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Abstract: By interrogating metabolic programs in the peripheral blood mononuclear cells (PBMC) of 
acutely infected COVID-19 patients, we identified novel and distinct immune cell subsets  Our studies 
identified a non-clonal population of T cells expressing high H3K27me3 and voltage-dependent anion 
channel (VDAC) with mitochondrial dysfunction and increased susceptibility to cell death.  Characterized 
by dysmorphic mitochondria and increased cytoplasmic cytochrome c, apoptosis of these cells was 
inhibited by preventing VDAC aggregation or blocking caspase activation.  Further, we observed a 
marked increase in Hexokinase II+ polymorphonuclear-myeloid derived suppressor cells (PMN-
MDSC).  While PMN-MDSC were also found in the PBMC of patients with other viral infections, the 
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Hexokinase II+ PMN-MDSC were found exclusively in the acute COVID-19 patients with moderate or 
severe disease.  Finally, we identified a population of  monocytic MDSC (M-MDSC) expressing high 
carnitine palmitoyltransferase I (CPT1a) and VDAC, which were present in the PBMC of the acute COVID-
19 patients, but not recovered COVID-19 patients and whose presence correlated with severity of 
disease.  Overall, these unique populations of immune cells provide insight into the pathogenesis of 
SARS-CoV-2 infection and provide a means to predict and track disease severity as well as an 
opportunity to design and evaluate novel therapeutic regimens. 

One Sentence Summary: Metabolic programs define unique immune cells among COVID-19 patients 
with severe diease.  
 
Main Text: SARS-CoV-2 is a coronavirus responsible for the COVID-19 pandemic, resulting in over 20 
million cases worldwide.  While the vast majority of infected patients experience a self-limiting viral 
syndrome, others develop severe disease leading to pneumonia and acute respiratory distress syndrome 
(ARDS), which has accounted for over 900,000 deaths globally (1).  At this time, it is unclear why some 
patients readily resolve infection while others develop severe symptoms.  Specifically, it remains to be 
determined if severe disease is associated with a failure to generate protective immunity, overly robust 
dysfunctional immune responses, or a combination of both. 

It has become increasingly clear that metabolic reprogramming is not just a consequence of immune 
activation, but rather plays a critical role in facilitating immune cell differentiation and function (2, 3).  It 
is now understood that discrete cellular subsets employ distinct metabolic programs.  For example, 
effector T cells are characterized by increased expression of molecules necessary to support glycolysis, 
while memory T cells upregulate expression of molecules involved in oxidative phosphorylation and 
fatty acid oxidation (4).  Exhausted T cells are characterized not just by the upregulation of inhibitory 
molecules such as programmed cell death protein 1 (PD-1) and loss of polyfunctionality, but also by 
mTOR signaling in the absence of productive glycolytic function and anabolic processes (5). Therefore, 
combining immunologic markers with metabolic markers has the potential to transcend traditional 
immune cell phenotyping and provide novel insights into distinct functional subsets.  To achieve this, we 
created unique high-dimensional (HD) flow cytometry panels that combine lymphocyte and myeloid 
markers with those of metabolic function and used them to examine peripheral blood mononuclear cells 
(PBMC) from acutely infected COVID-19 patients (COVID-A) (Table S1, Fig. S1). 

HD flow cytometry was performed on thawed PBMC from an IRB approved biorepository from patients 
admitted to the Johns Hopkins Hospital (Table 1).  We initially focused on T cells within the PBMC given 
their importance in viral control.  While we did not observe significant differences between the 
percentages of CD3+, CD4+, or CD8+ T cells between the PBMC from COVID-A patients and healthy 
controls,  we observed an increase in the CD4:CD8 ratio in COVID-A patients, as previously reported (Fig. 
S2) (6, 7).  Otherwise, conventional T cell markers simply revealed an increase in central memory T cells 
(Tcm) in the CD4+ T cell population of the COVID-A patients when compared to healthy controls.   

In stark contrast, unbiased analysis of T cells employing the combined immune and metabolic markers 
revealed the robust presence of a unique subset of both CD8+ and CD4+ T cells in the PBMC from COVID-
A patients (Fig. 1A).  Having identified this unique population of T cells, we next sought to determine 
their precise phenotype.  When compared to healthy controls, we observed no differences in expression 
of the classical markers of T cell subsets CD45RA, CCR7, or KLRG1 (Fig. S2F) or the activation markers 
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CD69, Ki67, PD-1, or HLA-DR (Fig. S2G).  Likewise, levels of metabolic enzymes involved in glycolysis and 
fatty acid oxidation did not differ between the two groups (Fig. S2H).  In contrast, the unique population 
of T cells found in the COVID-A patients was characterized by robust upregulation of Voltage Dependent 
Anion Channel (VDAC) and the epigenetic mark H3K27me3 (Fig. 1A-B). H3K27me3 is regulated in part by 
a-ketoglutarate-mediated jumonji demethylases (8), while VDAC is a mitochondrial membrane protein 
involved in metabolite transport and has been associated with promoting cell death and lupus-like 
autoimmunity (9).  Upon typical T cell activation, as seen upon TCR stimulation of healthy PBMCs in 
vitro, VDAC and H3K27me3 expression increase along with the glucose transporter Glut1 and 
Hexokinase II (HKII), both of which support activation-induced glycolysis (Fig. 1C).  However, the unique 
population of H3K27me3hiVDAChi T cells in the PBMC of COVID-A patients do not appear to resemble 
conventional recently activated T cells because they express relatively low levels of Glut1 and HKII (Fig. 
1D).  Furthermore, the H3K27me3hiVDAChi T cells encompass both CD45RA/CCR7 positive and negative 
cells (Fig. 1D) and did not demonstrate enrichment for specific TCR clones (Fig. 1E).  Expanded analysis 
of 55 PBMC samples from 38 COVID-A patients (including sequential samples) revealed that a significant 
number of patients possess high proportions of T cells with this phenotype (Fig. 1F).  Interestingly, while 
not present in all of the patients queried, every  patient 70 years of age and older possessed increased 
frequencies of the H3K27me3hiVDAChi T cells in their PBMC (Fig. 1G).  Overall, these data reveal a novel, 
distinct population of H3K27me3hiVDAChi T cells in the PBMC of COVID-A patients. The discordance in 
activation and metabolic programs suggests that these T cells are dysfunctional. 

We then tested whether the unique population of H3K27me3hiVDAChi T cells in COVID-A patients were 
present in the PBMC of recovered COVID-19 patients  (>28 days from diagnosis, COVID-R) and patients 
with other viral infections.  Thus, we analyzed PBMC from patients with acute and chronic hepatitis C 
infection (10), hospitalized with influenza infection (11), and those who had recovered from COVID-19 
(COVID-R)) (Table S2) (12). There appeared to be only subtle differences between these groups in CD4+ 
and CD8+ T cell subsets as defined by traditional markers  (Fig. S2). Yet, when compared to the T cells in 
the PBMC from other groups, the COVID-A patients segregated as shown by UMAP projections, 
indicating a distinct subset of T cells unique to COVID-A patients not accounted for by traditional 
markers (Fig. 1H-J).  While we did not observe the H3K27me3hiVDAChi T cells in the PBMC of patients 
with either acute or chronic hepatitis C infection, H3K27me3hiVDAChi T cells were present in the PBMC of 
some of the hospitalized influenza patients and of some COVID-R patients (Fig. 1K-L).  For eight of the 
COVID-A patients, we were also able to obtain PBMC during the resolution phase, approximately 90 days 
after the onset of infection.  Interestingly, the three patients with the highest levels of the 
H3K27me3hiVDAChi T cells while hospitalized demonstrated markedly diminished percentages of these 
cells at day 90 (Fig. S3A-B).  

Unbiased hierarchical analysis based on protein expression of H3K27me3hiVDAChi CD4+ T cells showed 
that these cells robustly clustered based on disease type, indicating qualitative differences in 
H3K27me3hiVDAChi T cells across disease status (Fig. 1M).  That is, the H3K27me3hiVDAChi T cells in the 
PBMC of the influenza and COVID-R patients, were distinct from the H3K27me3hiVDAChi T cells in the 
PBMC of the COVID-A patients. For example, the H3K27me3hiVDAChi T cells from the COVID-A patients 
demonstrated significantly decreased expression of Glut1, a metabolic marker associated with T cell 
effector function (Fig. 1N).  However, they had significantly increased expression of the mitochondrial 
protein TOMM20 and KLRG1, a marker associated with T cell senesence and age-related functional 
defects (13),  when compared to the H3K27me3hiVDAChi T cells from both the Influenza patients and the 
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COVID-R patients (Fig. 1N).  The H3K27me3hiVDAChi T cells present in both the influenza patients, as well 
as the COVID-R patients, displayed increased markers of glycolysis and effector function, and were 
metabolically distinct from the COVID-A patients.  Thus, despite similar levels of H3K27Me3 and VDAC 
expression, the metabolic programming of these cells is distinct between acute and recovered COVID-19 
patients and from the hospitalized influenza patients, all of whom recovered. 

The percentage of H3K27me3hiVDAChi T cells in the PBMC of many of the COVID-A patients exceeded 
50% of total T cells (Fig. 1F).  In order to elucidate the functional significance of these cells, single-cell 
RNA sequencing was performed on six COVID-A patients, which all had above 50% of the T cells of 
interest as determined by flow cytometry, and three healthy controls.  Evaluating gene programs 
enriched in T cells derived from COVID-A patients revealed an upregulation of apoptotic signatures and 
cell death, as has been reported previously (Fig. 2A, red bars) (14).  Furthermore, these data 
demonstrated evidence of mitochondrial dysfunction, including downregulation of several programs 
associated with mitochondria function, mitochondrion organization, mitochondrial respiratory chain 
complex assembly, oxidative phosphorylation, and electron transport coupled proton transport (Fig. 2A, 
blue bars).  To investigate whether elevated VDAC and TOMM20 indicate defective mitochondrial 
function in these T cells, we performed electron microscopy on PBMC from additional COVID-A patients 
and healthy controls to examine the lymphocyte mitochondria.  This analysis revealed markedly 
dysmorphic, irregularly shaped mitochondria with incomplete cristae in lymphocytes from COVID-A 
patients compared to lymphocytes from healthy controls, consistent with dysregulated mitochondrial 
function (Fig. 2B). In addition, lymphocytes from COVID-A patients showed prominent degenerative 
changes including large cytoplasmic vacuoles. These observations were concurrent with cells in COVID-A 
PBMC displaying morphological characteristics of apoptosis. We then performed confocal microscopy of 
PBMC stained with anti-CD3 and MitoTracker Deep Red Dye, which stains mitochondria. CD3+ T cells 
from COVID-A patients demonstrated less distinct mitochondrial staining versus healthy controls (Fig. 
2C).  Having observed decreased mitochondrial programs by RNA-seq, presence of apoptotic cell 
morphologies by EM and confocal Deep Red Dye staining, we hypothesized that cytochrome c was being 
released from the mitochondria leading to apoptosis (15).  We therefore performed 
immunofluorescence analysis of endogenous cytochrome c, and found it to be present in the cytoplasm 
of CD3+ T cells from COVID-A patients, whereas in healthy controls, cytochrome c was localized to the 
mitochondria (Fig. 2D). Thus, both electron and confocal microscopy support the single-cell RNA 
sequencing data demonstrating that the unique population of T cells found in the COVID-A patients 
display mitochondrial dysfunction consistent with cytochrome c release into the cytoplasm and 
subsequent induction of apoptosis. 

Given these findings and the fact that VDAC facilitates caspase-mediated cell death (16), we 
hypothesized that the high expression of VDAC was directly linked to increased susceptibility to cell 
death in these T cells. To test this hypothesis, we cultured PBMC from COVID-A patients and healthy 
controls for 48 hours in vitro in the presence of media alone, the mTOR inhibitor rapamycin, the VDAC 
oligomerization inhibitor VBIT-4 (9, 17), and the global caspase inhibitor ZVAD (Fig. 2E).  We observed 
decreased survival in media alone of the T cells from the PBMC of COVID-A patients when compared to 
healthy controls.  Interestingly, survival of the COVID-A T cells was rescued with both the VDAC 
oligomerization inhibitor and the pan-caspase inhibitor, but not the mTOR inhibitor.  This suggests that 
VDAC is promoting cell death in these T cells.  Further, neither VBIT-4 nor ZVAD enhanced survival of the 
healthy T cells, demonstrating that this mechanism of cell death is not active in the cultured healthy T 
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cells. In light of the propensity of the T cells from the COVID-A  patients to undergo apoptosis, we 
wanted to test that our results did not reflect differences in cell survival after freezing.  When we 
compared fresh and frozen PBMC from four COVID-A patients we observed an increased frequency of 
the H3K27me3hiVDAChi T cells in the freshly stained PBMC (Fig. S3C-D) compared to those frozen and 
thawed.  Thus, our studies are potentially underestimating the frequency of these unique T cells in the 
COVID-A patients. For 12 COVID-A patients with multiple sequential samples, we did observe a 
correlation between the presence of the H3K27me3+VDAC+ T cells and subsequent development of 
lymphopenia (preliminary data, Fig. S3E) supporting the  hypothesis that mitochondrial-induced 
apoptosis might be  contributing to the lymphopenia observed in COVID-A patients (6, 18).   
Interestingly, the COVID-A T cells, which were rescued by the ZVAD and VBIT-4 treatment, respond 
similarly to anti-CD3 + anti-CD28 stimulation to the healthy T cells (Fig. 2F). Specifically, stimulation of 
the COVID-A T cells rescued from cell death resulted in robust, productive activation.  

In contrast to T lymphocytes, we did not observe marked differences in the frequencies of naïve B cells 
between any viral infections and the healthy controls (Fig. S4). Consistent with recent reports, we did 
observe an increase in the peripheral antibody-secreting cells (ASC) in the COVID-A patients (18).  All of 
the viral infections were associated with a significant increase in the memory B cells versus healthy 
controls, while only the COVID-A and hepatitis C patient groups demonstrated an increase in the 
activated memory B cells.  The COVID-A and influenza patient groups both had a higher percent of 
atypical memory B cells compared to PBMC from the hepatitis C, and the COVID-R patient groups.  
Global UMAP projection demonstrated only subtle phenotypic differences among the different groups.  
When we examined the NK cells, we found no significant differences in frequency when comparing the 
COVID-A patients, the COVID-R patients and the influenza patients (Fig. S5).  Conversely, HD flow 
analysis revealed a population of CD56+ NK cells in the COVID-A patients not present in the influenza 
patients or in the healthy controls.  This population was defined by the upregulation of classical 
activation markers CD69, Ki67, and CD49a and by increased expression of the metabolic markers 
TOMM20, CPT1a, and HKII.  While the precise significance of these cells is unclear, their generation can 
potentially provide important clues into the dysregulated systemic inflammation characteristic of 
acutely ill COVID-A patients. When we compared NK cells from COVID-A patients with COVID-R patients, 
we observed differences in CD56+ and CD56bright cells driven mainly by differential expression of 
markers of activation.   

Next, we examined myeloid cells in the PBMC of the COVID-A patients employing our HD immune-
metabolic panel.  There was not a difference in the frequency of total myeloid cells between all the 
groups examined (Fig. S6).  We did observe a significant decrease in both myeloid dendritic cells (mDC) 
and plasmacytoid dendritic cells (pDC) in the PBMC from the COVID-A patients when compared to PBMC 
from the COVID-R and the influenza patient groups (Fig. S6C). Consistent with prior reports, acute 
COVID-19 was associated with a decreased percentage of pDC in PBMC (18, 19).  

Visualization of the data by UMAP projection revealed two distinct myeloid populations, which once 
again became apparent only by including the metabolic markers in our panel (Fig. 3A-B).  We first 
identified CD15+ granulocytic cells in COVID-A patients,  which were entirely absent from the healthy 
controls (Fig. 3A-B).  Evaluating the granulocytic cells further revealed a combination of low-density 
neutrophils and polymorphonuclear (PMN)-myeloid derived suppressor cells (MDSC) (Fig. 3C). 
Interestingly, a specific subset of the PMN-MDSC also expressed elevated levels of the rate limiting 
enzyme of glycolysis HKII.  Increased neutrophil counts have been previously observed in COVID-19 
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patients (18, 19). Low-density neutrophils can be found in the buffy coat during inflammation and 
represent both immature neutrophils and activated/degranulated neutrophils (20). Low-density 
neutrophils were present in a subset of influenza patients, but only significantly enriched in the COVID-A 
patients (Fig. 3D).  Strikingly, while the immunosuppressive PMN-MDSC (as defined by conventional 
markers) are detectable in both chronic hepatitis C and COVID-A patients, the HKII+ PMN-MDSC were 
unique to COVID-A patients (Fig. 3E).  Thus, our approach revealed a novel population of HKII+ PMN-
MDSC which were found exclusively in the COVID-A patients. 

When interrogating the monocytic cell populations in the PBMC, again the metabolic markers helped  
distinguish a unique population of cells in the COVID-A patients when compared to healthy controls. 
(Fig. 3F). For comparison, we did observe differences between the myeloid cells of the influenza patients 
and of the healthy controls; however, these distinctions were driven primarily by classical activation 
markers such as CD86 and CD40 (Fig. S6D).  In contrast, the monocytic cells found in COVID-A patients 
expressed high levels of carnitine palmitoyltransferase 1a (CPT1a), an enzyme found within the 
mitochondrial membrane that is essential for fatty acid oxidation.  In addition they expressed high levels 
of VDAC1 (Fig. 3F).  CPT1a has been associated with both NLRP3 inflammasome activation and ROS 
production (21, 22).  A potential role for inflammasome activation as contributing to the pathogenesis of 
SARS-CoV-2 infection has been noted by others (23).  A large portion of the CPT1a+VDAC+ myeloid cells 
were CD14+HLA-DR- and thus classified as monocytic MDSC (M-MDSC) (24).  Furthermore, while these 
cells were significantly upregulated in the COVID-A patients, they were only minimally present in the 
PBMC of the COVID-R patients (Fig. 3G).  A decrease in HLA-DR expression on myeloid cells during 
COVID-19 infection has been previously noted by other groups as well (23, 25, 26).  Interestingly, the 
HLA-DR+ component, composed of both CD14+ and CD16+ monocytes, was elevated during active 
infection and remained high during recovery (Fig. 3H).  HLA-DR+ monocytes are capable of producing 
robust amounts of cytokines and also providing antigen presentation and T cell costimulation.  The 
differential expression patterns of these monocytic populations between the infected and recovered 
patients may represent a shift from immunosuppressive (DR-, MDSC) to a productive immune response 
(DR+, stimulatory monocytes).   

The dichotomy based on HLA-DR expression of these unique cells prompted us to examine the 
relationship between the HLA-DR+ and HLA-DR- CPT1a+VDAC+ myeloid cells and disease severity.  Not 
only do the CPT1a+VDAC+ HLA-DR- cells represent less than 0.5% of total PBMCS of COVID-R patients, but 
the percentage of these cells is significantly higher in COVID-A patients requiring mechanical ventilation 
(on average 3.5% of PBMCs) than in COVID-A patients with less severe disease (0.7% of PBMCS) (Fig. 
4A).  Thus, not only can the CPT1a+VDAC+ HLA-DR- cells be employed as a potential biomarker of disease, 
but comparisons between the DR+ and DR- subsets of these cells provides potentially important insight 
into the pathogenesis of disease. 

To better understand the function of these CPT1a+VDAC+ HLA-DR- cells, we assessed single-cell RNA 
sequencing data from the PBMC of three COVID-A patients that had very high levels of the CPT1a+VDAC+ 
myeloid cells, as assessed by flow cytometry (Fig. 4B). The analysis revealed four distinct clusters (Fig. 
4B).  Clusters 1 and 3 both had elevated levels of VDAC and CPT1a, but cluster 1 expressed relatively 
lower levels of HLA-DR compared to cluster 3 (Fig. 4C).  Cluster 3 exhibited gene programs associated 
with a productive immune response, such as antigen processing/presentation and a type I IFN response 
(Fig. 4D).  In contrast, cluster 1, which demonstrated decreased HLA-DR expression and contained the 
cells that were more abundant in severe disease, expressed gene programs associated with ROS 
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production, exocytosis and targeting proteins to the membrane surface (Fig. 4C).  Specifically, the HLA-
DR- cluster expressed high levels of genes for secreted alarmins such as S100A9 and S100A8 and 
chemokines such as CXCL2 and CXCL3 (Fig.4E) (27).  Thus, not only do the HLA-DR- and HLA-DR+ 
CPT1a+VDAC+ myeloid cells distinguish disease severity and recovery, but these cells express markedly 
different gene expression profiles that have the potential to provide important insight into disease 
pathogenesis and productive immune responses. 

We pursued the potential role of these novel immune cells in predicting disease by treating the 
percentage of each cell population as features. We trained random forest models for classifying patients 
into different groups (e.g., COVID-A vs. Healthy controls, Severe COVID-A vs. COVID-R, Severe COVID-A vs. 
influenza, Severe COVID-A vs. Mild COVID-A). Consistent with our previous observations, cell populations 
such as H3K27Me3+VDAC+CD4+, H3K27Me3+VDAC+CD8+, and PMN-MDSC cells were among the most 
important features in distinguishing COVID-A patients and healthy controls (Fig. 4F). Comparing severe 
COVID-A patients to influenza patients also revealed cell populations, such as PMN-MDSC, mDC, and M-
MDSC cells, that distinguish between these two diseases (Fig. 4G). When severe COVID-A patients were 
compared to recovered (Fig. 4H) or mild COVID-A patients (Fig. 4I), cell populations such as pDC, M-MDSC 
and HKII+PMN-MDSC were found to be among the top 10 distinguishing features in both comparisons (Fig. 
4H-I). Additionally, cell populations such as VDAC+CPT1a+ myeloid cells also had distinguishing power 
when comparing severe and mild COVID-A patients (Fig. 4I), whereas cell populations such as mDC were 
among the top features to distinguish severe and COVID-R.   

In terms of prediction accuracy, the receiver operating characteristic (ROC) analysis based on leave-one-
out cross-validation (LOOCV) of the random forests indicates that COVID-A patients are highly 
distinguishable from the healthy controls, and the severe COVID-19 patients are also highly 
distinguishable from the influenza or COVID-R patients, whereas distinguishing between severe and mild 
COVID-19 was more challenging (Fig. S7A). Because prior publications have shown the association 
between COVID-19 severity and age, sex, and BMI, we further added these variables to our COVID-19 
severity analysis (6).  The feature importance analysis confirmed in our dataset that sex and BMI are 
among the most important features in predicting COVID-19 severity, whereas age was less important in 
the presence of our cell population features (Fig. S7B). The percentage of VDAC+CPT1a+ myeloid cells, 
pDC, and H3K27Me3+VDAC+CD4+ cells were more important than sex and BMI in predicting disease 
severity. Based on these observations, we trained two additional prediction models using the top-five-
ranked features (i.e., percentage of VDAC+CPT1a+, pDC, and H3K27Me3+VDAC+CD4+ cells, sex, and BMI) 
and the basic clinical information (i.e., age, sex, and BMI), and compared their performance in predicting 
COVID-19 severity (Fig. S7C). The model based on the top-five-ranked features outperformed the model 
based on the basic information, indicating that the percentage of VDAC+CPT1a+ myeloid cells, pDC, and 
H3K27Me3+VDAC+CD4+  improved prediction of COVID-19 severity. 

Overall, our study has identified previously undescribed populations of immune cells that are distinctly 
upregulated in the PBMC of acutely infected COVID-19 patients.  Future focused investigation of these 
unique subsets provides a platform to dissect and identify the pathogenic inflammatory modulators of 
disease as well as discern the mechanistic basis for the development of severe lung disease that leads to 
death. Indeed, the H3K27me3hiVDAChi T cells demonstrate mitochondrial dysfunction leading to 
cytoplasmic cytochrome c release and caspase dependent apoptosis that can be inhibited by blocking 
VDAC oligomerization (Fig. 2).  This dysregulated T cell immunity could contribute to a lack of or waning 
protective immunity or impair the functionality of pre-exisiting cross-reactive T cell immunity (28, 29).  
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Further, this mitochondrial mediated cell death might contribute to the lymphopenia that is observed in 
COVID19 patients.   Alternatively, it is possible that increased cell death of T cells is driving some of the 
dysregulated inflammation and autoimmune-like features characteristic of COVID-19.  Finally, our data 
suggests that therapeutically targeting mitochondrial (metabolic) dysfunction might represent a 
successful strategy for abrogating disease.   

Previous  studies have demonstrated increased inflammation and activation of myeloid cells in COVID-
19 patients (18, 23, 26).  However, it still remains unclear which of these responses are protective and 
which are pathogenic.  Our identification of unique myeloid populations in the COVID-A patients shed 
light on the role of these cell populations.  While PMN-MDSC were observed in multiple viral infections, 
the HKII+ PMN-MDSC were exclusively upregulated in the COVID-A patients, suggesting that this 
population of cells is either contributing to pathogenesis or the consequence of dysregulated 
inflammatory responses (Fig. 3).  CPT1a+VDAC+DR+ monocytic cells were found in both the acutely and 
recovered patients. DR+ monocytes have previously been shown to be associated with productive 
immune responses in other respiratory viral infections (30)  and single-cell RNA sequence analysis 
revealed increased antigen processing/presentation and type I IFN responses in such cells.  In contrast, 
the CPT1a+VDAC+DR- M-MDSC were found exclusively in the COVID-A patients and further, the percent 
of these cells was positively correlated with severity of disease (Fig. 3-4). As such, the presence of these 
cells seems to be indicative of dysregulated inflammation.  Thus, these cells represent potentially potent 
biomarkers to predict and track severity of disease.  The importance of these novel cell populations is 
highlighted by their ability to robustly contribute to distinguishing severe and mild COVID-19 and acute 
COVID-19 from other viral infections (Fig. 4 and S7).  Consequently, tracking these unique cells might 
provide important criteria for enrollment into clinical trials as well as provide a surrogate marker for 
tracking efficacy of new potential treatments.  Finally,  CPT1a has been associated with inflammasome 
activation, which has been observed in COVID-19 patients, and its role in fatty acid oxidation support 
modulators of either fatty acid oxidation or inflammasome signaling as a potentially novel therapeutic 
targets to mitigate disease. Together, our data demonstrate the utility of broad immuno-metabolic 
phenotyping to identify novel subsets of immune cells that have the potential to provide insight into 
disease pathogenesis and to define novel metabolic targets for treatment. 
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Figure 1: Identification of novel metabolically distinct T cells in COVID-19 patients 
A. Concatenated flow cytometry data depicted as UMAP projection of CD3+ T cells from healthy control 
(HC, grey) and hospitalized COVID-19 patients (COVID19, blue). The two markers discovered to drive 
segregation of the COVID and HC cluster, H3K27Me3 and VDAC, are depicted as histogram overlays and 
MFI heatmap overlays on UMAP projection.  B. Representative flow plots of H3K27Me3+VDAC+ T cells. C. 
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Healthy PBMCs were stimulated for 24 hours with anti-CD3 and anti-CD28 and evaluated for metabolic 
enzymes using flow cytometry.  Representative histograms of unstimulated (grey) and stimulated 
(purple) cultures. D. Histograms comparing H3K27Me3+VDAC+ T cells (pink) and remaining T cells (blue) 
from concatenated pooled COVID-19 donors for indicated proteins. E. TCR Simpson Clonality from 
sorted H3K27Me3+VDAC+ T cells (pink) and remaining T cells (blue). F. Frequency of H3K27Me3+VDAC+ as 
percent of CD4 or CD8 T cells.  Each dot represents one individual, significance tested using unpaired 
Mann-Whitney test.  G. Frequency of H3K27Me3+VDAC+ as percent of CD4 (black) or CD8 (grey) 
stratified by age of COVID-19 patients. H. UMAP projection of pooled donors with active infection, color 
coded by disease. I. UMAP projection of active and recovered COVID19 compared to healthy controls. J. 
UMAP projection of influenza and active COVID-19 compared to healthy controls. K. Frequency of 
H3K27Me3+VDAC+ CD4 and CD8 T cells as percent of total live cells. L. Representative gating of 
H3K27Me3+VDAC+ CD4 T cells from multiple disease states. M. Hierarchical clustering of 
H3K27Me3+VDAC+ CD4 T cells based on expression (MFI values) of indicated proteins.  Comparison of 
severe hospitalized COVID-19 infection (dark blue), recovered COVID-19 (light blue) and hospitalized 
influenza (red).  N. Normalized MFI of GLUT1, TOMM20 and KLRG1 in all patients and representative 
histogram overlays of MFI. Each dot represents one individual, significance tested using unpaired Mann-
Whitney test (F), two-way ANOVA (G) or unpaired Kruskal-Wallis test compared to healthy control (K) or 
every combination (N). *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 
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Figure 2: Dysregulated T cell mitochondria associated with apoptosis can be rescued by targeting 
VDAC 
A. Single-cell RNA sequencing analysis of 6 COVID-19 subjects and 3 HC were evaluated for CD3+ T cells. 
Genes distinguishing T cells from COVID-19 patients compared to HC were evaluated for statistical over 
representation using GO biological processes as gene sets and categorized into higher level annotation 
using ReviGO.  Displayed in the enrichment score for each gene set and color corresponds to programs 
in upregulated genes (red) and downregulated genes (blue). B. Representative electron microscopy 
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images of PBMCs from a COVID-19 patient and a healthy control. C. Representative confocal images of 
PBMCs from a COVID-19 patient and healthy control with mitochondria labeled using MitoTracker Deep 
Red (pink), CD3+ T cells labeled (green) and nuclei labed with DAPI (blue). D. Representative fluorescence 
images of PBMCs from 3 COVID-19 subjects and one healthy control (left) immunostained for 
cytochrome c (green) and CD3 (red), and nuclei labeled with DAPI (blue). Plot profiles of intracellular 
cytochrome c fluorescence intensity distribution (right).  E. PBMCs from COVID-19 patient or healthy 
control were cultured for 48 hours in media, rapamycin (100nM), VBIT-4 (300nM), or zVAD (60nM).  T 
cell survival was calculated as the percent CD4 or CD8 T cells remaining from initial plating.  Significance 
tested using two-way ANOVA with each drug compared to the media control, n=9. F. T cells were 
stimulated with anti-CD3/CD28 (purple) for 48 hours and surviving T cells from COVID-19 patients are 
able to respond by upregulating HLA-DR, CD69, CD25 and GLUT1 to the same extent as healthy controls 
compared to unstimulated controls (grey). *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 
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Figure 3: Metabolically distinct immunosuppressive myeloid derived suppressor cells in PBMC of 
COVID-19 patients 
A. Concatenated flow cytometry data depicted as UMAP projection of CD3-CD19-CD56- myeloid cells 
from healthy control (HC, grey) and acute COVID-19 patients (COVID, blue). B. UMAP projection of MFI 
heatmap overlays of indicated proteins. C. Representative gating of CD15+ PMN-MDSC. D-E Frequency of 
indicated cell subset as percent of total live cells.  F. Representative gating of CPT1a+VDAC+ myeloid cells 
(gated on CD3-CD19-CD56- and CD33+) and subset of CPT1a+VDAC+ cells based on HLA-DR expression. G-
H. Frequency of HLA-DR- CPT1a+VDAC+ myeloid cells and HLA-DR+ CPT1a+VDAC+ myeloid cells as percent 
of total live cells.  Each dot represents one individual, significance tested using unpaired Kruskal-Wallis 
test compared to healthy control. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 
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Figure 4: Presence of immune cells with distinct metabolic profiles predicts disease severity 
A. Frequency of CPT1a+VDAC+ DR+/- cells in COVID-19 patients were stratified by disease severity 
(Severe= deceased or on ventilator, Mild= hospitalized with low or high flow oxygen, Recovered= post 
resolution of COVID19).  Each dot represents one individual, significance tested using two-way ANOVA 
comparing either HLA-DR+ vs HLA-DR- within each category or HLA-DR+ or HLA-DR- across each category.  
B. UMAP projection of scRNA seq of myeloid cells from three COVID patients with detectable 
CPT1a+VDAC+ myeloid cells by flow cytometry colored by identified clusters 0-3. C. Expression of 
indicated gene within cluster 0-3. Each dot represents a single cell.  D. Genes identifying cluster 1 
(CPT1a+VDAC+ HLA-DRdim) and cluster 3 (CPT1a+VDAC+ HLA-DRhigh) were evaluated for statistical over 
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representation using GO biological processes as gene sets and categorized into higher level annotation 
using ReviGO.  Heatmap color corresponds to the enrichment score in upregulated genes (red) and 
downregulated genes (blue), x indicates a non-significant enrichment.  E. Expression of indicated gene 
within cluster 0-3. Each dot represents a single cell. F-I. Feature importance of distinguishing COVID-19 
patients and healthy controls, COVID-19 patients and Flu patients, severe COVID-19 patients and 
recovered COVID-19 patients, or severe COVID-19 patients and mild COVID-19 patients as indicated. 
Each feature is depicted as a frequency of total live cells, unless otherwise indicated in the case of 
proportion of cell subset with a specific metabolic phenotype.  
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Table 1. Characteristics of the 38 subjects with acute COVID-19.  

 
Demographics 

  

Male N (%) 19 (50) 
Female N (%) 19 (50) 
Mean age (range) 59.7 (20-82) 
Mean BMI (range)  32.2 (17.5-51.2) 
Current smoker N (%) 
 

  0 (0) 

Race and Ethnicity  
Race                                          N (%) 
Black 17 (47.5) 
White 11 (28.9) 
Other*   7 (18.4) 
Asian   2   (5.2) 
Ethnicity 
Hispanic/Latinx  

 
  N (%) 

Yes   5 (13.2) 
No 
 

32 (86.8) 

Maximum Disease Severity**   N (%)                                                   
MinO2  14 (36.7) 
HFO2    4 (10.5) 
Ventilated Lived  15 (39.5) 
Died    5 (13.2) 
 
Comorbidities 

 
  N (%) 

Hypertension  21 (55.3) 
Diabetes mellitus 15 (39.5) 
COPD/asthma 12 (25.0) 
Coronary artery disease   2 (5.2) 
HIV infection   3 (7.9) 

 
*Most self-identified as Hispanic/Latinx. 

 **Maximum disease severity indicates the most severe COVID-19 disease class for the patient while under 
observation: MinO2= no or low flow oxygen required, HFO2= high flow oxygen required, Ventilated= patient required 
intubation and survived, Died = patient died (ventilated or not) 
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