so is the bench-mark method here. The other methods (referred to 91 

here as recent methods) assume either that all SNPs have an effect size drawn from a normal 92 

distribution (SBLUP and LDpred-Inf) or that SNP effects are drawn from mixtures of 93 

distributions with the key parameters defining these architectures estimated through Bayesian 94 

frameworks (LDpred, PRS-CS, SBayesR). LDpred-funct includes functional annotation to 95 

SNPs to up/down weight their contributions to the PGSs, which could improve prediction 96 

accuracy if this functional information helps to better separate true and false positive 97 
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associations17. We apply these methods to data from the Psychiatric Genomics Consortium 98 

(PGC) working groups for schizophrenia (SCZ)18; 19 and major depressive disorder (MDD)20-99 

22 (Tables S1 and S2). The PGC provides a useful resource for undertaking this study 100 

because it brings together many independently collected cohorts for GWAS meta-analysis. 101 

This allows the application of repeated leave-one-cohort-out GWAS analyses generating 102 

robust conclusions from evaluation of PGS applied across multiple left-out target cohorts. 103 

Materials and Methods 104 

Data: 105 

Schizophrenia GWAS summary statistics, denoted as PGC-SCZ2+, were available from PGC 106 

Schizophrenia (SCZ) Working group (34 European ancestry cohorts, denoted as SCZ34)18 107 

and another three cohorts from Pardiñas et al19. PGC-SCZ2+ comprises more than 8M 108 

imputed SNPs in 31K SCZ cases and 41K controls. Individual level genotype data were 109 

available from 25K cases and 30K controls of SCZ34. Detailed information about the cohorts 110 

is provided elsewhere23 but is summarised in Table S1. Since some methods require a tuning 111 

sample (defined below), we arbitrarily chose the lie2 cohort (137 cases and 269 controls) as 112 

the tuning cohort. The GWAS discovery sample was a meta-analysis of 35 cohorts; lie2 was 113 

always excluded and then each of the remaining 33 cohorts was left-out in turn and used as 114 

the target sample. In sensitivity analyses, investigating the impact of the tuning sample, the 115 

msaf, gras and swe6 cohort were exchanged with lie2 in turn, in which msaf has a similar 116 

sample size as lie2, 327 cases and 139 controls, while gras and swe6 are larger with more 117 

than 2000 individuals each. 118 

 119 

Major depression GWAS summary statistics were available from seven studies including UK 120 

Biobank21; 24, 23andMe25, GERA26, iPSYCH27, deCODE28, GenScotland29; 30, and the PGC 121 
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Major Depressive Disorder (MDD) Working group (with the data previously denoted as 122 

PGC29, but here MDD29)20. All are European ancestry studies and comprise almost 13M 123 

imputed SNPs from 248K cases and 563K controls. MDD29 includes the GWAS results from 124 

29 research study cohorts. Detailed information of the MDD29 cohorts is described 125 

elsewhere20; 21; 25-30 but is summarised in Table S2. Individual level genotype data were 126 

available for 15K cases and 24K controls from 26 cohorts. We left one cohort out of those 26 127 

cohorts in turn as the target sample. A cohort from Muenster20, not included in the MDD29 128 

was used as the tuning sample (845 clinical defined MDD cases and 834 controls). We then 129 

meta-analysed with the other GWAS summary statistics results to make the discovery 130 

samples. We note that the discovery sample meta-analyses include samples where the 131 

depression phenotype is self-reported rather than following a structured clinical interview, 132 

nonetheless we refer to the prediction as MDD since the PGC target cohorts are of MDD 133 

cases and controls. 959 overlapped individuals between UK Biobank and MDD29 were 134 

excluded from the target cohorts. 135 

 136 

The datasets stored in the PGC central server follow strict guidelines with local ethics 137 

committee approval. 138 

 139 

Baseline SNP selection 140 

For baseline analyses, only SNPs with minor allele frequency (MAF) > 0.1 and imputation 141 

INFO score > 0.9 (converted to best-guess genotype values of 0, 1 or 2) were selected. 142 

Sensitivity analyses relaxed the MAF threshold to MAF > 0.05 or 0.01 and INFO score 143 

threshold to 0.3. All methods were conducted using HapMap3 SNPs, except the method P+T, 144 

which was conducted based on all imputed SNPs (8M in SCZ, and 13M in MDD).  145 

 146 
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Prediction methods  147 

We define a PGS of an individual, j, as a weighted sum of SNP allele counts: ∑ "#!$!"#
!$% , 148 

where m is the number of SNPs included in the predictor, "#! is the per allele weight for the 149 

SNP, $!" is a count of the number (0, 1, or 2) of trait-associated alleles of SNP i in individual 150 

j. The cohort (target sample) for which PGSs are calculated is excluded from the meta-151 

analysis that generates the GWAS summary statistics (discovery sample), so that discovery 152 

and target samples are independent. We compared eight risk prediction methods (detailed 153 

below): The methods differ in terms of the SNPs selected for inclusion in the predictor and 154 

the "#! values assigned to the SNPs. All methods use the GWAS summary statistics as the 155 

starting point, but each makes choices differently for which SNPs to include and for the "#! 156 

values to assign. Briefly, the key differences between the methods are the assumptions made 157 

about the underlying genetic architecture and the distributions of true effect sizes, with 158 

Bayesian methods setting some priors for these distributions. Several methods employ an LD 159 

reference sample to determine LD between SNPs. Here, we use EUR of the 1000 Genomes 160 

Project as the LD reference, unless the method software provides an LD reference. In some 161 

methods the PGS calculated in a target cohort requires estimates of parameter values, which 162 

need to be estimated by application of the PGS method to a tuning cohort (also not included 163 

in the discovery GWAS sample) using a range of parameter estimates, then selecting the 164 

parameter estimates that maximizes prediction in that tuning cohort. In all methods, once the 165 

SNPs and "#! have been decided, PLINK --score is used to calculate the PGS in the target 166 

sample. 167 

 168 

LD pruning and thresholding (P+T)3 169 

In the P+T method GWAS summary statistics are pruned to be approximately independent 170 

using a LD threshold, r2. From this quasi-independent genome-wide SNP list, SNPs are 171 
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selected by thresholding on a pre-specified association p-value, Pt. We evaluated P+T as 172 

implemented in Ricopili31 which uses PLINK32 to prune the SNP set using r2 = 0.1 within 173 

500 kb windows, and PtÎ (5e-08, 1e-06, 1e-04, 1e-03, 0.01, 0.05, 0.1, 0.2, 0.5, 1), where Pt =1 174 

means that all SNPs from the LD-pruned list are included. In applications of P+T it is 175 

common for results from the most associated Pt to be reported (including the application in 176 

the software PRSice33 which uses a continuous Pt range), but this approach utilises 177 

information from the target cohort and hence introduces a form of winner’s curse. Here, the 178 

Pt threshold applied in target cohorts is the Pt threshold that maximised prediction in the 179 

tuning cohort. 180 

 181 

SBLUP12 182 

SBLUP is a method that re-scales the GWAS SNP effect estimates using an external LD 183 

reference panel to transform the ordinary least-squares estimates to approximate the best 184 

linear unbiased prediction (BLUP) solutions. This method assumes an infinitesimal model 185 

where SNP effects are drawn from a normal distribution. All genome-wide SNPs are used to 186 

build the PGS. Hence, for example, consider a genomic region with a single causal variant 187 

but with many SNPs in the region correlated with the causal variant and correlated with each 188 

other. In this case the effect size estimate is “smeared” across the correlated SNPs, but with 189 

the total contribution to risk expected to represent the best estimate of the signal from the 190 

underlying causal variant. This method is implemented within the software package GCTA34.  191 

  192 

LDpred and LDpred-inf 13 193 

While P+T uses arbitrary LD and p-value thresholds for selection of SNPs, LDpred tries to 194 

optimise this step in a Bayesian framework. The method uses the GWAS summary statistics 195 

and LD information from the external LD reference sample to infer the posterior mean effect 196 
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size of each SNP, conditioning on the SNP effect estimates of other correlated SNPs. This 197 

method assumes a point-normal prior on the distribution of SNP effects such that only a 198 

fraction of SNPs with non-zero estimated effects are selected for inclusion in the PGS. The 199 

default parameter setting for the fractions of causal SNPs (p, but denoted p in the original 200 

paper) were used in the tuning cohort: p Î {1 (i.e. all SNPs), 0.3, 0.1, 0.03, 0.01, 0.003, and 201 

0.001}, with an LD radius of M/3000 (M is the number of SNPs) to obtain local LD 202 

information, as suggested by the authors13. The p value that maximised the prediction in the 203 

tuning sample was applied in the target sample; the p value can differ between target cohorts 204 

even though the same tuning cohort is used, reflecting the properties of the discovery sample 205 

which may change with each left-out target sample. When p=1 the method is called LDpred-206 

Inf and is equivalent to SBLUP (the concordance of results was checked, Table S7). 207 

 208 

LDpred-funct14  209 

LDpred-funct is an extension of the LDpred-inf (SBLUP equivalent) model but leverages 210 

trait-specific functional enrichments relative to the baseline-LD model35 to up/down-weight 211 

SNP effects. The functional annotations include coding, conserved, regulatory and LD-212 

related annotation. In the baseline-LD model, the enrichment of each category is jointly 213 

calculated via stratified LD score regression36. LDpred-funct has a non-infinitesimal model 214 

version, but in pilot analyses we found LDpred-Inf performed better than LDpred and hence 215 

only considered the LDpred-funct infinitesimal model. Thus, we continued only with the 216 

infinitesimal model version. 217 

 218 

PRS-CS and PRS-CS-auto15 219 

PRS-CS is also built under a Bayesian regression framework. Unlike LDpred which assumes 220 

a point-normal distribution as a prior, which is discrete, PRS-CS assumes a continuous 221 
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shrinkage prior on the SNP effects. PRS-CS was implemented using the default setting and 222 

with the LD reference panel provided with the PRS-CS software, which is computed using 223 

the 1000 Genomes samples and HapMap3 SNPs. In PRS-CS, for the global scaling parameter 224 

which is applied to all SNP effects %, the search grid is %%/'∈ {0.0001, 0.001, 0.01, 0.1, 1}, 225 

The % that produces the best predictive performance in a tuning data set is selected for use in 226 

the target sample. In PRS-CS-auto, % is automatically learnt from GWAS summary statistics 227 

and no tunning sample is needed. 228 

 229 

SBayesR 230 

SBayesR is a method that re-scales the GWAS SNP effect estimates based on Bayesian 231 

multiple regression. SBayesR assumes that the standardised SNP effects are drawn from a 232 

mixture of four zero-mean normal distributions with different variances (one of the variances 233 

is zero, with a probability of p1), indicating that only a fraction of SNPs (1-p1) have non-zero 234 

estimated effects which contribute to the phenotype. Moreover, the contributions of SNPs in 235 

different distributions differ because of different variances. Here, we evaluated SBayesR in 236 

the default setting. For the LD reference, we used the same sparse LD matrix as the one used 237 

in Lloyd-Jones et al.16, where the LD matrix was built based on the HapMap3 SNPs of 238 

randomly selected and unrelated 50K UK Biobank individuals. Whereas LDpred estimates 239 

p from a tuning sample, SBayesR estimates p from the GWAS discovery sample, so no 240 

tuning sample is needed. 241 

 242 

Evaluation of out-of-sample prediction 243 

The accuracy of prediction in each target cohort was quantified by 1) Area under the receiver 244 

operator characteristic curve (AUC; R library pROC). AUC can be interpreted as a 245 

probability that a case ranks higher than a control. 2) The proportion of variance on the 246 
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liability scale explained by PGS37. We used the population lifetime risk of SCZ and MDD as 247 

1% and 15% respectively to convert the variance explained in a linear regression to the 248 

liability scale20; 23; 38. 3) Odds ratio (OR) of tenth PGS decile relative to the first decile. 4) 249 

Odds ratio of tenth PGS decile relative to those ranked in the middle of the PGS distribution, 250 

which is calculated as the average of OR of tenth decile relative to fifth and sixth decile. 5) 251 

Standard deviation unit increase in cases. The PGS in each target cohort were scaled by 252 

standardising the PGS of controls and applying the standardisation to cases: 253 

()*!"#$+#,-.(()*!%&'(%))
*1(()*!%&'(%))

, where SD is standard deviation. This does not impact PGS 254 

evaluation statistics but simply means that PGS are in SD units for all cohorts. We compare 255 

the median value for evaluation statistics 3 and 4, because they are significantly different 256 

from a normal distribution based on a Shapiro-Wilk Normality Test. The regression analyses 257 

for evaluation statistics 2-4 include 6 ancestry principal components as covariates. These 258 

covariates are not included in the AUC model and the standard deviation unit increase in 259 

cases model. To illustrate the impact on results, for SCZ given the SBayesR mean variance in 260 

liability of 9.9% and lifetime risk of 0.01 the AUC expected from normal distribution 261 

theory39 is 0.730, compared to the mean reported of 0.733. For MDD given the variance in 262 

liability of 4.0% and lifetime risk of 0.15 the expected AUC is 0.603 compared to the mean 263 

reported of 0.601.  264 

 265 

Results 266 

Prediction evaluation statistics based on recent PGS methods applied to SCZ across 30 study 267 

cohorts (Figure 1, Table S3 and S4), and to MDD across 26 cohorts (Figure 2, Table S5 and 268 

S6), show higher values for all methods over the benchmark method, P+T. The evaluation 269 

statistics include i) area under the receiver operator characteristic curve (AUC) which can be 270 
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interpreted as the probability that a case ranks higher than a control, when the case and 271 

control are randomly drawn; ii) mean difference between cases and controls expressed in 272 

PGS standard deviation (SD) units of controls, after standardization of the PGS so that 273 

controls in each target cohort have a mean of 0 and a SD of 1; iii) variance in liability 274 

explained by the PGS; iv) Odds ratio of the top 10% ranked on PGS relative to the bottom 275 

10%; v) Odds ratio of the top 10% ranked on PGS relative to those ranking in the middle of 276 

the PGS distribution; vi) difference between mean of PGS in the top 10% of cases and mean 277 

PGS in top 10% of controls.  278 

 279 

There is variability in prediction statistics across target cohorts which is not a reflection of 280 

sample size (Figure S1 and Table S4 for SCZ, Figure S2 and Table S6 for MDD). To 281 

provide a benchmark in terms of power, we note that for SCZ, the mean difference in PGS 282 

between cases and controls for the P+T method is 0.73 standard deviation units of the control 283 

sample (SDU). A sample size of only 42 cases and 42 controls has 95% power to detect this 284 

difference at a nominal significance threshold of 0.05; all SCZ cohorts are bigger than this. 285 

For MDD, the mean difference in PGS SDU between cases and controls for the P+T method 286 

is 0.30, and the power calculation requires a sample size of 290 cases and 290 controls to 287 

detect this difference; 20 (77%) of the MDD cohorts achieve this effective size. Hence, the 288 

SCZ and MDD cohorts are well-powered for PGS evaluation. 289 

 290 

The correlations of PGS between different methods are high (Table S7), but are lowest 291 

between P+T and other methods (minimum 0.67). In contrast, the correlations between the 292 

recent methods are always > 0.83. In theory, LDpred-Inf and SBLUP are the same method. In 293 

practice, there are differences in implementation (e.g., different input parameters associated 294 

with definition of LD window), generating a correlation 0.977. The differences in prediction 295 
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evaluation statistics between methods are small. For SCZ the AUC for all recent methods 296 

other than PRS-CS-auto are significantly higher than the P+T method after Bonferroni 297 

correction (p-value < 0.0018=0.05/28 (28 pair-wise comparisons between 8 methods), two-298 

tailed Student’s t-test). For MDD none of the differences between methods were significant. 299 

For both SCZ and MDD, regardless of tuning cohorts SBayesR showed relatively better 300 

performance (on average across target cohorts) than other methods on all statistics, where 301 

other recent methods performed similarly (Figures 1 and 2). For variance explained on the 302 

liability scale, the P+T PGS explained a mean of 6.8% across cohorts for SCZ. For SBayesR, 303 

the mean was 9.9% for variance explained in liability, an increase of 46%. For MDD 304 

although the variance explained is lower in absolute terms, 2.8% for P+T vs 4.0% for 305 

SBayesR; the latter represents a 43% increase.  306 

 307 

We provide several evaluation statistics that focus on those in the top 10% of PGS, because 308 

clinical utility of PGS for psychiatric disorders is likely to focus on individuals that are in the 309 

top tail of the distribution of predicted genetic risk. The odds ratio for top vs bottom decile 310 

are large, ranging from 13.8 for P+T to 22.5 for SBayesR for SCZ and 3 to 4 for MDD. 311 

While these top vs bottom decile odds ratios (Figure 1c and 2c) are much larger than the 312 

odds ratio obtained by using PGS to screen a general population (Figure 1d and 2d) or 313 

patients in a healthcare system to identify people at high risk40; 41, these comparisons are 314 

useful for research purposes, which could for example make cost-effective experimental 315 

designs focussing on individuals with high vs low PGS.42 The odds ratio of top 10% vs 316 

middle 10% are much less impressive, up to median of 5.5 for SCZ and 2 for MDD, but more 317 

fairly represents the value of PGS in population settings. These values can be benchmarked 318 

against risk in 1st degree relatives of those affected, which are of the order of 8 for SCZ and 2 319 

for MDD; low values are always expected for MDD because it is more common (lifetime risk 320 
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~15% compared to ~1% for SCZ). The odds ratio values are particularly high for some 321 

cohorts (Table S4), because in some SCZ cohorts the bottom 10% include very few or no 322 

cases, especially in cohorts with relatively small sample sizes. Since the PGS are normally 323 

distributed, as expected the mean PGS for controls in the top 10% PGS is ~1.75 SD units 324 

(K=0.10, t=qnorm(1-K), z=dnorm(t), mean value of top 10% of a normal distribution =z/K), 325 

whereas the top 10% of cases have mean value of 2.63 control sample SD units for SCZ 326 

cases and 2.09 control sample SD units for MDD cases, using SBayesR. These mean values 327 

of the top 10% in cases equate to expectations from the population of the top 1.1% and top 328 

4.7% for SCZ and MDD, respectively. 329 

 330 

The impact of tuning cohort. Three methods (i.e., P+T, LDpred and PRC-CS) use tuning 331 

cohorts to determine key parameters for application of the method into the target cohorts. 332 

Tuning parameters impact results in two ways. First, the parameters may be dependent on the 333 

choice of tuning cohort. Second, the discovery GWAS sample may be reduced in size (and 334 

hence power) if a tuning cohort needs to be excluded from the discovery GWAS. In all our 335 

analyses the tuning cohort is excluded from all GWAS discovery samples so that GWAS 336 

discovery sample is not variable across methods for each target cohort. A sensitivity analyses 337 

that used the SCZ cohorts of msaf (Ncase= 327, Ncontrol= 139), gras (Ncase= 1086, 338 

Ncontrol= 1232) or swe6 (Ncase= 1094, Ncontrol= 1219) as the tuning sample instead of 339 

cohort lie2 (Ncase= 137, Ncontrol= 269) show that the tuning cohort can have considerable 340 

impact (Figure 3 and Figures S3-5). In our results, the tuning cohort that generates higher 341 

PGS is method dependent and differs between cohorts. Although methods SBLUP, LDpred-342 

Inf, LDpred-funct, PRS-CS-auto and SBayesR require no tuning cohort, they serve as a 343 

benchmark, since the differences in their results reflect differences in the changed discovery 344 
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samples (e.g., msaf is in the discovery sample, when lie2 is the tuning cohort, and vice versa), 345 

as well as the stochasticity inherent in the Gibbs sampling of Bayesian methods. 346 

 347 

The impact of MAF/INFO threshold. A MAF threshold of 0.1 and a INFO threshold of 0.9 348 

are used to be consistent with applications in the PGC SCZ23 and PGC MDD20 studies, which 349 

had been imposed recognising that these thresholds generated more robust PGS results than 350 

using lower threshold values. In the second sensitivity analysis applied to the SCZ data, the 351 

MAF threshold was relaxed to 0.05 (Figure 4) and to 0.01 (Figure S6). The prediction 352 

evaluation statistics increase for some cohorts and decrease for others. SBLUP, PRS-CS, 353 

PRS-CS-auto and SBayesR are less affected than P+T, LDpred-Inf, LDpred-funct and 354 

LDpred. For QC threshold of MAF < 0.01, the differences in AUC have a similar trend 355 

compared to using MAF<0.05, but with greater variability (Figure S6). The effects of MAF 356 

thresholds vary between cohorts, although the use of lower MAF threshold tends to generate 357 

higher AUC for the larger target samples. Across target cohorts, different evaluation statistics 358 

were almost identical when including less common SNPs (Table S3). Relaxing the INFO 359 

score to 0.3 has a negligible effect (Figure S7).  360 

Discussion  361 

Comparison of PGS risk prediction methods showed that all recent methods had higher 362 

prediction evaluation statistics over the benchmark P+T method for SCZ and MDD. While 363 

the differences between the recent methods were small, we found that SBayesR consistently 364 

ranked highest. Given that the PGS is a sum of many small effects, a normal distribution of 365 

PGS in a population is expected (and observed Figures S8-S11). In idealised data, such as 366 

the relatively simple simulation scenarios usually considered in method development, all 367 

evaluation statistics should rank the same, but with real data sets this is not guaranteed. This 368 
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is the motivation for considering a range of evaluation statistics. Our focus on statistics for 369 

those in the top 10% of PGS is partly motivated by potential clinical utility. In the context of 370 

psychiatry, it is likely that this will focus on people presenting in a prodromal state with 371 

clinical symptoms that have not yet crystallised to a specific diagnosis10; 43. High PGS in 372 

those presenting to clinics could help tilt the clinical decision-making towards closer 373 

monitoring or earlier intervention. Since a genetic-based predictor only predicts part of the 374 

risk of disease, and since a PGS only predicts part of the genetic contribution to disease it is 375 

acknowledged that PGS cannot be fully accurate predictors. Nonetheless, PGS, in 376 

combination with clinical risk factors, could make a useful contribution to risk prediction.  377 

 378 

In sensitivity analyses that used different quality criteria for SNPs e.g. MAF of 0.01 vs 0.05, 379 

INFO of 0.3 vs 0.9, we concluded that, currently, there is little to be gained in PGS from 380 

including SNPs with MAF < 0.10 and INFO < 0.9 for the diseases/dataset studied (Table S8 381 

and S9). This result may seem counter-intuitive since variants with low MAF are expected to 382 

play an important role in common disease, and some may be expected to have larger effect 383 

sizes than more common variants44; 45. However, sampling variance is a function of allele 384 

frequency (var(y)/(2*MAF(1-MAF)*n), where n is sample size), such that a variant of MAF 385 

=0.01 has sampling variance 25 times greater than a variant of MAF=0.5. Moreover, in real 386 

data sets cohort sample size and technical artefacts can accumulate to increase error in effect 387 

size estimates particularly of low frequency variants. Our conclusion that little is gained from 388 

including variants of MAF < 0.1 and reducing INFO threshold needs to be revisited as larger 389 

discovery samples and larger target cohorts accumulate. 390 

 391 

For both SCZ and MDD, while all recent methods had similar performance, SBayesR saw the 392 

highest prediction accuracy in most of the comparisons. Although SCZ and MDD both have a 393 
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highly polygenic genetic architecture, we have recently shown that SBayesR outperforms 394 

other methods for two less polygenic diseases, Alzheimer’s46 (which includes the APOE 395 

locus which has a very large effect size) and ALS47 (for which there is evidence of greater 396 

importance of low MAF variants compared to SCZ48). The original SBayesR publication 397 

showed that in both simulations and applications to real data, the method performed well 398 

across a range of traits with different underlying genetic architectures, which is because 399 

SBayesR can fit essentially any underlying architecture and other methods are special cases 400 

of the SBayesR model, except PRS-CS which uses different distributional approaches (Table 401 

1). We note that we did not consider a version of P+T that has been shown to have higher out 402 

of sample prediction compared to the standard implementation11. This method conducts a 403 

grid search in a tuning cohort to determine LD r2 and INFO score thresholds for SNPs as well 404 

as the p-value threshold. We chose to implement only the basic, commonly used P+T 405 

method, and specifically as implemented in published PGC studies. Moreover, many of the 406 

methods implemented here address optimum SNP selection from a methodological approach 407 

rather than grid search approach. We note that here we only considered the infinitesimal 408 

model version of LDpred-funct, because we have already found no advantage of LDpred over 409 

LDpred-inf in the preliminary analyses. For traits and diseases of other genetic architecture 410 

parameters of LDpref-funct should be investigated, although in the updated LDpred-funct 411 

preprint49, SBayesR was found to perform well across a range of quantitative and binary 412 

traits. We do note that SBayesR expects effect size estimates and their standard errors to have 413 

properties consistent with the sample size and with the LD patterns imposed from an external 414 

reference panel. If GWAS summary statistics have non-ideal properties (perhaps resulting 415 

from meta-analysis errors or approximations) then SBayesR may not achieve converged 416 

solutions. Last, we note that the comparison of methods uses only study samples of European 417 

ancestry. More research is needed to understand the properties of prediction methods within 418 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.09.10.20192310doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.10.20192310
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

other ancestries and across ancestries, given potential differences in genetic architectures (in 419 

terms of number, frequencies and effect sizes of causal variants) and LD between measured 420 

variants and causal variants50; 51. Such research is dependent on the availability of large 421 

GWAS data sets from non-European ancestries; currently there is considerable effort to 422 

increase GWAS sample collection across world-wide population groups to address this 423 

concern50-52. 424 

 425 

All recent methods are compared using their default parameters settings. An optimum setting 426 

of each method could potentially increase the prediction accuracy. For example, in sensitivity 427 

analyses we found that LDpred sees higher prediction accuracy when increasing the length of 428 

MCMC chain, while PRS-CS-auto and SBayesR results are not impacted by increasing the 429 

MCMC chain length beyond the default settings (Table S10). This result agrees with the 430 

recent revision of LDpred, LDpred253. The underlying model and assumptions about the SNP 431 

effect distribution are unchanged, but higher prediction accuracy is reported for longer 432 

MCMC chain and larger LD windows. Most likely the optimum parameter settings are trait 433 

(genetic architecture) dependent11. Hence, we conclude that a key advantage of SBayesR is 434 

that there is no need for the user to tune or select model or software parameters. Moreover, it 435 

does not need a tuning cohort to derive SNP effect weights but learns the genetic architecture 436 

from the properties of the GWAS results. A third key advantage of SBayesR is computational 437 

speed. Using one CPU, it takes approximately 2 hours to generate SNP weights based on 438 

each discovery sample and predict into the left-out-cohort, compared to PRS-CS which needs 439 

40 hours using 5 CPUs (the CPU number is fixed in the PRS-CS software). Last, given that 440 

SBayesR uses only HapMap3 SNPs that are mostly well-imputed it should be possible to 441 

provide these SBayesR SNP weights as part of a GWAS pipeline to apply in external target 442 

samples.  443 
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Supplemental Data 444 

The Supplemental Data include 11 figures and consortium members.  445 
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Figure 652 

 653 
Figure 1. Results from prediction of SCZ case/control status using different PGS 654 

methods. 655 

a) The area under curve (AUC) statistic. The AUC is a measure for the prediction accuracy, 656 

which indicates the probability that a case ranks higher than a control. The predictors 657 

were constructed from GWAS summary statistics of PGC-SCZ2+ excluding the target 658 

cohort and the tuning cohort (cohort ‘lie2’). Each bar reflects the mean AUC across 30 659 

target cohorts, the whiskers show the 95% confidence interval for comparing means. The 660 

number below each bar is the mean AUC estimated by each method, followed by its rank. 661 

P+T is the benchmark method which is shown in orange. Pink shows the methods that use 662 
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an infinitesimal model assumption. Light green shows the methods using a tuning cohort 663 

to determine the genetic architecture of a trait. Dark green shows the methods learning the 664 

genetic architecture from discovery sample, without using a tuning cohort. 665 

b) The proportion of variance explained by PGS on the scale of liability, assuming a 666 

population lifetime risk of 1%. 667 

c) The odds ratio when considering the odds of being a case comparing the top 10% vs 668 

bottom 10% of PGS. The number below each violin is the median OR estimated by each 669 

method, followed by its rank.  670 

d) The odds ratio when considering the odds of being a case comparing the top 10% vs those 671 

in the middle of the PGS distribution, calculated as the averaged odds ratio of the top 672 

10% ranked on PGS relative to the 5th decile and 6th decile. The number below each 673 

violin is the median OR estimated by each method, followed by its rank. 674 

e) The mean of the PGS for the top 10% cases (coloured boxes) and for the top 10% of 675 

controls (grey boxes) in PGS standard deviation (SD) unit scale so that controls have 676 

mean PGS of zero and SD of 1. 677 

f) This table shows the percentages of the number of cohorts (out of 30) where SBayesR 678 

showed a higher prediction metric compared to different methods. AUC: Area under 679 

curve; Variance explained: The proportion of variance explained by PGS in liability 680 

scale; OR TvsB: odds ratio, comparing the top 10% vs bottom 10% of PGS; OR TvsM: 681 

odds ratio, comparing the top 10% vs those in the middle of the PGS distribution; SD 682 

increase: standard deviation units increasing of the PGS for the top 10% cases. 683 
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 684 

Figure 2. Results from prediction of MDD case/control status using different PGS 685 

methods. 686 

Similar to the caption of Figure 1, but the predictors were constructed from GWAS summary 687 

statistics of UK Biobank15, 23andMe16, GERA17, iPSYCH18, deCODE19, GenScotland20,21, 688 

PGC-MDD29 excluding the target cohort. The target cohorts comprised 26 of the 29 cohorts 689 

in MDD29. A cohort from Muenster, not included in the MDD29 was used as the tuning 690 

sample. The assumed population lifetime risk was 15% when estimating the proportion of 691 

variance explained by MDD PGS in liability scale.  692 
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 693 
Figure 3. Sensitivity analyses using different tuning cohorts. 694 

Differences in AUC of a PGS method when using different tuning cohorts. The different bars 695 

in each method (x-axis) refer to different validation cohorts ordered by sample size. The y-696 

axis is the AUC difference when using alternative tuning cohort (i.e. msaf, sew6 or gras), 697 

compared to ‘lie2’. The MAF QC threshold is 0.1. Note: SBLUP, LDpred-Inf and LDpred-698 

funct, PRS-CS-auto and SBayesR do not need a tuning cohort, but serve as a benchmark to 699 

methods which need a tuning cohort. These methods differ when a different tuning cohort is 700 

left out, because the discovery GWAS also changes.  701 
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 702 
Figure 4. Sensitivity analyses using different MAF quality control thresholds. 703 

Differences in AUC of a PGS method when using different MAF QC thresholds. The 704 

different bars in each method (x-axis) refer to different validation cohorts ordered by sample 705 

size. The y-axis is the AUC difference between analyses using MAF<0.05 and MAF <0.1 as 706 

a QC threshold. The tuning cohort is ‘lie2’. 707 

 708 

Table  709 

 710 
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Table 1. Summary of methods used to generate PGS 711 

Method Distribution of SNP effects Tuning 
sample 

Pre-defined 
parameters 

Parameters 
estimated in tuning 

sample 
P+T None  Yes - P value threshold 

SBLUP !~#(0, ℎ!
"

() 
ℎ!": SNP-heritability, m: number of SNPs 

No 
M, 
ℎ!", 

LD radius in kb 

- 

LDpred-
Inf Same as SBLUP No 

Sample size, 

LD radius in number of 

SNPs 

- 

LDpred-
funct 

!#~#(0, *+#") 
∑ 1$!"%&
'
#() *+#" = ℎ!", 	* is a normalizing constant 

+#" is the expected per SNP-heritability under the baseline-LD 

annotation model. 

No 

ℎ!", 

Per-SNP heritability 

estimated from stratified 

LDSC, 

Sample size, 

LD radius in number of 

SNPs 

- 

LDpred !#~0#(0,
ℎ!"
1(), 			with	probability	of	1
0, 		with	probability	of	1 − 1

 Yes 

Sample size, 

LD radius in number of 

SNPs 
1 

PRS-CS 

!#~#(0,
+"
? @#) 

@#~A(B, C#) 
C#~A(D, E) 
E	is a global scaling parameter. 

n is sample size 

A is a Gamma distribution 

Yes 

a, b, 

Sample size 

 

E 

PRS-CS-
auto Same as PRS-CS,but estimates E from the discovery GWAS. No 

a, b, 

Sample size 
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SBayesR 

!#|	1, +*"~

⎩⎪
⎨
⎪⎧

0, 		with	probability	of	1)
#(0, K"+*"), 		with	probability	of	1"

⋮
#(0, K++*"), 		with	probability	of	1 − ∑ 1+,-)

+()

  

+*"~M?N − O"(4)  
1.~QRS(T)  
K. are scaling parameters 

No 
 

K.  - 

Distributions: N: normal, G: gamma, M?N − O": inverse chi-squared distribution, QRr: Dirichlet 712 

 713 
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