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Highlights 

1. We construct and analyze a transmission system model that integrates immunity 
waning and antigenic drifting. We found no other model that integrates both. 

2. The model reveals strong joint effects of waning and drifting. For example, waning is 
essential for drifting. But once drifting starts, it generates its own momentum. 

3. The model generates unexpected but explainable phenomena such as: A) Given low 
drifting parameters, strains become increasingly different from each other, but given 
high drifting parameters, they merge together. B) Higher drifting rates accelerate the 
appearance of new strains but slow the expansion of those new strains. 

4. The model generates assay data for neutralization across drifted strains. This enables 
population serological analyses to estimate waning and drifting parameters. 

5. Predicting drifting through population serology analyzed by fitting models to the data 
has potential to better inform vaccine strain choices than the approach taken for 
influenza which focuses on analysis of large numbers of virus strains over time. 

6. Model elaboration using a strategy of Decision Robustness and Identifiability Analysis 
will inform decisions about vaccine design and use and provides insights on resistance to 
infection by age. 
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Abstract 
Reinfection with SARS-CoV-2 can result from either waning immunity, a drift in the virus that 
escapes previously stimulated immunity, or both. The nature of such reinfection risks will affect 
the choice of control tactics and vaccines. We constructed an SIR transmission model of waning 
and drifting that can be fitted to cross-neutralization serological data. In this model, waning 
occurs in individuals who have recovered from previous infections while drifting occurs during 
transmission to a previously infected individual. Interactions at the population level generate 
complex dynamics that cause drifting to occur in unanticipated but explainable ways across 
waning and drifting parameter sets. In particular, raising the fraction of transmissions where 
drifting occurs slows the rise of drifted strains to high levels and changes the equilibrium 
distribution of strains from ∪ shaped (extreme strains dominate) to ∩ shaped (central strains 
dominate). In ∪ shaped parameter regimes, endemic infection levels can rise after many years 
to above the original epidemic peak. The model simulates results from cross-neutralization 
assays given sera from previously infected individuals when multiple drifted strains are used in 
the assays. Fitting the model to such assay data can estimate waning and drifting parameters. 
Given the parameters, the model predicts infection patterns. We propose a process for using 
fits of our model to serological and other data called Decision Robustness and Identifiability 
Analysis (DRIA). This can inform decisions about vaccine options such as whether to prepare for 
changes in vaccine composition because the virus is changing to escape immunity. 
 
Introduction 
Many aspects of SARS-CoV-2 dynamics remain unknown, including the risks of and reasons for 
reinfection. At least one case of reinfection has apparently been well documented 
(Kupferschmidt 2020). SARS-CoV-2 reinfections might arise either because host immunity 
wanes after recovery from infection or because the virus evolves to escape immunity 
stimulated by prior infections. Reinfection is common and all age groups are repeatedly 
infected with endemic coronaviruses (Monto, DeJonge et al. 2020, Nickbakhsh, Ho et al. 2020). 
But no studies of any coronaviruses have quantified the roles of immunity waning or antigenic 
drifting contributing to reinfections. High variation in coronavirus genomes at attachment sites 
(Andersen, Rambaut et al. 2020)suggest that virus variation might explain some reinfections. 
When waning of immunity allows for reinfections, those reinfections could generate forces that 
generate antigenic drift to new virus variants. Such interactions between waning and drifting 
could also affect the risks of infection after vaccination. 
 
To explore such interactions, and to create a basis for extracting information about drifting and 
waning by fitting models to data, we present a model that captures the separate effects of 
waning and drifting and their interactions. Our model opens new paths for relating serological 
data to population patterns of infection and estimating waning and drifting parameters from 
serological data.  
 
The model we examine is simple. Yet it generates complexities we did not anticipate. The 
understanding we gained in how such complexities emerge will help develop more detailed 
models with greater capacity to guide both research and control decisions. Accordingly, we lay 
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out a path for building on our model to ensure the validity of scientific or public health 
decisions. We call this strategy Decision Robustness and Identifiability Analysis (DRIA). Although 
the model presented here does not include vaccination, adding it is straight forward. 
 
It was polio that first led us to develop this model of combined waning and drifting. Besides 
polio, influenza and pertussis will especially benefit from model elaborations beyond the 
skeleton we present here.  
 
We first describe our model and the behaviors it generates. We then describe how it enables 
population serological analyses to estimate waning and drifting parameters. Finally, we 
describe how the DRIA strategy will facilitate decisions about vaccine use. 
 
I:  The Model 
I.1:  Model Structure  
We use a continuous SIR (Susceptible, Infectious, Recovered) compartmental model. The S state 
represents never-infected susceptibles. The infectious state I is divided into M+1 levels of 
antigenic drift: I0, I1, …, IM. We write B for the effective contact rate per week between those in 
S and those in any Ih. An infected individual in state Ih recovers at rate g per week and upon 
recovery enters recovered state Rh0. The second subscript in Rh0 represents how much the 
recovered individual’s immune system has waned from its maximum effectiveness. As his 
immune system wanes, the individual newly reinfected with drift level h moves from Rh0 to Rh1 
to Rh2 and eventually to RhP (maximal waning) at constant rate w. So, for each drift level h, there 
are P+1 waning states Rhk, k=0,1,…,P. 
 
New infections can occur when an infected in state Ih meets a recovered individual in state Rjk, 
with the probability of transmission increasing: 1) as the waning level k increases, and 2) with 
increases in the difference |h-j| between the drift level h of the infected and last former 
infection level j of the susceptible in Rjk. For example, there is no transmission when an Ih 
encounters an Rh0 and the highest probability of transmission when an I0 encounters someone 
in RMP. To quantify this probability of transmission between an Ih and an Rjk, we combine the 
risk of infection due to waning 𝐵 $ %

&'(
) with the risk due to drifting 𝐵 $1 − %

&'(
) $|-./|

0'(
) so that 

the total probability of transmission is 

𝐵 ∙ 𝑍(𝑗, ℎ, 𝑘) = 𝐵 :;1 −
𝑘

𝑃 + 1> + ;1 −
𝑘

𝑃 + 1>?
|ℎ − 𝑗|
𝑀 + 1A

B												(1.1)		 

This formulates additive joint effects of waning and drifting on infection risk and implies that 
drifting and waning operate on the same scale in terms of ability to increase susceptibility. 
 
When an infected in Ih encounters and infects a susceptible in Rjk, there is a probability dr of 
antigenic drift to the closest different drift level. In particular, with probability dr, an individual 
in Rjk newly infected by an infective in Ih will transit to state Ih’, where h’ = h+1 if j>h and h’ = h-1 
if j<h (with appropriate modifications at the extremes h=0 or h=M as discussed in the 
supporting material). Thus, drifting is perfectly symmetrical with regard to going up or down 
drift levels. 
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One logic for our choice of this model structure is that drifting of the virus to escape host 
immunity is a process that takes place during infection and transmission. In an infected 
individual, diverse viruses are generated. Upon transmission, those viruses that escape a new 
host’s immunity are more likely to cause infection.  
 
The model is presented in detail in the supporting material (SM). It makes a number of 
simplifying assumptions. For example, it assumes that all infections have the same unchanging 
recovery rate g and the same weekly effective contact rate B (modified, of course, by h,j,k). It 
assumes a constant birth and death rate for the whole population, as well as random mixing. It 
uses a single waning rate w for the P transitions between the waning states. In SM we list other 
simplifying assumptions that can be realistically relaxed. But we argue that one should not 
make a model more realistic just to do so because that results in the model becoming less 
identifiable. Parameter identifiability can be quickly lost even with one or two realistic model 
elaborations. That is why we emphasize Decision Identifiability which we describe later.  
 
I.2:   Model Behavior 
We simulated the model delineated in the Supporting Material using the Berkeley Madonna 
Software (Madonna 2020). For the simulations in this report we set effective weekly contact 
rate B=1 and weekly rate of recovery g=0.5, so that the underlying basic reproduction number 
is R0=2. The birth and death rates were set at 1/(75 times 52). All time scales were set to a 
week. We introduced one infection per 10 million into a continuous population denoted as 
having 1000 individuals with no immunity or control effects. We worked with 7 drift levels and 
7 stages of immunity, so that M=P=6. We varied only the drift rate dr and the waning rate w to 
understand better the interactions between drifting and waning. Numerical solution of the 
model used Runge-Kutta 4; the stability of inferences made were evaluated across smaller time 
steps. 
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Figure 1: Patterns of total infections and infections in the first, third, and fifth drifting states 
across waning parameters from 0 to 0.1 per week, and drift fraction parameters from 0.01 to 
0.5 per week. 
 
We have only begun to explore the rich system complexities that emerge from this simple 
model. We discuss only the interactions between waning of immunity and drifting to escape 
immunity. These create phenomena that could influence the stability and change dynamics of 
infectious agents. This simple model needs elaboration to inform theoretical science or public 
policy decisions. But the dynamics of this simple model are so rich that model elaborations 
need to proceed with an understanding of what is generating those dynamics.  
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I.2a: A sparse overview across a broad spectrum of waning and drifting 
To analyze how changes in dr and w affect the dynamics of our system, we ran simulations with 
seven representative values of each -- from no waning and no drifting to high levels of both.  
We fixed w and let dr vary over these seven values and then fixed dr and let w vary. We present 
four of these graphs in the SM Figure S1.  
 
Figure 1 gives a sparse overview of these observations. (We will go into more detail below.) In 
Figure 1, we vary waning across the columns and drifting across the rows. The dark curve in 
each subfigure is the graph of the number of infected I(t) from t=0 to t=500 weeks. We also 
include graphs of I1(t), I3(t), and I5(t) to understand some of the details of the spread. We 
present some observations gleaned from or implied by Figure 1 and the Figures in the 
Supporting Material. 
 

1) Note that the first epidemic is virtually unchanged as w and dr vary in the 12 graphs of 
Figure 1, peaking around 153.4 infections at week 32. This invariance is expected since 
drifting in the model arises from reinfections, which are rare in the first epidemic (nearly 
all the infected are in I0), and the epidemic ends before waning begins. In fact, up to the 
0.1 rate of waning per week, the size of the original epidemic stays the same.  

 
2) Without waning, there is no drifting; drifting can only occur as a result of the 

immunologically selective forces of reinfection. When w=0 in our model (column 1), 
epidemics are dispersed in time with virtually no infection between them. They occur 
when cumulative births generate a large enough (never-infected) susceptible population 
to raise the effective reproduction number above 1. It takes 75 years for the first 
epidemic to appear and another 42 years after that for the second epidemic to appear.  

 
3) More waning leads to more infection. 

 
4) In particular, as w rises, so does the timing and peaks of epidemics after the first one. 

 
5) For small values of w, infections occur in discrete waves, with virtually no infection in 

between. 
 

6) By the time w reaches 0.1, total infection oscillates upwards in time, eventually reaching 
a positive equilibrium. 
 

7) The size of this equilibrium decreases as the drift fraction dr increases. See 
supplemental material Figure S1 panel D. 
 

8) For these situations, larger drift values dominate for small dr, intermediate drift values 
are more important for larger dr. 
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I.2b:   Dynamics given tiny amounts of waning and drifting 
The tiniest bit of waning and drifting greatly changes infection dynamics. At w=dr=0.00001, the 
second epidemic occurs 50 years earlier than it does for w=dr=0. That epidemic is dominated by 
drifting level 3 infections. In between these epidemics, infection rates are miniscule.  But the 
more drifted strains have an advantage because most of the recovered population has 
immunity at drift level 0. The third epidemic begins just four years after the second. At the start 
of the third epidemic 30% of the population is fully susceptible, 35% of recovered individuals 
are at drift level 0, and 35% of recovered individuals are at drift level 3. It is dominated by level 
5 infectives which had enough of an advantage between epidemics to become dominant over 
the drifting level 3 infections that dominated the second epidemic.  
 
I.2c:  Interactions between waning and drifting at intermediate waning levels 
To understand these phenomena more thoroughly, we examine in some detail how dynamics 
change across four drifting fraction parameter values (0.01, 0.05, 0.1, 0.5) and at waning 
parameter values of 0.01. 0.05, and 0.1 in Figures 2 and 3.  
 
Table 1: Immunity levels as a function of waning rates 

Waning Level 0.01 0.05 0.1 
Half Max 6 620 weeks 115 weeks 57 weeks 

Half Popn. Immunity 362 weeks 72 weeks 36 weeks 
 
To provide a feel for the waning parameter values in Figure 2, we present in row 2 of Table 1 
the waning levels in terms of the time it takes for half of recently infected individuals to lose all 
of their immunity. This is the time when half the previously infected population is at waning 
level 6 (the sum of Rj6 across j). In Row 3, we present the waning levels in terms of the time for 
the sum of all susceptibility across the whole population to reach a level that has half the 
immunity it had right after infection.  
 
Figure 2 presents the prevalence of infections at different drifting levels. As in Figure 1, the first 
epidemic is unchanged by the waning or drifting parameter values. However, at each positive 
waning level, the timing, size, and drifting level composition of the second and third epidemics 
changes as dr increases from 0.01 to 0.5.  
 
At waning level 0.01, the period between these first two epidemics shortens gradually as the 
drifting parameter increases to dr=0.03, after which it lengthens again. The second and third 
epidemics are increasingly populated by more drifted viruses as dr is increased up to a value of 
0.1. But by drifting fraction 0.5, there is a marked change as the second and third epidemic 
infections are mainly at drift levels zero and one. 
 
At waning level 0.05, the second epidemic appears quickly and subsequently there are epidemic 
waves rather than distinct epidemics. This is even more the case for waning level 0.1. For 
example, consider the case w=0.05, dr=0.01 in Row 1, Column 2. We blow up this subfigure in 
section 2.1 (Page4) of the SM Figure S1. As seen in this supplementary figure, after the initial 
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epidemic, the total infection fluctuates upwards through a series of six waves. As usual, the I0s 
dominate the initial wave. But then, as seen in Figure 2, I1 dominates the next wave, I2 the next, 
I3 the next, ..., I6 the last, after which total infection eventually equilibrates at 𝐼 ≈ 56.5/1000.  
Throughout this process, because of the small drift fraction 0.01, I0 never goes away. In fact, it 
is the second most active drift level in each wave after the first. Its encounters with never-
infected susceptibles further sustains the numbers of these persistent I0s. The resulting R0ks 
have the highest probability of reinfection when they encounter each new Ij because 0 is the 
furthest index from j. Soon after the I6s arise, the I0s and I6s become the dominant strains.  
 

 
Figure 2: The distribution of infections at different drift levels across the first 500 weeks after 
introduction of a drift level zero virus 
 
All this required a low drifting fraction. As the drift fraction dr increases, the role of the I0s 
decreases. When dr =0.1, each Ih still plays a major role in wave h, but each becomes more 
persistent over time. When the drifting fraction reaches 0.5, the impact of the early drift levels 
I0 and I1 diminishes and the intermediate levels, especially I3 eventually take over.  
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There is less drifting to the extremes as the drifting fraction parameter dr is increased because:  
1) There is less amplification of the extreme drifting levels since the fraction with potential to 
stay at the same level is 1 − 𝑑𝑟, which decreases as dr increases; 
2) There is more drifting away from the high and low extreme levels as the dr increases, 
3) As the infection level goes down for the first two reasons, there are more uninfected 
individuals that have an absolutely flat susceptibility to infections at all drift levels. That further 
reduces the forces driving drifting to the highest and lowest drifting levels.  
 
By the end of week 500, drifting levels are converging to equilibrium levels in Figure 2. Figure 3 
presents the numbers of infective of each drift level when the system finally equilibrates. 
Extreme levels I0 and I6 dominate for small dr, intermediate levels I2, I3, and I4 dominate for 
dr=0.5. Our model assumption that transmission probabilities are highest when the strains are 
furthest apart leads to higher infection levels for smaller dr’s. 

 
Waning level patterns are a determinant of reinfection potential. Figure S2 in SM tracks the 
waning levels for the parameters in Figure 2. Waning cascades from level 0 to 6 where it 
accumulates. The population level force of infection is a major determinant of what waning 
levels dominate across time. At the very low waning rate of 0.01 per week, waning cascades 
slowly and never accumulates much in level 6 except at the very high drifting fraction. The dual 
role of the drifting fraction dr in initiating waning more quickly but causing less growth after 
initiation explains this pattern. At the higher waning rates there is more accumulation in w6 
(Max Wane) during the first four years. But then as the drifting levels of viruses drift apart and 
cause an increasing force of infection, w6 is drained by new infections and these cause 
increasing levels of w0 that cascade down. Equilibrium levels of w6 decrease thus decrease 
more than lower waning levels. 

 
Figure 3: Equilibrium distribution of infections by drift level as a function of waning and drifting 
parameter values. 
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We explored different model formulations where drift levels went in circles rather than ending 
at the extremes. These formulations produced similar results. See SM 2.3. 
 
II. Model generation of serological data for estimating parameters and choosing vaccines 
We have demonstrated interactions between waning and drifting that affect the population 
patterns of infection. The patterns produced by these interactions provide a way to estimate 
waning and drifting parameters by fitting the model to observed data. But we don’t want to 
wait many years for patterns to emerge like those seen in figures 1 & 2 to estimate those 
parameters. We want a methodology that can use the serosurveys currently being conducted 
to help make decisions quickly regarding how the challenges of waning and drifting should be 
addressed through vaccination programs. Those serosurveys include 1) prospective follow up of 
infected individuals to estimate waning as a function of time since infection, and 2) serial cross 
sectional samples of sera to characterize population patterns of infection. The methods we 
present in this section will efficiently use the second sets of data to describe the combined 
effects of waning and drifting. Then using the DRIA approach we will present in the next 
section, vaccine decisions can be informed in a more timely and valid manner by using both 
types of data. 
 
II.1 How model generated data is turned into cross-neutralization analysis data 
Our model generates tables of cross-neutralization data. The real world, through the work of 
adept serologists, also generates tables of cross-neutralization data – with the same 
information. That means that we can adjust model parameters or otherwise modify our model 
until there is correspondence between our model and the real world. To do that well, we first 
need to understand how our model generates the data and how changes in model parameters 
alter the data. Providing the needed understanding is the goal of this section. 
 
In the SM we provide a tutorial on interpreting population cross-neutralization data (SM3.1 
page 9). We give a brief overview here. Suppose there are V virus types under consideration; 
they may differ, for example, by strain, year, or location. Choose a sample of uninfected 
individuals and take a blood sample of each to measure neutralizing antibody in the serum. 
Dilute each serum by a fraction T times for each individual in the sample. Assay each dilution to 
see if the serum neutralizes the growth of each of the V virus types. Record for each virus type 
the most diluted serum that neutralized it. This measure of immune response to each of the V 
virus types yields an entry in a 𝑇 ×⋯× 𝑇 (V times) table. Then count the number of individuals 
whose entry fell into that slot to generate a cross-neutralization table. We use neutralization 
assays as the serological method only because neutralization is widely thought of as being the 
most direct assessment of immunity. But more informative assays can be developed and 
related to immunity using the DRIA process to be discussed later. 
 
In the case of V=2 virus types, if all the entries are on the diagonal, then the viruses are 
equivalent with regard to drifting status. On the other hand, if there has been drifting so that 
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each viruse can escape some of the immunity stimulated by the other, table entries will be on 
the sub- or super-diagonals. 
 
Our model has 7 virus drift levels Ih and 49 categories Rjk of previously infected individuals (7 
drifting levels j by 7 waning levels k). To measure from our model output the neutralization 
level of virus type Ih by the immune system of an individual in an Rjk, we use the transmissibility 
measure Z(h,j,k), as formulated by function (1.1) in our model (without the B factor).  In effect, 
the Z function corresponds to the inverse of the neutralizing level. To make that number 
correspond to a titer, we divide the interval [0,1] into 10 equal subintervals that could 
correspond to 10 sequential dilutions for the neutralization assay. Both waning and drifting 
determine the neutralizing antibody levels according to equation (1.1). 
 
In this exposition, we work with two or three virus types at a time. The cross-neutralization 
table for 2 viruses is a 10 by 10 matrix. To get a particular value for each of the 100 entries in 
this cross-neutralization matrix, we first determine a susceptibility level for each of the 49 Rjk 
subgroups. Then we sum up the total number of individuals in the population that have 
horizontal axis level of susceptibility in the table corresponding to h1 and the vertical axis level 
of susceptibility corresponding to h2. Each entry thus has identical people with regard to 
neutralizing antibodies but it can be composed of individuals with different waning and drifting 
levels.  
 
To describe this process more analytically, let Π(z) denote the subinterval to which z in [0,1] 
belongs; analytically. Π(z) is 1 + the integer part of the decimal expansion of 10·z. Then, the 
(m,n)th entry of the cross-reaction matrix is the total number of individuals in all the 
compartments Rjk for which Π(Z(h1,j,k)) =m and Π(Z(h2,j,k)) =n. 
 
II.2 How model parameters change cross-neutralization patterns 
We numerically solved the model after introduction of 1 case per 10 million population and 
took cross sections of the uninfected population at 60, 110, and 162 weeks after that 
introduction. In the SM section 3.2 we examine the cross-neutralization patterns produced by 
four drifting fraction parameters, two waning rate parameters, and cross-neutralization using 
viruses at drifting levels 0 and 1 for all three time points and levels 0 and 2 for times 110 and 
162. 
 
During the first three years, Figures 2-3 and S2 show small or no differences between patterns 
with different drifting fraction parameters but the same waning level. The most valuable 
information is not captured in those figures because they do not break down the previously 
infected population by both drifting level and waning level. That breakdown is where the 
information on drifting lies. Cross-neutralization titers can perceive that breakdown, as can be 
appreciated across the range of parameters examined in Figure S3. For illustration purposes we 
present 60, 110, and 162 week cross-neutralization patterns for drift levels 0 and 1 at 60 and 
110 weeks and 0 and 2 at 162 weeks given a waning rate of w=0.1 and a drifting fraction of 
dr=0.1. 
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Figure 4: Expected cross-neutralization assay results given model parameter values for waning 
rate = 0.1 and drifting fraction = 0.1 with a population cross sections taken at 60, 110, and 162 
weeks and viruses at drift levels 0 and 1 used in the earlier assays and levels 0 and 2 are used at 
162 weeks. Note that blank cells had no population in them. Those with zeros had less than 
0.05 population. All of those with the lowest titers on both were never infected individuals 
highlighted in yellow. 
 

Drift Level 0 vs. 1;  Waning rate = 0.1;  drift fraction = 0.1;  week = 60 
10 81         81  
9 174        165  9 
8 202       195  7  
7 5        5   
6 162     162  0    
5 108    105 0 3     
4 1    0 1      
3 56   56        
2 40  40         
1 106 167          
DL0 935 167 40 56 105 163 3 195 170 88 9 
virus DL1 1 2 3 4 5 6 7 8 9 10 

 Drift Level 0 vs. 1;  Waning rate = 0.1;  drift fraction = 0.1;  week = 110 
10          85  
9         78  107 
8        61  106  
7       48  75   
6      44 1 41 0   
5      0.5 22     
4      0      
3    54        
2   203 0        
1  43 0         
DL0  43 203 54 0 45 71 102 153 191 107 
virus DL1 1 2 3 4 5 6 7 8 9 10 

 Drift Level 0 vs. 2;  Waning rate = 0.1;  drift fraction = 0.1;  week = 162 
10         60   
9        53  80  
8       43  68  39 
7        56  28  
6      37   18 2  
5     33 48 12 0 1   
4     42  7  0    
3    69 0.1 0       
2   252 0 0       
1  16 0         
DL0            
virus DL2 1 2 3 4 5 6 7 8 9 10 
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At most parameter settings there was little evidence of drifting at 60 weeks. At 60 weeks 25 out 
of 628 individuals with a titer greater than level 5 had a higher titer to the strain at drifting level 
1 than to the strain with a drifting level of 0. But by week 110, 351 out of 667 did. In the third 
panel of Figure 4 we see how at 162 weeks, drifting to level 2 and very slightly beyone is 
detected. It also shows how intermediate levels of drifting might appear when there has been 
further drifting from an initially drifted virus. Note that this third panel uses drifting levels 0 and 
2. If the world corresponded to this oversimplified model, if the world was deterministic like 
our model rather than stochastic, and if we could have measured the world perfectly just like 
we measured our model output, a decision at 60 weeks to adjust the vaccine might have been 
made. 
 
Using the DRIA approach to be discussed in the next section, we don’t need our model to 
perfectly correspond to the real world or our measurements to be perfect in order to make a 
good policy decision. But we do need real world data and we almost certainly would need to 
realistically relax many of the simplifying assumptions in our model. Additionally, we might 
need to insure the identifiability of our decision with additional data like that discussed in SM 
section 4.4. But serology data should be a great asset to making a valid decision because our 
model can generate it and thus the parameters of the model can be estimated by fitting the 
model to the data. 
 
Note that by making inferences about what fraction of the population has been infected by 
drifted or undrifted strains, cross-neutralization assays not only provide information about 
drifting and waning parameter values. They also make inferences about what fraction of the 
population has been infected with differently drifted strains. This information, together with 
waning and drifting parameter values, and a DRIA process that ensures robustness and 
identifiability is what enables our model to predict the future. 
 
The SM in section 3.3 considers additional things that can be gleaned from the cross-
neutralization data and explores issues of why the data turns out as they do. The biggest 
determinant of the shape of the cross-neutralization data is the past history of infection. Higher 
waning leads to more reinfection, which leads to more drifting, which in turn leads to more 
reinfection. There can be no perfect separation the waning influences from the drifting 
influences. But drifting effects show up in the off diagonal cells and are dependent upon having 
viruses in the assay where genetic changes have immunological effects. One can improve their 
feel for model behavior by seeking to understand why the shape of the cross-neutralization 
patterns changes as parameter values change in terms of the past history of the population. 
 
To get the full information out of population level cross-neutralization assays, one must fit a 
model to actual cross-neutralization data from appropriately designed sero-surveys. One gets 
that information out by treating the model as a partially observed Markov process to fit the 
model to data (Funk and King 2019). 
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III.  Model Development and Decision Validity Assessment Processes (DRIA) 
The model we have presented is a first step in a process needed to make valid scientific or 
policy decisions. The DRIA process we propose, as shown in the figure below has a number of 
distinct steps that will make subsequent investigations more productive. 
 

 
Figure 5: The DRIA algorithm steps 

 
The enumerated steps are as follows: 1) formulate the decision to be made in terms acceptable 
to policy makers, 2) construct a simple model like the one in this paper, 3) fit the model to data, 
4) assess whether a decision is identifiable given the data used. This requires two tasks to be 
completed. First, decision boundaries must be mapped out in parameter space. Second, the 
model must be fit to data and the parameter space that is consistent with the data must be  
mapped out. This key step is addressed by using one of the modern approaches to fitting the 
model to data (Funk and King 2019).  A decision is identifiable when the parameter space 
consistent with the data falls entirely into one decision parameter space or another. 5)  If the 
decision is identifiable, then one proceeds with inference robustness loops that put the 
decision on firmer grounds because it is less likely that unrealistic model assumptions could be 
determining the decision. 6) If the decision is not identifiable one proceeds to a decision 
identifiability loop and seeks more informative data or model changes which better use of 
available data. These make the decision more identifiable.  These steps are taken in an iterative 
process involving two loops as shown in Figure 6 above. Those loops address the two major 
sources of errors when using models to make decisions about complex dynamic systems: 1) 
Some aspect of model structure that does not correspond to reality leads to a wrong decision. 
2) The fit of the model to data which leads to a decision is not the only fit possible and other fits 
could lead to a different decision.  
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Decision robustness loops can add model complexity until identifiability is lost. Then even if 
new data is found, more inference robustness loops can put one back into identifiability loops. 
If one is pursuing a decision about a scientific theory formulation, decision robustness and 
identifiability loops could go on infinitely. Policy decisions, in contrast, must be made before 
things get out of control. Therefore, they require judgements that could be improved by 
collaborations between scientists and responsible administrators. 
 
A decision about scientific theory that DRIA should address is whether immunity driven drifting 
in pandemic SARS-CoV-2 strains are sufficient for it to sustain transmission through 
reinfections. This scientific decision should help later focus on public health control decisions 
related to drifting. For example, a decision is needed as to whether to invest the many billions 
of dollars in vaccine development that can handle antigenic drifting as influenza vaccines do.  
 
IV.  Discussion of how this model can improve pandemic coronavirus control 
This model opens three new ways to improve pandemic control. 1) It provides a framework to 
think about the causal systems where waning and drifting contribute to repeat infections. 2) It 
provides a path to use serological data to inform transmission system analyses more fully. 3) It 
provides a way of observing whether the way we think about interactions between waning and 
drifting is occurring in the real world by fitting the model to serological data.  
 
In our analysis of our simple model, we observed concerning levels of drifting after one year 
only at high levels of both drifting fraction and waning rate parameters. At lower parameter 
values we still observed notable drifting over longer intervals. Our analysis, however, requires 
fitting the model to data and following out DRIA procedures before any action inferences are 
justified other than gathering the data and carrying out the analysis.  
 
Hopefully we will have a vaccine soon and our major concern by the time significant drifting has 
occurred will be assessing whether the virus can escape not only the immunity it stimulated, 
but also the immunity provided by vaccines. The immediate use of this model should be to guide 
the collection and analysis of serological and epidemiological data that, together with further 
model elaborations, should inform decisions about future waning and drifting risks and their 
effects on vaccine choices and vaccine administration strategies. 
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1 Model Structure 
The Variables 
We use a continuous SIR (Susceptible, Infectious, Recovered) compartmental model. The S state 
represents never infected susceptibles. The infectious state I is divided into M+1 levels of 
antigenic drift: I0, I1, …, IM.  
 
Waning 
An infected individual in state Ih recovers at rate g per week and upon recovery enters 
recovered state Rh0.  The second subscript in Rh0 represents how much the recovered 
individual’s immune system has waned from its maximum effectiveness. For each drift level h, 
there are P+1 waning states Rh0, Rh1,…,RhP. At each time step a fraction w of those in any Rhk 
(k<P) move to Rh,k+1. We use M+1=P+1=7 in our simulations. 
 
We write B for the effective contact rate per week between those in S and those in any Ih. For 
the susceptibles in the recovered states Rhk, new infections can occur when an infected in state 
Ih meets a recovered individual in state Rjk, with the probability of transmission increasing: 1) as 
the waning level k increases, and 2) with increases in the difference |h-j| between the drift 
level h of the infected and last former infection level j of the susceptible in Rjk. For example, 
there is no transmission when an Ih encounters an Rh0 and the highest probability of 
transmission when an I0 encounters someone in RMP.  
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Transmission 
To quantify this probability of transmission between an Ih and an Rjk, we combine the risk of 

infection due to waning  with the risk due to drifting  so that the 

total probability of transmission is  

    

This formulates almost additive joint effects of waning and drifting on infection risk and implies 
that drifting and waning operate on the same scale. Since there are only P waning steps and M 
drifting steps and we divide by P+1 and M+1, waning alone, or drifting alone, or the two in 
combination cannot reach a total risk of 1. That makes the joint effects of waning and drifting 
slightly greater than additive.  
 
Drifting 
When an infected in Ih encounters and infects a susceptible in Rjk, there is a probability dr of 
antigenic drift to the closest different drift level. In particular, with probability dr, an individual 
in Rjk newly infected by an infective in Ih will transit to state Ih’, where h’ = h+1 if j>h and h’ = h-1 
if j<h (with appropriate modifications at the extremes h=0 or h=M). If j=h, so that an Ih infects 
an Rhk, then the Rhk individual moves to Ih with probability 1-dr, to Ih-1 with probability dr/2, or 
to Ih+1 with probability dr/2. We need a modification if j=h=0 or M. If an I0 meets an R0k, the R0k 
individual moves to I0 with probability 1-dr or to I1 with probability dr (not dr/2). If an IM meets 
an RMk, the RMk individual moves to IM with probability 1-dr or to IM-1 with probability dr (not 
dr/2). 
 
Population 
We use a system of ordinary differential equations to model a continuous population of size N. 
We use N=1,000 in our simulations. But the population is continuous so we introduce infection 
in 1 out of 10,000,000 people. We assume a constant birth rate m and death rate m, and no 
extra disease-related deaths, so that population is constant.  
 
The Equations 
     

    (0.1) 
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   (0.2) 
    

   

 
Equation (0.1) and the first line of (0.2) describe the infection of the never-previously infected 
susceptibles (and the background birth and death rates). In the second line of (0.2), new IJs 
arise through drifting when IjJ1s transmit to Rhks with h>J-1. In the third line, new IJs arise 
through drifting when IJ+1s transmit to Rhks with h<J+1. The fourth and fifth lines describe the 
transmission of IJs to Rhks when there is no drifting (J≠h in line 4, hence the εJh, and J=h in line 
5). In the sixth line new IJs arise through drifting when IJ-1s transmit to RJ-1,ks. In the seventh line 
new IJs arise through drifting when IJ+1s transmit to RJ+1,ks. The p0 and pM are needed because all 
drifting is one way at the top and bottom of the drift scale. 
 

 
 

   (0.3) 

For drift levels J = 0,1,…,M :
dIJ
dt
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For RJK , drift level J and waning level K,

J = 0,1,…,M   and K = 0,1,…,P,
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dt
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The first term in (0.3) describes the recovery of IJs to RJ0; the second term the waning from RJ,K-1 
into RJ,K; the third term movement out of RJK because of transmission from an infective in some 
Ih; the last term the waning out of RJK into Rj,K+1 for K<P. 
 
We explored using a circular but still directionally symmetric drifting formulation that 
maintained an ordered drifting scale that kept the same order of drifting states as the distance 
from the first drifting level of zero increased. We found that behavior of that model identical to 
that of the model presented here. At the extremes, drifting could be up or down one side of the 
circle. The two sides of the circle remain symmetric so that drifting down from the top or up 
from the bottom is doubled. 
 
 
  

where wk =
0,  if k = −1 or k + P
w,            otherwise

⎧
⎨
⎪

⎩⎪
and δk =

1,       if k = 0
0,  otherwise

⎧
⎨
⎪

⎩⎪
.
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2 Model Behavior 
2.1 Patterns of total infections by w and dr 
To analyze how changes in dr and w affect the dynamics of our system, we ran simulations with 
seven representative values of each -- from no waning and no drifting to high levels of both.  
We fixed w and let dr vary over these seven values and then fixed dr and let w vary. We present 
four of these graphs here: for w=0.01 and w=0.1, varying dr in each case, and for dr=0.01 and dr 
=0.1, varying w in each case. The second graph (w=0.1) clearly shows a case where increasing 
the drift fraction dr decreases the long run infection level. The last two graphs, fixing dr, show 
that increased waning leads to increased infection.  
 
Note in the last row that when waning rate w reaches the unrealistically high value of 0.3, the 
first epidemic begins to change – accelerating instead of dying out just after it reaches its peak. 
 
We also carried this out for B=4, quadrupling the basic reproduction number R0. The 
corresponding graphs had similar shapes, except the infection level kept rising more intensely.  
Finally, we carried out this analysis for seasonal contact structure, letting B oscillate about B=1. 
Of course, the graphs were similar but with more seasonal oscillation. 
 

  

  
Figure S1: Total infection levels for an R0 of 2: (A) w=0.001 fixed and values of dr varied, (B) 
w=0.001 fixed and values of dr varied, (C) dr = 0.001 fixed and values of w varied. (D) dr = 0.1 
fixed and values of w varied. 

A B 

C D 
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2.2   Expansion of one entry from Figure 2 in the main text. 
This entry for the waning rate parameter equal to 0.1 and the drifting fraction parameter equal 
to 0.05 is the same as in Figure 2 in the main text except that the total number of infections has 
been added. If we number the waves 0,1,2,…,6, then drifting level Ih is the dominant virus in 
wave h. Levels I0 and I6 are the dominant levels in the long run, the backdrop for the highest 
transmission. 
 

 
Figure S2: A more extensive presentation of data found in figure 2 for waning rate 0.1 and 
drifting fraction 0.05. 
 
2.3 Effects of the Drifting Fraction Formulation: 
There are three parameters in our model that we have yet to fully explore. These are B, the 
effective contact rate; M, the number of drift levels; and P, the number of waning levels. M is 
likely to be an important parameter with regard to our serological cross reaction modeling. We 
see it affecting both the balance between the dual effects of changing the drifting fraction 
parameter and the detail that can be captured in serological cross-reaction assays. We have 
examined many runs for B=4 and found the patterns in the graphs relatively unchanged but at 
much higher levels of infection. 
 
One unexpected behavior of our model is the effect of increasing the drifting fraction 
parameter. That both increases the rate of appearance of new strains and decreases the 
growth of new strains. Increasing the number of drift levels should modulate this dual effect as 
follows.  
 
If the same total change in drift levels is expanded into a larger number of drift levels, the drift 
fractions must be increased for the emergence of strains with the same effects on susceptibility 
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to appear in the same time range. That increase will decrease the growth of strains at new drift 
levels. But there will be more drift levels growing. Given these complexities, a thorough 
exploration of the effects of changing M is advisable. Increasing the number of drift levels will 
change the relationship between the rate of appearance of drifted strains and the growth in 
size of the new drifted strains. That in turn will change the shape of the cross-neutralization 
titers over time. 
 
It was difficult to explore the effect of the number of drifting levels under the constraints of the 
Berkeley Madonna software we used. These considerations should provide some priority for 
such explorations. This third parameter of waning and drifting, namely M, should make changes 
in the combined effects of w and dr that allow for more precise fitting of model parameters to 
data.  
 
2.4 Effects of formulating drifting in a circle 
The phenomenon of increasing dr values causing a switch from equilibrium patterns that tend 
to the highest and lowest levels to a pattern that is centered on the intermediate level caused 
us to wonder whether that would change if we formulated drifting in a circle. We explored two 
different circle drifting formulations. In one there are two different states at the bottom and 
the top of the circle. This formulation corresponds to the extreme level causing only half of its 
drifting to a higher drifting level and half of its drifting to a drifting value identical to its own but 
on the other half of the circle. In a second formulation, we had only one state at the extreme 
levels. In this case half of the drifting goes to the next level up on one half of the circle and half 
goes up the other. We observed that this later formulation is conceptually and practically the 
same as the model formulation in the paper. The former formulation is conceptually the same 
as our current formulation but with only half as much drifting up or down from the extremes. 
 
There were minor differences in the formulations in terms of quantitative values of drifting 
levels. But there were no differences in the qualitative behavior caused by increasing dr values 
as seen in figure 3 of the main text.  
 
2.5    Waning level patterns 
The patterns in the following figure were described in the main text. Both past and current 
infection patterns determine the level of waning in those who are uninfected but were 
previously infected. Only limited insights can be gained, however, by looking at infection 
patterns as seen in Figure 2 in the main text and waning levels as seen in the figure below. That 
is because it is the joint distribution of both waning levels and immunity to drifting levels that 
determines population level susceptibility. That population level susceptibility, moreover, is a 
function of what drift level viruses are circulating. Thus, we need a population level measure 
that captures the joint distribution of waning and immunity to different drift level viruses. The 
way we can get that in the real world is through population level cross-neutralization assays as 
discussed later in section 3. 
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Figure S3: Waning levels across time. The waning rates and drifting fractions are the same as 
the waning rates and drifting fractions in Figures 2 and 3 in the main text. 
 
  

weeks 

  D
rif

t F
ra

ct
io

n 
0.

5 
   

   
 D

rif
t F

ra
ct

io
n 

0.
1 

   
   

Dr
ift

 F
ra

ct
io

n 
0.

05
   

   
Dr

ift
 F

ra
ct

io
n 

0.
01

  
   

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.09.10.20192153doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.10.20192153
http://creativecommons.org/licenses/by/4.0/


 9 

3 Serological Prediction of Drifting 
We propose to use population level cross-neutralization assays to predict which virus strains 
will be taking off in the population. Our model assumes all possible strains fall in a straight line 
equidistant from each other. We know that is unrealistic. But it provides a framework for 
beginning to understand how and where and why we will need to realistically relax our 
simplifying assumptions. To make valid decisions on which drifted strains should provide 
information for new vaccine modifications, we will need to understand and predict the effects 
on both virus circulation dynamics and on population level cross neutralization assays of the 
many potential changes we could make in our model. Since we propose population level cross-
neutralization assays as a key source of data for model fitting, in this section we want to 
improve thinking about such assays and the effects they reflect on changing immunity and 
transmission dynamics in the population. We want to set up an environment where 
epidemiologist modelers, serologists, and immunologists can gain and share insights on the task 
of understanding and predicting the drifting and waning of the virus and population levels of 
immunity to drifted viruses. 
 
The approach we take to prediction is a causal theory approach. We run the model from the 
present to predict the future. An essential task in making valid decisions about the future based 
on model behavior is to decide which of the myriad realistic complexities of the real world 
make enough of an impact on the decisions we want our model to address so that pursuing 
realistic relaxation of simplifying assumptions is justified.  
 
To help the reader see the potential for population level serological analysis of cross-
neutralizations, three issues are addressed. First, for modelers who may not be familiar with 
interpreting such assays and for serologists who work mostly on individual level phenomenon, 
we provide a simplified view of the population level serology effects of waning and drifting. 
Second, we present a series of 7 different simulated population level cross-neutralization assays 
for each of 8 different parameter settings. These can be studied at different levels and we try to 
guide the reader to the level they want to pursue. Third, since we chose a very simple structure 
for the drifting structure which we know is unrealistic but which provides a good first step in 
understanding drifting, we discuss a simple way of expanding the dimensions of drifting. 
 
3.1  Thinking about cross neutralization assays 
Some modelers may not be familiar with cross neutralization assays. Even some serologists may 
not be used to thinking about population level patterns for cross-neutralization assays. 
Therefore, we present some overly simplified effects seen in population level patterns to help 
the reader see signals in population patterns of cross-neutralization assays. 
 
The tables below provide a tutorial on perceiving population level immunity drifting from a 
cross-neutralization analysis on a cross section of a population. In Tables S1a-d, the current 
circulating virus is Virus A; viruses B and C are not circulating in the population from whom a 
cross sectional sample of sera was drawn. Twenty-six individuals provide sera samples of sera 
for neutralization assays. Each sample is divided into 6 titers by dilution. Titer 1 is undiluted; 
titer 2 is diluted 1-1; titer 3 is titer 2 diluted 1-1, and so on to the most diluted titer 6. Each of 
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these titers is mixed with a sample of virus A. For each individual j, record the highest 
numbered (weakest) titer that neutralizes the virus; call it TA(j). These same serum samples are 
also mixed with virus B and the highest numbered neutralizing titer is recorded for individual j, 
call it TB(j). The joint distribution of the two is recorded in the light blue area. More concretely,  
 
Table S1a          Table S1b 
No drifting of virus B1 in a population where     Drifting of virus C in a population where 
only virus A has circulated up to Time 1.              only virus A has circulated up to Time 1. 

6 2      2  6 2     2  
5 4     4   5 4    4   
4 6    6    4 6   6    
3 8   8     3 8  8     
2 4  4      2 4 4      
1 2 2       1 2 2      
 Tot 2 4 8 6 4 2   Tot 6 8 6 4 2 0 

A/B  1 2 3 4 5 6  A/C  1 2 3 4 5 6 
 
Table S1c        Table S1d 
Further waning but no drifting of Virus B    Further waning with drifting of virus C 
at Time 2 when A is still the only strain             at Time 2 when A is still the only strain                

6         6 0       
5 2     2   5 2    2   
4 4    4    4 4   4    
3 6   6     3 6  6     
2 8  8      2 12 12      
1 6 6       1 2 2      
 Tot 6 8 6 4 2 0   Tot 14 6 4 2 0 0 

A/B  1 2 3 4 5 6  A/C  1 2 3 4 5 6 
 
Table S1e        Table S1f 
No drifting of virus B in a population where     Drifting of virus C in a population where 
A infections = B infections at Time 1.                  A infections = C infections at Time 1.            

6 2      2  6 1     1  
5 4     4   5 3    2  1   
4 6    6    4 5   3  2  
3 8   8     3 7  4  3   
2 4  4      2 6  3 4    
1 2 2       1 4 3      
 Tot 2 4 8 6 4 2   Tot 4 6 7 5 3 1 

A/B  1 2 3 4 5 6  A/C  1 2 3 4 5 6 
Figure S3: Cross-reaction analysis results for an idealized situation where waning occurs all at 
once just before time 2 
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the element in row r and column c in the Table is the number of individuals j for whom TA(j) =r 
and TB(j) = c. The fact that all the entries for this analysis lie on the diagonal in Table S1a 
indicates that virus B is serologically equivalent to virus A with regard to neutralization. Also 
note that those that required a stronger (lower numbered) titer for neutralization could have 
experienced some earlier waning or maybe might just have weaker immune systems for the 
viruses. 
 
The exact same procedure with the same individuals is repeated one time period later and 
reported in Table S1c. We see there that it takes a titer one level stronger to neutralize both 
virus A and virus B. One concludes that the subjects’ immune systems for viruses And B have 
waned during that time period. The scaling of waning would have to correspond perfectly with 
the scaling of titers for this to have worked out so neatly. Reality would never be so orderly as 
this. 
 
In Tables S1b and S1d, twenty-six individuals underwent the same procedure as in Tables S1a 
and S1c, but with non-circulating virus C replacing virus B. In Table S1b, for each individual, it 
took a one-unit stronger titer (lower dilution) of serum to neutralize virus C than it did to 
neutralize virus A. With nearly all the non-zero entries lying on the super-diagonal, one 
concludes that virus A, the virus actually circulating in the population, has experienced a titer 
dilution of antigenic drift from virus C as it escaped immunity stimulated by that virus. If C had 
drifted to escape immunity stimulated by A, the line above the diagonal would be below the 
diagonal. Again, the scaling of drifting would have to exactly correspond to the scaling of titers 
for this to work out so neatly. 
 
Once again, the next lower Table S1d summarizes samples taken from these same individuals 
one time period later. Compared to Table S1b, each individual required a stronger titer of 
serum (lower dilution) to neutralize virus A or virus C. One concludes that there has been a 
waning of immunity during this time period and that the distribution of different strains has not 
changed. Note that this last aspect is unrealistic and how the circulation has changed is one of 
the major pieces of information that will inform us about the dynamics of drifting. For example, 
the scaling of waning, drifting, and titers have to be identical to get such neat results. 
 
In Table S1e, virus A is circulating at the same level as virus B in the population sampled. In 
Table S1f virus B is replaced with virus C, from which A has drifted. In Table S1e, the neutralizing 
titers against each virus were identical for each individual. One concludes that A and B are 
serologically equivalent. Drifting is not affecting the circulation of viruses in this population.  
 
In Table S1f, 10 individuals required a one-level higher titer to neutralize virus A than to 
neutralize virus C, and 10 individuals had the opposite outcome. The observation that all the 
non-zero entries were on the super-diagonal or the sub-diagonal of Table 1f suggests that there 
has been some drifting but not waning between the two viruses. This indicates that there are 
an equal number of individuals in the population infected by viruses A and C. There are six 
people with low titers of antibody that did not show any differences between titers A and C. It 
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is possible that these individuals had waned immunity and did not have enough antibody to 
generate a one titer difference between the two viruses. 
 
3.2 Simulated population cross-neutralization patterns  
We turn now to the construction of cross-reaction tables from our model. We present a series 
of 8 tables (Tables 2-9) that correspond to the parameter settings in the 8 subgraphs of Figure 2 
in the main text with waning rates of 0.05 and 0.1. Each table has five sub-tables labelled A-E. 
They present the expected cross-neutralization assay results given model parameter values for 
waning rate = 0.05 and 0.1 and drifting fraction = 0.01, 0.05, 0.1 or 0.5. The sub-tables are A: a 
cross section of uninfected population taken at 60 weeks after seeding one case per 10 million 
individuals. These use virus levels 0 and 1 in the cross-neutralization, B: a cross section at 110 
weeks using drift level 0 and 1 viruses, C: a cross section at 110 weeks using drift level 0 and 2d 
viruses, D: a cross section at 162 weeks using viruses at drift levels 0, and E: a cross section at 
162 weeks using levels 0 and 2.  
 
Note that in these tables all individuals at the lowest titer levels against both viruses are 
individuals who have never been infected. They are colored yellow. Entries with a zero had 
fewer than 0.05 cases. 
 
We do not want the reader to be confused by an artifact in our model that has nothing to do 
with the concepts to be gained from these tables. There is a gap at titer level 7 for the drift level 
0 (DL0) virus being neutralized. Along the drift level 1 (DL1) virus titers, this gap is at titer level 
6. Along the drift level 2 (DL2) virus titers, this gap is at titer level 5. These gaps are due to there 
being 7 drift levels in the model and 10 titer levels in our simulation of the cross-neutralization 
table. The gap titer levels had simulated immunity levels in the serologically surveyed 
population that fell just above and below the gap levels.  
 
The patterns in Table S2A reveal that the population was infected almost exclusively with a DL 0 
virus. The very small fraction of the population on the sub-diagonal provides a tiny indication 
that a drift level one virus has been circulating in the population. The fact that almost all the 
population is on the supra-diagonal is a strong indication, however, that the DL1 virus has 
drifted from the DL0 virus. Also note that at 60 weeks the population is divided between 
recently infected individuals never infected individuals with only a few previously infected but 
now highly waned individuals. That indicates that the sample was drawn as the epidemic was 
reaching its end. 
 
At week 110 (Figure 2B), the cross-neutralization assay has a very different shape. As seen in 
Figure 2 of the main text, at 110 weeks the population had just entered a second epidemic 
wave. Consequently, the population of individuals infected in the first epidemic wave is 
clustered at the bottom end of the titer scales rather than the top end. Table S2B also shows a 
little more evidence of DL1 infections having occurred in the population. Further comments on 
Table S2 are made at the end of the table. Only those who want to assess the potential for 
parameter estimation need to examine all eight tables. Informative table sets for others are Tables 
1, 4, and 6. 
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Table S2: W = 0.05 dr = 0.01 
2A        Drift Level 0 vs. 1;  Waning rate = 0.05;  drift fraction = 0.01;  week = 60 
10 233         233  
9 280        280  0.5 
8 180       180  0.3  
7 0.1        0.1   
6 80     80  0    
5 29    29  0     
4 0     0      
3 7   7        
2 2  2         
1 191 191          
DL0  191 2 7 29 80 0 180 280 233 0.5 
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
2B     Drift Level 0 vs. 1;  Waning rate = 0.05;  drift fraction = 0.01;  week = 110 
10          20  
9         70  2 
8        130  1  
7         0.4   
6      162  0    
5     153  0.3     
4     0       
3    116        
2   146         
1  199          
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
2C     Drift Level 0 vs. 2;  Waning rate = 0.05;  drift fraction = 0.01;  week = 110 
10         19   
9        70  2  
8       130  0.7  0 
7        0.4  0  
6      162   0   
5     152 0.3 0     
4     0.2 0      
3    116        
2   146         
1  199          
DL0            
virus DL2 1 2 3 4 5 6 7 8 9 10 
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2D     Drift Level 0 vs. 1;  Waning rate = 0.05;  drift fraction = 0.01;  week = 162 
10          49  
9         43  189 
8        37  167  
7         89   
6      40  3 0   
5     48 0.1 35 0    
4     0 12      
3    55 0       
2   167         
1  60          
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
2E      Drift Level 0 vs. 2;  Waning rate = 0.05;  drift fraction = 0.01;  week = 162 
10         50   
9        43  189  
8       37  165  2 
7        88  0.8  
6      40   0.3 0  
5     48 35 0.1 0 0   
4     12 0      
3    55 0       
2   167         
1  60          
DL0            
virus DL2 1 2 3 4 5 6 7 8 9 10 

 
In Table S2C we see that the shape of the cross-neutralization table changes when we use a 
more drifted virus in the neutralization assay. Here there are three diagonal rows. The supra-
diagonal one corresponds to DL0 infected individuals, the diagonal corresponds to DL1 infected 
individuals, and a few DL2 infected individuals are seen in the sub-diagonal row. If a higher 
number of waning states had been modelled, we speculate that patterns would be more spread 
out along the diagonals. 
 
Note from Tables S2D and S2E that by 162 weeks the majority of infected individuals have been 
infected with a DL1 virus but the frequency of individuals with immunity to DL2 viruses is 
minimal. This last observation is clearest in Table S2E. 
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Table S3: W = 0.05 dr = 0.05 
3A        Drift Level 0 vs. 1;  Waning rate = 0.05;  drift fraction = 0.05;  week = 60 
10          229  
9         280  2 
8        179  2  
7         1   
6      80  0    
5     27 0 0.2     
4     0 0      
3    7        
2   2         
1  191          
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
3B     Drift Level 0 vs. 1;  Waning rate = 0.05;  drift fraction = 0.05;  week = 110 
10 20 Y        20  
9 75        70  5 
8 131       129  2  
7 22        2   
6 161     161  0 0   
5 153    151 0 1     
4 1    0 1      
3 115   115        
2 144  144         
1 0 196          
DL0 Total 0 144 115 151 162 1 129 72 23 5 
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
3C     Drift Level 0 vs. 2;  Waning rate = 0.05;  drift fraction = 0.05;  week = 110 
10         20   
9        70  5  
8       128  2  0 
7        2  0  
6      160   0 0  
5     151 1 0     
4     1 0      
3    115        
2   144         
1  196          
DL0            
virus DL2 1 2 3 4 5 6 7 8 9 10 
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3D     Drift Level 0 vs. 1;  Waning rate = 0.05;  drift fraction = 0.05;  week = 162 
10 76 Y        76  
9 205        71  134 
8 194       54  140 0 
7 84        84   
6 52    0 49 0 3 0   
5 87    51 1 35 0    
4 13    0.4 13      
3 57   57 0       
2 165  165 0        
1 0 58 0 0        
DL0 Total 0 165 57 52 63 35 57 155 216 134 
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
3E      Drift Level 0 vs. 2;  Waning rate = 0.05;  drift fraction = 0.05;  week = 162 
10 75 Y       75   
9        71  134  
8       54  128  11 
7        76  7  
6      49   3 0  
5     51 34 1 0 0   
4     13 0.4      
3    57 0       
2   165 0        
1  58 0         
DL0            
virus DL2 1 2 3 4 5 6 7 8 9 10 

 
As we increase dr to 0.05, Table S3 shows little drifting at 60 and 110 weeks. But at 162 weeks, 
we actually see a smaller ratio of previously infected individuals with DL1 infections compared 
to drift DL0 infections. We write this ratio as DL1/DL0. This ratio is a little greater at the top end 
of the scale than the middle. There is almost no difference, however, in the high waning level 
individuals. This is consistent with the conclusions we made about the effects of increasing the 
drifting fraction dr. An increase in dr increases the introduction of waning levels but it 
decreases the growth of waning levels after introduction. 
 
In contrast, DL2/DL0 in Tables 2E and 3E show more DL2 individuals with d= 0.05 than with d = 
0.01. 
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Table S4: W = 0.05 dr = 0.1 
4A          Drift Level 0 vs. 1;  Waning rate = 0.05;  drift fraction = 0.1;  week = 60 
10          228  
9         278  4 
8        179  3  
7         1   
6      79  0    
5     27 0 0.22     
4     0 0.1      
3    7        
2   2         
1  190          
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
4B        Drift Level 0 vs. 1;  Waning rate = 0.05;  drift fraction = 0.1;  week = 110 
10          21  
9         70  5 
8        128  3  
7         3   
6      160  0 0   
5     150 0 2 0    
4     0 2      
3    115        
2   144         
1  195          
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
4C        Drift Level 0 vs. 2;  Waning rate = 0.05;  drift fraction = 0.1;  week = 110 
10         21   
9        70  5  
8       128  3  0.1 
7        3  0  
6      160   0 0  
5     150 2 0 0 0   
4     2 0      
3    115        
2   144         
1  195          
DL0            
virus DL2 1 2 3 4 5 6 7 8 9 10 
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4D       Drift Level 0 vs. 1;  Waning rate = 0.05;  drift fraction = 0.1;  week = 162 
10          89  
9         85  120 
8        63  124  
7         75   
6      53  4 0   
5     53 2 30 0    
4     1 12      
3    57 0       
2   166 0        
1  58 0         
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
4E        Drift Level 0 vs. 2;  Waning rate = 0.05;  drift fraction = 0.1;  week = 162 
10  Y       89   
9        85  120  
8       63  112  12 
7        67  8  
6      53   4 0  
5     53 30 2 0 0   
4     12 0.5      
3    57 0       
2   166 0        
1  58 0         
DL0            
virus DL2 1 2 3 4 5 6 7 8 9 10 

 
As we increase the dr to 0.1 in Table S4, we see an even further decrease the ratio of DL1/DL0 
at 162 weeks. But we see a very small increase in the DL1 at 110 weeks. Likewise, there is a 
minimal increase in DL2 at 162 weeks. There is waning down the diagonal of DL1 infected 
individuals between 60 and 110 weeks. By week 162 new infections have moved individuals up 
the waning scale. Overall, the changes from dr=0.01 to dr=0.1 have been small. 
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Table S5: W = 0.05, dr = 0.5 
5A          Drift Level 0 vs. 1;  Waning rate = 0.05;  drift fraction = 0.5;  week = 60 
10          221  
9         271  14 
8        175  11  
7         5   
6      77  0  0   
5     26 0 2     
4     0 0.4      
3    7        
2   2         
1  186          
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
5B        Drift Level 0 vs. 1;  Waning rate = 0.05;  drift fraction = 0.5;  week = 110 
10 21 Y        21  
9 73        68  5 
8 131       125  6  
7 7        7   
6 156     156  0 0   
5 154    146 0 8 0    
4 6    0 6      
3 115   115 0       
2 143  143 0        
1 0 191 0         
DL0 Total 0 143 115 146 162 8 125 76 27 5 
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
 5C        Drift Level 0 vs. 2;  Waning rate = 0.05;  drift fraction = 0.5;  week = 110 

10         21   
9        68  5  
8       125  5  0.1 
7        7  0  
6      156   0 0  
5     146 7 0 0 0    
4     6 9      
3    115 0       
2   143         
1  191          
DL0            
virus DL2 1 2 3 4 5 6 7 8 9 10 
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5D       Drift Level 0 vs. 1;  Waning rate = 0.05;  drift fraction = 0.5;  week = 162 
10 76 Y        110  
9 205        101  114 
8 194       71  104  
7 84        59   
6 52     55  2 0   
5 87    53 0.6 25 0    
4 13    0.2 11      
3 57   58 0       
2 165  168 0        
1 0 57 0         
DL0 Total 0 165 57 52 63 35 57 155 216 134 
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
5E        Drift Level 0 vs. 2;  Waning rate = 0.05;  drift fraction = 0.5;  week = 162 
10         110   
9        101  114  
8       70  99  5 
7        56  3  
6      55 2  2 0  
5     53 25 0 0    
4     11 0.2      
3    57 0       
2   168 0        
1  57 0         
DL0            
virus DL2 1 2 3 4 5 6 7 8 9 10 

 
As the dr is raised to 0.5 for W = 0.5, the number of DL2 individuals at 165 weeks in Table S5E 
has decreased from S4E. But the number of DL1 individuals at 110 weeks has increased. The 
slower growth of DL1 individuals in the population has affected the growth of DL2 individuals. 
 
Overall, the changes the changes between Tables S2 and S3 induced by raising the dr are 
moderate. 
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Table S6: w = 0.1 d r= 0.01  
6A          Drift Level 0 vs. 1;  Waning rate = 0.1;  drift fraction = 0.01;  week = 60 
10          84  
9         170  1 
8        199  1  
7         1   
6      165  0    
5     107 0 0.31     
4     0 0.1      
3    57        
2   41         
1  171          
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
6B        Drift Level 0 vs. 1;  Waning rate = 0.1;  drift fraction = 0.01;  week = 110 
10          21  
9         68  5 
8        125  6  
7         7   
6      155  0 8   
5     147 0 8 0    
4     0 7      
3    116 0       
2   146 0        
1  199 0         
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
6C        Drift Level 0 vs. 2;  Waning rate = 0.1;  drift fraction = 0.01;  week = 110 
10         19   
9        70  2  
8       130  0.7  0 
7        0.4  0  
6      162   0   
5     153 0.3 0     
4     0.2 0      
3    116        
2   146         
1  199          
DL0            
virus DL2 1 2 3 4 5 6 7 8 9 10 
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6D       Drift Level 0 vs. 1;  Waning rate = 0.1;  drift fraction = 0.01;  week = 162 
10          68  
9         53  86 
8        44  92  
7         69   
6      40  6 0   
5     38 3 49 0    
4     1 44      
3    73 0       
2   275 0        
1  18 0         
DL0  18 275 73 39 87 49 50 122 160 86 
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
6E        Drift Level 0 vs. 2;  Waning rate = 0.1;  drift fraction = 0.01;  week = 162 
10         68   
9        53  85  
8       44  70  22 
7        57  12  
6      40   6 0  
5     38 49 3 0 0   
4     1 1      
3    73 0       
2   275 0        
1  18 0         
DL0            
virus DL2 1 2 3 4 5 6 7 8 9 10 

 
To see the effect increasing the waning rate to 0.1 from 0.05 we compare Tables S2 and S6. We 
see a marked increase in the numbers of individuals lower on the diagonal in sub-tables A, D, 
and E. We see a little more sign of DL1 at 60 weeks (Sub-Tables A). Two things could be 
contributing to that: 1) faster waning, 2) slightly earlier termination of the first epidemic. 
Comparing Tables S2B and S6B, note an increase in DL1 at 110 weeks. Increased waning has 
accelerated drifting. This gets lost when using the drift level 2 virus S6C. At 162 weeks, there are 
actually fewer DL1 given w=0.1 than there are given w=0.05. But there are quite a few more 
DL2. The smaller number of DL1 appears to be due to waning to a level where the DL of the last 
infection is not distinguished by cross-neutralization. 
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Table 7: W = 0.1 dr = 0.05  
7A          Drift Level 0 vs. 1;  Waning rate = 0.1;  drift fraction = 0.05;  week = 60 
10          82  
9         168  5 
8        197  4  
7         3   
6      163  0     
5     106 0 1.4     
4      0.6      
3    56 0       
2   41         
1  169          
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
7B        Drift Level 0 vs. 1;  Waning rate = 0.1;  drift fraction = 0.05;  week = 110 
10          81  
9         74  118 
8        57  112  
7         76   
6      46  1 0   
5     43 0.5 42 0    
4     0.2 21      
3    53 0       
2   202 0        
1  44 0         
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
7C        Drift Level 0 vs. 2;  Waning rate = 0.1;  drift fraction = 0.05;  week = 110 
10         81   
9        74  118  
8       57  108  4 
7        74  2  
6      46   1 0  
5     43 42 0.5 0 0   
4     20 0.2      
3    53 0       
2   202         
1  44          
DL0            
virus DL2 1 2 3 4 5 6 7 8 9 10 
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7D       Drift Level 0 vs. 1;  Waning rate = 0.1;  drift fraction = 0.05;  week = 162 
10          62  
9         52  75 
8        42  111  
7         85   
6      36  19 1   
5     31 11 47 0.5    
4     6 43      
3    68 0       
2   252 0        
1  16 0         
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
7E        Drift Level 0 vs. 2;  Waning rate = 0.1;  drift fraction = 0.05;  week = 162 
10         62   
9        52  75  
8       42  64  47 
7        53  32  
6      36   19 1  
5     32 47 11 0.2 0.5   
4     42 6 0 0    
3    68 0 0      
2   252 0 0       
1  16 0         
DL0            
virus DL2 1 2 3 4 5 6 7 8 9 10 

 
As we increase dr to 0.05 at W = 0.1, we get a bit of a greater increase in DL1 at 60 weeks than 
we did for the same change given W = 0.05 (comparing S3A to S7A). But the increase in DL1 at 
110 weeks is truly remarkable: from 41 to 370 (comparing S3B to S7B). The waning got the 
drifting over a threshold. There was a more modest increase in DL2. By week 162 the difference 
is less because the DL1 population grew given the dr = 0.01. The increased w also led to a 
notable increase in DL2 at 162 weeks. 
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Table 8: W = 0.1  dr = 0.1  
8A            Drift Level 0 vs. 1;  Waning rate = 0.1;  drift fraction = 0.1;  week = 60 
10 81         81  
9 174        165  9 
8 202       195  7  
7 5        5   
6 162     162  0    
5 108    105 0 3     
4 1    0 1      
3 56   56        
2 40  40         
1 106 167          
DL0 935 167 40 56 105 163 3 195 170 88 9 
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
8B          Drift Level 0 vs. 1;  Waning rate = 0.1;  drift fraction = 0.1;  week = 110 
10          85  
9         78  107 
8        61  106  
7       48  75   
6      44 1 41 0   
5      0.5 22     
4      0      
3    54        
2   203 0        
1  43 0         
DL0  43 203 54 0 45 71 102 153 191 107 
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
8C          Drift Level 0 vs. 2;  Waning rate = 0.1;  drift fraction = 0.1;  week = 110 
10         85   
9        78  107  
8       60  99  7 
7        70  5  
6      47 2  2 0   
5     44 41 0  0   
4     21 0.5      
3    54 0       
2   203         
1  43          
DL0            
virus DL2 1 2 3 4 5 6 7 8 9 10 
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8D          Drift Level 0 vs. 1;  Waning rate = 0.1;  drift fraction = 0.1;  week = 162 
10          60  
9         51  80 
8        43  106  
7         84   
6      37  18 2   
5     33 12 48 1    
4     7 42      
3    69 0.1       
2   252 0        
1  16 0         
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
8E          Drift Level 0 vs. 2;  Waning rate = 0.1;  drift fraction = 0.1;  week = 162 
10         60   
9        53  80  
8       43  68  39 
7        56  28  
6      37   18 2  
5     33 48 12 0 1   
4     42  7  0    
3    69 0.1 0       
2   252 0 0       
1  16 0         
DL0            
virus DL2 1 2 3 4 5 6 7 8 9 10 

 
This continues the picture seen in the comparison of w=0.05 and 0.1 at the last drift level of 
0.05. Comparing S4A to S8A, there is some increase in DL1 at 60 weeks and more drifting down 
to levels where there is not enough immunity to distinguish DL. Comparing S4B with S8B there 
is a marked increase DL1 at 110 weeks as well as an increase in DL2 at time 110 (Comparing S4C 
with S8C). At 162 weeks there is more DL2 and more immunity levels that have waned beyond 
the point where DL can be distinguished. 
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Table 9: W = 0.1.  dr = 0.5  
9A            Drift Level 0 vs. 1;  Waning rate = 0.1;  drift fraction = 0.5;  week = 60 
10          76  
9         155  20 
8        184  21  
7         16   
6      153  0 0   
5     99 0 10 0    
4     0 5      
3    55 0       
2   39         
1  160          
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
9B          Drift Level 0 vs. 1;  Waning rate = 0.1;  drift fraction = 0.5;  week = 110 
10          91  
9         84  100 
8        65  97  
7         68   
6      50  4 0   
5     44 2 38 0    
4     1 22      
3    56 0        
2   207 0        
1  42 0         
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
9C          Drift Level 0 vs. 2;  Waning rate = 0.1;  drift fraction = 0.5;  week = 110 
10         91   
9        84  100  
8       65  89  8 
7        62  6  
6      50   4 0  
5     44 38 0 0 0   
4     22 11  0    
3    56 0       
2   207 0        
1  42 0         
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 
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9D          Drift Level 0 vs. 1;  Waning rate = 0.1;  drift fraction = 0.5;  week = 162 
10          64  
9         54  86 
8        46  93  
7         74   
6      40  11 0.4   
5     36 8 49 0.3    
4     5 43      
3    72 0       
2   265 0        
1  16 0         
DL0            
virus DL1 1 2 3 4 5 6 7 8 9 10 

 
9E          Drift Level 0 vs. 2;  Waning rate = 0.1;  drift fraction = 0.5;  week = 162 
10         64   
9        54  86  
8       46  72  22 
7        58  16  
6      40   11 0.4  
5     36 49 8 0.2 0.3   
4     42 6 0 0    
3    72 0 0      
2   265 0 0       
1  16 0         
DL0            
virus DL2 1 2 3 4 5 6 7 8 9 10 

 
The transition from dr= 0.1 to dr = 0.5 at a waning rate of 0.1 is similar to the transition at w = 
0.05. At 110 weeks, there is evidence of a previous large DL1 epidemic that did not happen at 
w=0.05. Both DL1 and DL2 populations seem to go down as waning makes older infections not 
distinguishable by serology. At 162 weeks w similar relationships, but with a rise in DL2 that is 
greater than for w=0.05. 
 
Viewing the pattern of waning and drifting at a small number of single points in time over short 
time periods, as in the graphs just presented, provides a different perspective than viewing the 
patterns produced by numerically solving ODE equations over longer time periods, as in Figures 
1 and 2 in the main text or Figures S1 and S2. Examining the simulated cross-neutralization 
tables is more like the real-world experience where we are trying to figure out what has 
happened by looking at serology results. How far individuals have gone down the waning scale 
depends upon how far up the waning scale they went upon infection, how much time has 
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passed since their infection, and how fast they have waned. So just reading one graph at one 
point in time is not so informative with regard to waning. There are two ways to get more 
information. One is to conduct separate surveys following the serology of infected individuals. 
Another is to repeat a cross neutralization survey at a later time. Each provides different 
information. 
 
Follow up serology on infected individuals allows more precise estimation of waning. Since 
waning is a determinant of drifting, it in turn allows more precise estimation of drifting. The 
amount of drifting between two times does not provide a direct measure of drifting. The 
change across time is due to a combination of increase in drifting events during transmission 
and transmission from already drifted individuals. Multiple time points contribute power to the 
joint estimation of waning and drifting parameters. If waning is estimated more precisely, 
multiple time points will contribute even more to the estimation of drifting parameters.  
 
How many recent infections there are at different drifting levels is reflected by how far down 
they appear on the diagonal. The longer it has been since infection, the further down the 
diagonal they will be. For example, look at DL0 vs. DL1  at waning rate = 0.05 and drift fraction = 
0.1 week = 110 in S3B. Although there are only 11 DL1 infected individuals, the fraction at each 
waning level that were DL1 goes down markedly. But there is enough force of infection from 
each drift level so that at week 162 in SBD, the fraction of transmissions goes down less quickly. 
That fraction at different time points offers power to estimate transmission rates, drifting, and 
waning separately. 
 
Interpreting differences between serology relationships at different points in time is important 
not because it predicts what the parameter estimates for waning and drifting might be from a 
given set of data. But because during DRIA one must consider what the potential of realistically 
relaxing simplifying assumptions might be. As one becomes more adept at interpreting the 
possible sources of serology data patterns, one will gain insights that direct one to what 
realistic relaxations of simplifying assumptions will contribute most to a decision that one is 
facing.  
 
3.3  Expanding the dimensions of drifting and predicting the emergence of new strains 
Changing the integer value of M and the value of the drifting fraction parameter dr at each level 
will make the model more flexible with regard to fitting data. That, in turn, will decrease the 
identifiability of model-based decision inferences. Opening the model so that it can capture 
new knowledge about epitope roles and antibody or T-cell effects at epitopes might recapture 
identifiability. 
 
Now we consider a simple approach to changing the number of drifting dimensions. In the 
model presented in this paper, we made the convenient simplifying assumption that the drift 
levels of the virus lie at the integer points 0,1,…,M of a line. This allowed the working 
assumptions that: 1) when an infected Ih contacted a newly recovered Ik in Rk0, the probability 
of transmission was |h-k|/(M+1), and 2) when an Ih infected an Rkj, the newly infected could 
drift to a nearby level Ih-1 or an Ih+1 . This can all be accomplished in a more general drift space.  
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Suppose there are M+1 drift levels in some high dimensional space X. Label these levels as 
0,1,..,M – possibly in an arbitrary order. One need only specify: 1) the probability of infection 
phk when an Ih meets an Rk0, and 2) the probability qh,h’ that when an Ih transmits to any Rjk, the 
new infection will be in Ih’ – some measure of nearness in X. These are two (M+1)x(M+1) 
matrices, which may have some underlying structure. For example, the phk may be symmetric; it 
will have 0s down its diagonal. Basically, one needs to estimate a distance measure or metric on 
the space of virus drift levels, related to transmissibility and drift. The Hamming distance on the 
virus genome could provide a metric see, for example (Girvan, Callaway et al. 2002). However, 
(Koelle, Cobey et al. 2006) argues that distance measures that relate the degree of cross-
immunity with similarity across sequence strains are not realistic. The shape space methods of 
(Lapedes and Farber 2001) could be used in this task. But a more meaningful dimensionality 
could arise from actual spatial descriptions of epitopes and antibodies given that the 
technology for this now exists. But that technology is not easy or practical for use at a 
population level.  
 
Multiple laboratory assays could contribute to measures of distance. These include genetic 
sequencing, neutralization assays, cell sorted B-cell and T-cell sequences specific for different 
antigens, avidity profiles of antibodies to specific antigens that ideally could be epitope specific, 
and immunity profiles to synthetic antigens as in (Doran, Gao et al. 2015) and (Kodadek and 
McEnaney 2016). All of these could contribute to the construction of cross-reaction tables 
similar to the neutralization tables we presented in the paper but with more laboratory defined 
dimensions.  
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4 Decision Robustness and Identifiability Analysis 
The ability of our model to produce population serological data generates opportunities for 
fitting models to data as just discussed. Giving free reign to theory speculation and imagination 
of data possibilities, as was done in the last section, is useful for developing ideas. But it may be 
less helpful for answering burning questions. DRIA creates a set of constraints for relating 
theory to data. DRIA constrains questions addressed to a framework where answers are more 
likely to be found. 
 
DRIA, however, does not present a set of rules to be followed that has a clear endpoint. If the 
decision sought is about scientific theory, science never ends so one can conceivably always be 
pursuing robustness and identifiability assessment loops. If the decision is about an urgent 
public health issue, like making an investment in vaccines for next year, the decision will have 
to be made by making judgments about the seriousness of either identifiability or robustness 
problems. DRIA presents a context that can protect against two obvious sources of error 
discussed in the main text. 
 
We separate loops into robustness assessment and identifiability assessment. These loops can 
intertwine. That happens when realistic relaxation of simplifying model assumptions increases 
identifiability because it better captures the effects reflected in the data being analyzed or 
opens up new data that can inform the model. 
 
4.1  Questions to be addressed by DRIA 
As stated in the main text, a scientific question to be addressed is whether pandemic SARS-CoV-
2 strain will drift enough to sustainably circulate through reinfections. The following is a list of 
related questions that narrow this question to some practical issues. Some are policy questions 
and some are scientific questions. Each question should start a new DRIA. The first DRIA model 
for each question could be a more detailed model than that presented in this paper. Progress in 
understanding and elaborating drifting and waning models should be rapid. With each advance 
in understanding, the most efficient starting model should become clearer. For each of these 
questions, the inference robustness and inference identifiability steps of DRIA will be different. 
The following questions are not meant to be answered by performing a purely model analysis. 
They are meant to be answered by fitting models to data in progressive inference robustness or 
inference identifiability loops. Questions relevant to vaccines will require model elaborations 
that capture vaccine effects. That should be a straightforward task. 
 

1. When administering SARS-CoV-2 vaccines, will drifting emerge when the coverage 
achieved can only reach X? (X to be decided in consultation with Public Health Experts.) 

2. Will vaccines that stimulate immunity through diverse epitopes require less coverage to 
eliminate drifting than vaccines that target a single epitope? 

3. Will vaccines that stimulate more diverse B-cells to a single epitope be subject to a 
lower drifting force? 

4. Will drifting emerge when a coverage of only X can be achieved using an improved 
vaccine Y that covers more epitopes with more diverse antibodies? 
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5. Will vaccinating the age groups or other subgroups most involved in transmission make 
a vaccine less subject to drifting? 

6. Will failure to vaccinate a specific high-risk group cause drifting that spreads outside of 
that group and contributes to sustaining drifting in other groups? 

7. Will high transmission conditions increase the potential for drifting? 
8. Will decreasing transmission through better ventilation eliminate the risk of drifting 

associated with only being able to achieve a vaccine coverage of X. 
9. Will having diverse subpopulations with higher or lower transmission potential increase 

the potential for drifting? 
 
4.2 DRIA robustness assessment loops  
The decision robustness assessment loop assesses whether realistically relaxing an assumption 
will change or make unidentifiable an inference that is identifiable in the simpler model. Since 
we have not fitted the model we presented to data, we are not ready to proceed with decision 
robustness assessment steps. To help understand DRIA, we present a list of simplifying 
assumptions that might be relaxed. These steps could be applicable to our main text question 
or the above listed questions.  
 
The following numbered “realistic relaxations of simplifying assumptions” are likely to vary with 
regard to their chances for changing the above 9 listed decisions or to make a decision about 
them unidentifiable. Not all of these items below will be applicable to all of the 9 decisions 
above. 
 

1.  “The population is homogeneous with no age specific mixing or age specific histories of 
infection.” This assumption could be relaxed by adding age groups and age specific 
contact patterns. 

2. “The population is of infinite size in every category.” This is an assumption that is 
intrinsic to all ODE models and can be relaxed by instituting an identical model in an 
agent based discrete individual format. 

3. “The waning scale is linear across compartments with equal sized steps and equal sized 
differences in infection susceptibility.” Theory suggests that relationships might follow a 
power law rather than being linear as in the model in this paper. Data on neutralization 
titers as a function of time might describe another pattern. Realistically relaxing the 
linear function might be pursued somewhat differently for agent based or ODE models: 
ODE – lengthening the time spent in each sequential compartment and decreasing the 
loss of susceptibility across each sequential compartment could give more power law 
relationships.  AGENT BASED – formulating the increase in susceptibility by time as a 
power law. If good follow up neutralization data is available, integrating the observed 
relationships into the model might be the best alternative. An agent-based model makes 
it easier to adopt the uncertainties intrinsic to cross-reaction data. 

4. “The drifting scale is ordinal and unidirectional.” This can be relaxed as discussed in 
section III.3 on page 12. 

5. “The natural history of infection is unchanged by the waning or drifting state of 
individuals being re-infected.” This clearly unrealistic assumption was beneficial in 
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helping to work out what aspects of the system were causing new phenomena to 
appear. In a more detailed model, the effects of small drifting fractions at higher waning 
levels might have been attributed to assumptions about how different levels of 
immunity affect contagiousness. But now that we understand why our model 
formulation led to the dynamics it did, realistically relaxing assumptions about how 
immunity will affect the duration of infection can be done without causing as much 
confusion. 

6. “Immunity is acquired from infection only and not from a vaccine.” This can be relaxed 
by assigning population to specified drifting statuses in a manner that logically 
corresponds to vaccine administration.  

7. “Immunity is directed only to the most recent infection.” This is most easily relaxed in an 
agent-based formulation of the model. One approach could be to formulate B-cell 
survival and stimulation upon a new infection in each individual. A less computationally 
intensive approach might be to formulate a set of immunity dimensions corresponding 
to multi-dimensional drifting formulations. 

8. “Boosting of immunity from first infections ad reinfection is to the same level. That level 
has the characteristic that the next step below that level creates some susceptibility.” 
There are two separate things in that simplification that can be separately relaxed. The 
level of boosting could be made a function of the past history of infections, the exposure 
dose, or both. What level implies susceptibility could be made a function of the same 
things. Thus, one function could address both issues. 

9. “Immunity is lost as soon as one leaves the first waning or drifting level.” There could be 
redundant immunity such that several compartments must be traversed before 
infection becomes possible. 

10. “Drifting occurs by short steps and not leaps.” Recombination is a characteristic of 
coronaviruses. To capture some of that, one could add recombination across different 
antigenic dimensions to the model. Such a model elaboration would be especially useful 
if data on recombination were available. But it could be pursued without such data and 
notable effects in the model could stimulate collection of data. 

11. “Waning and drifting generate escape from immune protection according to a simple 
additive protective effects formulation.” A more realistic assumption might be that early 
waning is related to the loss of a small number of B cell clones and the probability of 
drifting from these will be high as well. Under that assumption, the joint distributions of 
waning and drifting will no longer be additive. The model could be elaborated by having 
different strengths of immunity with different loss rates.  

 
4.3 DRIA decision identifiability concepts 
Decision inference robustness is more widely understood and addressed than is decision 
identifiability. Understanding the distinction between parameter identifiability and decision 
identifiability may help to see how the DRIA we propose works. Many readers will be familiar 
with parameter identifiability. Parameters are identifiable by a set of data when only one set of 
parameters will generate the data being fit. There are distinct practical and theoretical 
approaches to parameter identifiability. Few infection transmission system models are 
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practically identifiable by the type of data to which infection transmission system models are 
usually fit.  
 
Given that DRIA focuses on decisions rather than on model parameters, there is a better chance 
of achieving identifiability. A decision is identifiable when all of the different parameter sets 
consistent with the data to which the model is fit lead to one decision. Decision identifiability is 
easier to assess than parameter identifiability. The key steps are to first be precise in defining 
the decision to be made. Then the model must be able to specify two different boundaries.  
 
The first model defined boundary is the decision boundary in parameter space. Criteria must be 
established that define for each possible parameter set what the decision should be. That might 
be done by some cost or benefit assessment of model output given. The key step of 
establishing criteria is discussion between public health officials, content area scientists, and 
complex systems scientist modelers. 
 
The second boundary that must be defined by the model is the parameter space that is 
consistent with the data. To do that, one must have a statistical analysis procedure that defines 
the likelihood of the data given the model. There are various Partially Observed Markov Process 
(POMP) methods that can be employed to that end. The “pomp” software () can be employed. 
A pomp analysis that shows lack of decision identifiability is what gets one into the decision 
identifiability loop.  
 
4.4 Pursuing decision identifiability 
A task of step six as outlined in the main text is to find new data that will allow one to narrow 
the parameter space that is consistent with the data. The new data to which the model is fit 
needs to be an integral part of the model. A major contribution of the model presented in this 
paper is that it opens up serological cross reaction data given different strain variants data for 
fitting transmission system models that entail drifting.  
 
New data increases identifiability when the parameter space consistent with available data is 
made smaller. The new data may yet to be gathered, it may be more precise data, or it could be 
existing data that has not yet been used.  
 
Data to assess antigenic drifting could come from epidemiological surveillance, outbreak 
investigations, data and specimens collected to investigate other infections like influenza, newly 
designed studies stimulated by model developments, follow up data after infection, virus 
isolations, virus sequencing, or detailed immune response characterizations. Data from all these 
sources could be enhanced by fitting waning and drifting models to them. Even when the 
model does not generate the data analyzed in the manner that our model generates cross-
neutralization data, it can be useful as it might still constrain parameter space. 
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Surveillance data 
A promising set of data for the model we have presented could come from cross sectional 
surveys like those conducted to determine what fraction of the population has evidence of 
prior infection. Those sera together with virus isolations should be examined to generate the 
cross-reaction tables we have discussed. More widely available data might be temporally 
dispersed sera and isolated virus collections where viruses are not linked to sera collection 
populations. Fitting a model to such data requires assumptions about the transmission system 
dynamics generating the data. But in a DRIA context, such data could still be powerful. 
 
Outbreak data 
Outbreaks can represent natural experiments. For example, the cruise ship outbreaks of SARS-
CoV-2 exhibit constrained and measurable contact patterns and allow for more detailed data 
collection. The cruise ship outbreaks during the first epidemic wave of SARS-CoV-2 cannot 
provide information on drifting forces since all infections were first infections. They might, 
however, provide information on cross-reactive immune protection from other coronaviruses. 
In the future, they could information on drifting if adequate serology specimens are gathered. 
 
Specimens from studies designed to investigate other pathogens 
In the first phase of this pandemic, studies of influenza have been productively leveraged to 
gain insights into SARS-CoV-2 infections. They provide data on exposure risks to other infections 
in relationship to risks for SARS-CoV-2. As we enter the time when drifting may appear, these 
studies could be even more valuable. Sequential sera with follow up that documents new 
infections can best come from such studies. 
 
Newly designed studies stimulated by model developments 
Sometimes the model can direct us to gather new data. When an inference robustness step 
shows lack of robustness to realistic relaxation of a simplifying assumption, the realism added 
to the model may imply that data on that aspect of realism may be needed. For example, when 
adding age specific contact patterns to a model, the inference could change across different age 
specific contact patterns. In that case, getting data on those age patterns should help narrow 
the parameter space. But there may be other alternatives. For example, age specific genetic 
sequence patterns of the virus may reflect aspects of the contact patterns that make a 
difference for the inference being pursued. 
 
Follow up data after infection 
Data on waning can be acquired through follow up of individuals after they have been identified 
as infected. That data addresses waning without any influence of drifting in the individuals 
followed up serologically since the presence of any intervening infection can be detected 
serologically. Given the relationships we showed in the main text between waning and drifting 
parameters, adding follow up data on waning has considerable potential to increase decision 
identifiability. 
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Independent data on drifting is not so readily available. Characterizing viruses isolated over 
time across different populations, age groups, and other risk groups does present information 
to which the model can be fit. But SARS-CoV-2 isolations are less likely to be representative of 
the overall population if infected individuals given variations in severity and the frequency of 
asymptomatic infections. 
 
Genetic sequences 
Genetic sequences are a type of data that is used to inform drifting assessments for influenza. 
The classic work of (Smith, Lapedes et al. 2004) Derek Smith et al. (), the analyses by (Koelle, 
Cobey et al. 2006) and the more recent work of (Castro, Bedford et al. 2020) as well as the work 
by (Luksza and Lassig 2014) offer ways to predict virus evolution without modeling a drifting 
process in the course of reinfections as we do. The genetic information may be useful even 
when it does not directly reflect viral pathogenesis. For example, the burden of harmful genetic 
changes can alter the effects of immune escape directed genetic changes in a virus in 
unintuitive ways (Koelle and Rasmussen 2015). Developing a model that handles genetic data 
within causal system framework that informs transmission system parameter estimations 
seems possible. The path to such a formulation, however, is yet to be articulated. Even for 
influenza, we suspect that using a population transmission system model that integrates 
waning, boosting, and drifting like we have presented could increase the value of genetic 
sequence data. 
 
Laboratory data on SARS-CoV-2 
Recent studies show what can be obtained by in-depth examination of a few isolates (Banerjee, 
Nasir et al. 2020) (Liu, Wang et al. 2020) (Premkumar, Segovia-Chumbez et al. 2020) (Noy-Porat, 
Makdasi et al. 2020) (Zost, Gilchuk et al. 2020) or the in-depth characterization of immune 
responses from a few individuals (Brouwer, Caniels et al. 2020). Such data could refine and 
make more specific the laboratory data produced by cross-neutralization or related serologic 
assays. 
 
Detailed immune response characterizations  
Laboratory studies such as those showing immunological cross reactions between 
coronaviruses (Mateus, Grifoni et al. 2020) or measurement of protective effects for specific 
epitopes and antibodies to them (Brouwer, Caniels et al. 2020) can also contribute to 
identifiability by suggesting more appropriate model formulations or more informative 
serology. 
 
Another source of more detailed immune response data is to conduct antibody quantity vs. 
avidity profiles against the major epitopes on samples from a cross-section of a population. An 
ELISA or similar assay could be used. Assessing avidity just by measuring how much antibody 
attachment is lessened by urea or some similar reagent may not accurately describe the avidity 
profile because the competitive avidity of different antibodies is not assessed. A more complete 
description of the volume of low avidity to high avidity antibody that assesses competitive 
attachment could be assessed by varying the incubation time and the washing times in an ELISA 
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from a minute to two weeks. Such long incubation or washing times would not increase the 
total time for examining collected sera since there is no increase in anything but the time in 
which plates are left to sit. A model of the data could then be used to provide a profile of 
avidity vs. quantity that is model translated into a susceptibility measure. That model would in 
turn inform the waning and drifting transmission system model. 
 
Another way to get more detailed immune response characterizations is to chemically 
construct epitopes, screen millions of them at a time to identify epitope like constructs that 
distinguish different sera sets defined by time, age, and infection history, then further elaborate 
shape space for the chemically constructed epitopes around those that are positive until one 
has a thorough description of immune response characteristics by age, time, and infection 
history. Methods for this have been developed by (Doran, Gao et al. 2015, Kodadek and 
McEnaney 2016)  Fitting the model to this data should allow estimation of waning and drifting 
parameters of considerable complexity. 
 
Using multi-scale models to increase identifiability 
Combining within host models and population models is an area of model analysis that has 
potential to increase identifiability. Our model made such a combination. But it did so by 
eliminating the virus growth and diversification dynamics within both the source and  
recipient individuals. It is possible that getting data on either of these within host processes 
could improve identifiability of waning and drifting parameters. An example where adding 
within-host process data increased the identifiability of population processes comes from 
(Tuncer, Marctheva et al. 2018) (Tuncer, Gulbudak et al. 2016). They have clarified the 
conceptual ideas involved and showed in a Rift Valley Fever model that more population model 
parameters were identifiable when they added within host processes to the model for which 
they could establish some scaling. 
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