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Abstract

In this work, a co-infection model for human papillomavirus (HPV) and Chlamydia trachomatis with
cost-effectiveness optimal control analysis is developed and analyzed. The disease-free equilibrium of the
co-infection model is shown not to be globally asymptotically stable, when the associated reproduction
number is less unity. It is proven that the model undergoes the phenomenon of backward bifurcation when
the associated reproduction number is less than unity. It is also shown that HPV re-infection (εp 6= 0)
induced the phenomenon of backward bifurcation. Numerical simulations of the optimal control model
showed that: (i) focusing on HPV intervention strategy alone (HPV prevention and screening), in the
absence of Chlamydia trachomatis control, leads to a positive population level impact on the total number
of individuals singly infected with Chlamydia trachomatis, (ii) Concentrating on Chlamydia trachomatis
intervention controls alone (Chlamydia trachomatis prevention and treatment), in the absence of HPV
intervention strategies, a positive population level impact is observed on the total number of individuals
singly infected with HPV. Moreover, the strategy that combines and implements HPV and Chlamydia
trachomatis prevention controls is the most cost-effective of all the control strategies in combating the
co-infections of HPV and Chlamydia trachomatis.
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1 Introduction

Chlamydia trachomatis is one of the most common curable bacterial sexually transmitted infections (STIs)
[6]. According to the World Health Organization (WHO), an estimated 50 million women are infected
with Chlamydia trachomatis around the world, with Southern Asia and Sub-Saharan Africa recording 34
million cases [12]. In the United states, Chlamydia trachomatis is the most common reported bacterial
STI. According to the Centers for Disease Control and Prevention (CDC), about 1, 758, 668 new cases of
Chlamydia trachomatis were reported in the United States in 2018. Chlamydia trachomatis infection is
curable with antibiotics [6]. Untreated Chlamydia trachomatis infection can result in up to 40% cases of
pelvic inflammatory disease (PID) and subsequent infertility, especially in women [12]. Other consequences
of untreated or complicated Chlamydia trachomatis infection include ectopic pregnancy and chronic pelvic
pain [20]. Human papillomavirus (HPV) infection is one of the most common STIs [47]. Although most
infections do not cause illness, persistent HPV infection is a necessary cause of cervical cancer, anal cancer
and other forms of cancer [47]. In 2018, an estimated 311, 000 women died of cervical cancer, with more
than 80% of these recorded deaths occuring in less developed countries in Asia and Sub-Saharan Africa [47].

Substantial cervical cancer intervention strategies include prevention of incident infection through HPV
vaccination and condom use, screening and treatment of pre-cancerous lesions, diagnosis and treatment of
invasive cervical cancer, as well as palliative care for fully developed cervical cancer patients [47]. Vaccines
which can prevent incident infection with cancer-causing HPV types have been recommended by the World
Health Organization (WHO) and are currently being administered in many countries [47]. They include:
the bivalent Cervarix vaaccine, the quadrivalent Gardasil 4 vaccine and the newly introduced Gardasil 9
vaccine. Cervical cancer screening testing involves testing for pre-cancer and cancer among individuals who
display no symptoms and may not even feel sick [47]. When screening detects pre-cancerous lesions, these
can be easily treated and cancer can be avoided. Presently, the WHO has recommended three types of
screening tests: HPV testing for high risk HPV types, visual inspection with Acetic Acid (VIA) as well
as conventional (Pap) test and liquid-based cytology (LBC) [47]. Also, the WHO recommends the use of
cryotherapy and Loop Electrosurgical Excision Procedure (LEEP) for treatment of pre-cancer lesions.

Co-infection between HPV and Chlamydia trachomatis have been well explored epidemiologically [10,
16, 19, 33, 38, 46]. Nonato et al. [19] studied the interaction between HPV and Chlamydia trachomatis and
showed that the co-infection of the two diseases can increase progression to cervical neoplasia by women. In
another paper, Samoff et al. [33] opined that Chlamydia trachomatis was associated with persistent HPV
infection. Clinical studies have equally shown that women infected with Chlamydia trachomatis have a
higher risk of developing cervical cancer than uninfected women [46]. In another epidemiological study, it
was revealed that women with Chlamydia trachomatis have an increased susceptibility to persistent HPV
infection in comparison to Chlamydia trachomatis uninfected women [35]. Moreover, Seraceni et al.[34]
pointed out that younger women infected with chronic Chlamydia trachomatis infection have a higher risk
of infection with multiple HPV types. In addition, Ssedyabane et al. [38] conducted a pilot study to
investigate the co-infection between HPV and Chlamydia trachomatis in Mbarara Region in Uganda. The
authors showed that there is a strong correlation between the co-infection of the two diseases and cervical
intraepithelial neoplasia (CIN). Chlamydia trachomatis infection can lead to chronic inflammation, cervical
hypotrophy and squamous metaplasia, which are potential target cells for HPV infection [29]. Furthermore,
a higher prevalence of Chalmydia trachomatis DNA or IgG antibodies have been observed in HPV positve
samples in comparison to HPV negative samples, indicating a strong correlation between the two diseases
[10, 16]. Both Chlamydia trachomatis and HPV infections may increase the expression of Ki67, which is
strongly linked with the proliferation and growth of squamous cell [39].

Mathematical modelling has been used extensively in studying the behaviour of infectious diseases,
including their co-infections [1, 7, 13, 18, 23, 28, 41, 43, 44]. Particularly, Several mathematical models have
been developed to understand the transmission dyanamics of Chlamydia trachomatis infections. Sharomi
and Gumel [36] developed a two-sex comprehensive mathematical model to assess the impact of treatment on
the dynamics of Chlamydia trachomatis. Their model exhibited the phenomenon of backward bifurcation
caused by the re-infection of individuals who had recovered from a previous infection with the disease.
Simulations of the model in [36] showed that the implementation of Chlamydia treatment strategy for
only males or only females could significantly save new cases of Chlamydia infection in the opposite sex.
In another paper, Sharomi and Gumel [37] developed a risk-structured, two-group deterministic model
for Chlamydia trachomatis, which stratified the population based on risk of acquiring or transmitting
infection. They showed that stratifying the Chlamydia trachomatis model, based on the risk of acquiring
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or transmitting infection, induced the phenomenon of backward bifurcation even when the re-infection
of recovered individuals did not occur. Samanta [32] developed a mathematical model for Chlamydia
with pulse vacciantion strategy. He showed using simulations with MATLAB, the conditions under which
the disease will go into extinction and when the disease will persist in the population. For a detailed
review of HPV models in the literature, see the work of Omame et al. [25] and the references therein.
Recently, optimal control and cost-effectiveness analysis have been applied to deterministic mathematical
models [17, 21, 31, 40]. Although numerous epidemiological evidences to support the co-infection of HPV
and Chlamydia trachomatis exist in the literature, no robust optimal control mathematical model has
been developed to better understand the dynamics of the co-infection of the two diseases. Hence, it is
appropriate to study the optimal control and cost-effectiveness analysis of the co-infections of HPV and
Chlamydia trachomatis.

This paper assesses the impact of HPV screening, Chlamydia trachomatis treatment as well as preventive
strategies for both diseases on the control and management of their co-infections, and subsequent prevention
of cancers and pelvic inflammatory disease (PID), using a mathematical model. Optimal control and cost-
effectiveness analysis is also carried out on the model to determine the most cost-effective strategy in
combating the co-infection of both diseases. To the best of the authors’ knowledege, a co-infection model
for HPV and Chlamydia trachomatis is being considered for the first time.

The rest of the paper is organized as follows: The model formulation and basic properties are discussed
in Section 2. The co-infection model without controls is analyzed qualitatively in Section 3. The optimal
control model is considered in Section 4, simulations of the model are carried out in Section 5, while Section
6 gives the concluding remarks.

2 Model formulation

The total sexually active population at time t, denoted by Nh(t), is divided into eight mutually-exclusive
compartments: Susceptible individuals (Sh(t)), individuals infected with HPV (Ihp(t)), infectious individuals
screened for HPV infection (Ishp(t)), individuals who have recovered from or cleared of HPV infection
(Rhp(t)), individuals infected with Chlamydia trachomatis (Icl(t)), individuals who have recovered from
Chlamydia trachomatis infection (Rcl(t)), individuals dually infected with HPV and Chlamydia trachomatis
(Ihpcl(t)), infectious individuals screened for HPV infection and infected with Chlamydia trachomatis (Ishpcl).
Therefore,

Nh = Sh + Ihp + Ishp +Rhp + Icl +Rcl + Ihpcl + Ishpcl

The population of sexually active individuals, Sh, is generated by the recruitment of individuals at a rate
Λh. This population is decreased upon infection with HPV, following effective contact with both singly and
dually infected individuals with HPV at the rate:

λhp =
βhp[Ihp + τpIshp + ϕl(Ihpcl + τpIshpcl)]

Nh

. (1)

The population of sexually active individuals, Sh, is also decreased upon infection with Chlamydia tra-
chomatis, acquired due to effective contact with both singly and dually infected individuals with Chlamydia
trachomatis at the rate:

λcl =
βcl[Icl + ϕp(Ihpcl + τpIshpcl)]

Nh

. (2)

The modification parameter 0 < τp < 1, accounts for reduced probability of transmission by infectious
individuals screened for HPV infection (that is, the parameter τp measures the efficacy of screening in
reducing the risk of transmission of HPV). It is assumed that individuals screened for HPV infection report
early for treatment, thereby reducing their transmission probability. Their risk of dying as a result of the
disease is also assumed negligible. The parameter ϕl(ϕl ≥ 1) is a modification term accounting for the
increased infectiousness of dually infected individuals due to Chlamaydia trachomatis infection. Similarly,
the parameter ϕp(ϕp ≥ 1) accounts for increased infectiousness of dually infected individuals due to HPV
infection. This population is further reduced by natural death (at a rate µh. Natural death occurs in all
the epidemiological compartments at this rate). In (1), βhp is the effective contact rate for the transmission
of HPV infection. Likewise, in (2), βcl denotes the effective contact rate for the transmission of Chlamydia
trachomatis infection. It is asumed in the model that individuals infected with Chlamydia trachomatis have
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an increased susceptibility to infection with HPV [19, 34, 35]. Likewise, individuals with HPV infection
have higher chances of getting infected with Chlamydia trachomatis [10, 16].

Based on the above formulations and assumptions, the HPV-Chlamydia trachomatis co-infection model
is given by the following system of deterministic differential equations (the flow diagram of the model is
shown in Figure 1 and the associated parameters of the model are presented in Table 2):

dSh

dt
= Λh − (λhp + λcl)Sh − µhSh

dIhp
dt

= λhpSh + εpλhpRhp + λhpRcl + ρl1Ihpcl − (δp1 + µh + ρp + ηs)Ihp − ξp1λclIhp

dIshp
dt

= ηsIhp + ρl2Ishpcl − ξp2λclIshp − (ρsp + µh)Ishp

dRhp

dt
= ρpIhp + ρspIshp − (µh + εpλhp + λcl)Rhp

dIcl
dt

= λclSh + εlλclRcl + λclRhp + ρp1Ihpcl + ρp2Ishpcl − (ρl + δl1 + µh)Icl − ξl1λhpIcl

dRcl

dt
= ρlIcl − (µh + εlλcl + λhp)Rcl

dIhpcl
dt

= ξp1λclIhp + ξl1λhpIcl − (µh + δp2 + δl2 + ρp1 + ρl1 + ηs1)Ihpcl

dIshpcl
dt

= ξp2λclIshp + ηs1Ihpcl − (µh + δl2 + ρp2 + ρl2)Ishpcl

(3)

2.1 Basic properties of the model

2.1.1 Positivity and boundedness

For the model (3) to be epidemiologically meaningful, it is important to prove that all its state variables
are non-negative for all time (t). However, it is to be noted that, since the model (3) monitors the hu-
man population, all the parameters of the model are assumed non-negative. The following result can be
established:

Theorem 2.1 Let the initial data Sh > 0, Ihp > 0, Ishp > 0, Rhp > 0, Icl > 0, Rcl > 0, Ihpcl > 0, Ishpcl > 0.
Then the solutions (Sh, Ihp, Ishp, Rhp, Icl, Rcl, Ihpcl, Ishpcl) of the model (3) are positive for all time t > 0.

Proof. Let
t1 = sup{t > 0 : Sh > 0, Ihp > 0, Ishp > 0, Rhp > 0, Icl > 0, Rcl > 0, Ihpcl > 0, Ishpcl > 0 ∈ [0, t]}. Thus, t1 > 0.
From the first equation of the system (3),

dSh

dt
= Λh − (λhp + λcl + µh)Sh

which can be re-written as

d

dt

Sh(t) exp

 t∫
0

(λhp(u) + λcl(u))du+ µht

 = Λh exp

 t∫
0

(λhp(u) + λcl(u))du+ µt


so that

d

dt

Sh(t1) exp

 t1∫
0

(λhp(u) + λcl(u))du+ µ(t)1

− Sh(0) = Λh

∫ t1

0
exp

 x∫
0

(λhp(u) + λcl(u))du+ µ(x)

 dx
so that

Sh(t1) = Sh(0) exp

− t1∫
0

(λhp(u) + λcl(u))du− µt1

+ exp

− t1∫
0

(λhp(u) + λcl(u))du− µt1


× Λh

∫ t1

0
exp

 x∫
0

(λhp(u) + λcl(u))du+ µ(x)

 dx > 0
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Figure 1: Schematic diagram of the model (3)
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In a similar manner, it can be proven that:
Ihp > 0, Ishp > 0, Rhp > 0, Icl > 0, Rcl > 0, Ihpcl > 0, Ishpcl > 0

2.2 Invariant regions

The co-infection model (3) will be analyzed in a biologically feasible region as follows. Firstly, it is shown
that the system (3) is dissipative in a proper subset D ⊂ R8

+. Let

D =

{
(Sh, Ihp, Ishp, Rhp, Icl, Rcl, Ihpcl, Ishpcl) ∈ R8

+ : Sh + Ihp + Ishp +Rhp + Icl +Rcl + Ihpcl + Ishpcl ≤
Λh

µh

}
Adding all the equations of the system (3) gives

dNh

dt
= Λh − µhNh(t)− [δp1Ihp + δl1Icl + (δp2 + δl2)Ihpcl + δl2Ishpcl] (4)

From (4),

Λh − (µh + 5δm)Nh ≤
dNh

dt
< Λh − µhNh

where δm = min{δp1, δp2, δl1, δl2}
Applying the Comparison theorem [14], it follows that, Nh(t) ≤

Λh

µh

if Nh(0) ≤ Λh

µh

. Thus, the region D is

positively invariant. Hence, it is sufficient to consider the dynamics of the flow generated by the system (3)
in D. Thus, within this region, the model (3) is said to be epidemiologically and mathematically well-posed
[11]. Thus, every solution of the model (3) with initial conditions in D remains in D for all time t ≥ 0.
Therefore, the ω−limit sets of the system (3) are contained in D. This result is summarized below.

Lemma 2.1 The region D ⊂ R8
+ is positively-invariant for the model (3) with initial conditions in R8

+.

3 Mathematical analysis of the model without controls

In this section, the dynamical properties of the model (3) without controls, are explored. The HPV-only
sub-model as well as the full co-infection model shall be considered.

3.1 HPV-only Sub-model

Due to complexity of the full co-infection model, certain rigorous analysis, which may not be mathematically
feasible for the complete model, are hereby carried out for the HPV-only sub-model. The HPV-only sub-
model is obtained from the full co-infection model (3) by setting Icl = Rcl = Ihpcl = Ishpcl = 0. Thus, it is
given by:

dSh

dt
= Λh − λhpSh − µhSh

dIhp
dt

= λhpSh + εpλhpRhp −G1Ihp

dIshp
dt

= ηsIhp −G2Ishp

dRhp

dt
= ρpIhp + ρspIshp − (µh + εpλhp)Rhp

(5)

where now,

λhp =
βhp(Ihp + τpIshp)

Nh

(6)

with
Nh = Sh + Ihp + Ishp +Rhp

6
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3.1.1 Basic reproduction number of the HPV-only sub-model

The HPV-only sub-model (5) has a DFE, obtained by setting the disease components (Ihp and Ishp) as well
as the right-hand sides of the equations in the model (5) to zero, given by

ξ0hp =(S0
hp, I

0
hp, I

0
shp, R

0
hp)

=
(Λh

µh

, 0, 0, 0
) (7)

The basic reproduction number, using the next generation operator method [45], is given by

R0hp =
βhp(G2 + ηsτp)

G1G2

with,

G1 = δp1 + µh + ρp + ηs, G2 = ρsp + µh

3.1.2 Existence of Endemic Equilibrium of the HPV-only sub-model

In this section, the existence of an endemic equilibrium of the HPV-only sub-model shall be investigated,
since this can not be shown for the full co-infection model (due to complexity).
Let an arbitrary equilibrium point of the HPV-only sub-model be represented by

ξeHP = (S∗h , I
∗
hp, I

∗
shp, R

∗
hp)

The steady state solutions of equations of the sub-model (5) are given by:

S∗h =
Λh

µh + λ∗hp
, I∗hp =

ΛhG2λ
∗
hp(µh + εpλ

∗
hp)

(µh + λ∗hp)[µhG1G2 + εpλ∗hp(δp1G2 + µhG2 + µhηs)]

I∗shp =
Λhηsλ

∗
hp(µh + εpλ

∗
hp)

(µh + λ∗hp)[µhG1G2 + εpλ∗hp(δp1G2 + µhG2 + µhηs)]
, R∗hp =

Λhλ
∗
hp(ρpG2 + ρspηs)

(µh + λ∗hp)[µhG1G2 + εpλ∗hp(δp1G2 + µhG2 + µhηs)]
(8)

Substituting the above expressions into the force of infection (6), at steady state, gives the following poly-
nomial:

A1(λ∗hp)
2 +A2λ

∗
hp +A3 = 0 (9)

with,

A1 = εp(G2+ηs), A2 = εp(δp1G2+µhG2+µhηs)+µh(G2+ηs)+ρpG2+ρspηs−βhpεp(G2+ηsτp), A3 = µhG1G2(1−R0hp).

It is observed from (9), that the coefficient A1, is always positive and A3 is positive (negative) if R0hp is less
(greater) than unity. Hence, the following result can be established:

Theorem 3.1 The sub-model model (5) has

i a unique endemic equilibrium if A3 < 0⇐⇒ R0hp > 1;

ii a unique endemic equilibrium if A2 < 0 and A1 = 0 or A2
2 − 4A3A1 = 0;

iii two endemic equilibria if A1 > 0, A2 < 0 and A2
2 − 4A3A1 > 0 and R0hp < 1;

iv no endemic equilibrium otherwise.

The third item (iii) of the above theorem suggests the possibility of a backward bifurcation in the HPV-only
sub-model. The associated backward bifurcation diagram is presented in Figure 2. It is imperative to note
that, setting the HPV re-infection term εp = 0, reduces the quadratic (9) to (µh(G2 +ηs)+ρpG2 +ρspηs)λ

∗
hp +

A3 = 0, resulting in no sign changes in the polynomial equation (9), as (µh(G2 + ηs) + ρpG2 + ρspηs) > 0 and
A3 > 0 (for R0hp < 1). Hence no existence of an endemic equilibrium for R0hp < 1, ruling out the existence
of backward bifurcation in the HPV-only sub-model (5) in the absence of HPV re-infection.
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Figure 2: Bifurcation diagram for the HPV-only sub-model (5). Parameter values used are: 1.15168 ≤
βhp ≤ 1.70, εp = 1.0. All other parameters as in Table 2

3.2 Analysis of the full co-infection model

In this section, the qualitative properties of the full co-infection model (3) without controls, is studied.

3.3 Basic reproduction number of the full co-infection model (3)

The HPV-Chlamydia trachomatis co-infection model (3) has a DFE, obtained by setting the right-hand
sides of the equations in the model (3) as well as the disease classes (Ihp, Ishp, Icl, Ihpcl, Ishpcl) to zero, given
by

ξ0 =(S0
h, I

0
hp, I

0
shp, R

0
hp, I

0
cl, R

0
cl, I

0
hpcl, I

0
shpcl)

=
(Λh

µh

, 0, 0, 0, 0, 0, 0, 0
) (10)

The basic reproduction number of the HPV-Chlamydia trachomatis co-infection model (3), using the ap-
proach illustrated in [45], is given by R0 = max{R0hp,R0cl} where R0hp and R0cl are, respectively, the HPV
and Chlamydia trachomatis associated reproduction numbers, given by

R0hp =
βhp(G2 + ηsτp)

G1G2

, and R0cl =
βcl

G3

where,

G1 = δp1 + µh + ρp + ηs, G2 = ρsp + µh, G3 = ρl + δl1 + µh

3.4 Local asymptotic stability of disease-free equilibrium (DFE) of the co-infection
model (3)

Lemma 3.1 The DFE, ξ0, of the HPV-Chlamydia trachomatis co-infection model (3) is locally asymptoti-
cally stable if R0 < 1, and unstable if R0 > 1.

Proof
The local stability of the HPV-Chlamydia co-infection model is analysed by the Jacobian matrix of the
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system (3) at ξ0, given by:

J(ξ0) =



−µh −βhp −βhpτp 0 −βcl 0 −(βhpϕl + βclϕp) −(βhpϕlτp + βclϕpτp)
0 βhp −G1 βhpτp 0 0 0 βhpϕl + ρl1 βhpϕlτp
0 ηs −G2 0 0 0 0 ρl2

0 ρp ρsp −µh 0 0 0 0
0 0 0 0 βcl −G3 0 ρp1 + βclϕp ρp2 + βclϕpτp
0 0 0 0 ρl −µh 0 0
0 0 0 0 0 0 −G4 0
0 0 0 0 0 0 ηs1 −G5


where,

G1 = µh + δp1 + ρp + ηs, G2 = ρsp + µh, G3 = ρl + δl1 + µh, G4 = µh + δp2 + δl2 + δp1 + δl1 + ηs1,

G5 = µh + δl2 + ρp2 + ρl2

The eigenvalues are λ1 = −µh, λ1 = −µh, λ3 = −µh, λ4 = −(µh+δp2+δl2+ρl1+ηs1), λ5 = −(µh+δl2+ρp2+ρl2),
λ6 = −G3(1−R0cl) (< 0 if Rcl < 1) and the solutions of the characteristic polynomial:

λ2 + β1λ+ β2 = 0, (11)

where

β1 = (G1 +G2 − βhp), β2 = G1G2(1−R0hp)

Applying the Routh-Hurwitz criterion, the quadratic equation (11) will have roots with negative real parts
if and only if β1 > 0, β2 > 0 and β1β2 > 0. It can be shown that, β1 > 0 (if R0hp < 1). This is true, as
βhp(G2 + ηsτp) < G1G2 =⇒ βhp < G1. Thus it follows, that G1 + G2 > βhp (since the model parameters
are assumed non-negative). Also, β2 > 0 (if R0hp < 1). Moreover, β1β2 > 0. As a result, the disease-free
equilibrium, ξ0 is locally asymptotically stable if R0 < 1.

3.5 Global asymptotic stability(GAS) of the disease-free equilibrium(DFE) ξ0 of the
co-infection model

The approach illustrated in [4] is used to investigate the global asymptotic stability of the disease free
equilibrium of the co-infection model. In this section, two conditions are listed, that if met, they guarantee
the global asymptotic stability (GAS) of the disease-free equilibrium (DFE). Firstly, system (3) must be
written in the form:

dV

dt
= P (V,K)

dK

dt
= Q(V,K), Q(V, 0) = 0

(12)

where V ∈ Rm denotes (its components) the number of uninfected individuals and K ∈ Rn denotes (its
components) the number of infected individuals. U0 = (V ∗, 0) denotes the disease-free equilibrium of this
system. The conditions (W1) and (W2) below must be satisfied in order to guarantee local asymptotic
stability:
(W1): For dV

dt = P (V, 0), V ∗is globally asymptotically stable (GAS),

(W2): Q(V,K) = BK − Q̂(V,K)V,Q(V,K) ≥ 0 for (V,K) ∈ Ω,
where B = DKQ(V ∗, 0) is an M-matrix (the off-diagonal elements of B are nonnegative) and Ω is the region
where the model makes biological sense. If system (3) satisfies the above two conditions then the following
theorem holds:

Theorem 3.2 The fixed point U0 = (V ∗, 0) is a globally asymptotic stable (GAS) equilibrium of (3) provided
that R0 < 1 (LAS) and that assumptions (W1) and (W2) are met

Proof

dV

dt
= P (V,K) =

 Λh − (λhp + λcl)Sh − µhSh

ρpIhp + ρspIshp − (µh + εpλhp + λcl)Rhp

ρlIcl − (µh + εlλcl + λhp)Rcl

 , P (V, 0) =

Λh − µhS
0
0

 (13)
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where V denotes the number of non-infectious compartments and K denotes the number of infectious
compartments

Q(V,K) =


λhpSh + εpλhpRhp + λhpRcl + ρl1Ihpcl − (δp1 + µh + ρp + ηs)Ihp − ξp1λclIhp

ηsIhp + ρl2Ishpcl − ξp2λclIshp − (ρsp + µh)Ishp
λclSh + εlλclRcl + λclRhp + ρp1Ihpcl + ρp2Ishpcl − (ρl + δl1 + µh)Icl − ξl1λhpIcl

ξp1λclIhp + ξl1λhpIcl − (µh + δp2 + δl2 + ρp1 + ρl1 + ηs1)Ihpcl
ξp2λclIshp + ηs1Ihpcl − (µh + δl2 + ρp2 + ρl2)Ishpcl

 ,

B = DKQ(V ∗, 0) =


βhp −G1 βhpτp 0 βhpϕl + ρl1 βhpϕlτp

ηs −G2 0 0 ρl2

0 0 βcl −G3 ρp1 + βclϕp ρp2 + βclϕpτp
0 0 0 −G4 0
0 0 0 ηs1 −G5



Q̂(V,K) = BK −Q(V,K) =


βhp[Ihp + τpIshp + ϕl(Ihpcl + τpIshpcl)]

(
1− Sh+Rcl

Nh

)
− εpλhpRhp + ξp1λclIhp

ξp1λclIshp

βcl[Icl + ϕp(Ihpcl + τpIshpcl)]
(

1− Sh+Rhp
Nh

)
− εlλclRcl + ξl1λhpIcl

−ξp1λclIhp − ξl1λhpIcl
−ξp2λclIshp


It is clear from the above, that, Q̂(V,K) � 0. Hence the DFE may not be globally asymptotically stable,
suggesting the possibility of a backward bifurcation. This supports the backward bifurcation analysis in the
proceeding section.

3.6 Backward bifurcation analysis of the co-infection model (3)

In this section, the type of bifurcation the model (3) will exhibit is determined, using the approach illustrated
by Castillo-Chavez and Song [5]. Backward bifurcation analysis also has been carried out in several disease
models [8, 22, 24, 27, 36, 37]. The result below is established.

Theorem 3.3 Suppose a backward bifurcation coefficient a > 0, (with a defined below), when R0 < 1

a = −2β∗hpν2
N∗h

(ω2 + τpω3)(ω2 + ω3 + ω4 − εpω4)

then model (3) undergoes the phenomenon of backward bifurcation at R0 = 1. If a < 0, then the system (3)
exhibits a forward bifurcation at R0 = 1.

Proof
Suppose

ξe = (S∗∗h , I
∗∗
hp , I

∗∗
shp, R

∗∗
hp , I

∗∗
cl , R

∗∗
cl , I

∗∗
hpcl, I

**
shpcl)

represents any arbitrary endemic equilibrium of the model. The existence of backward bifurcation will be
studied using the Centre Manifold Theory [5]. To apply this theory, it is appropriate to make the following
change of variables.
Let

Sh = x1, Ihp = x2, Ishp = x3, Rhp = x4, Icl = x5, Rcl = x6, Ihpcl = x7, Ishpcl = x8

Moreover, using the vector notation

X = (x1, x2, x3, x4, x5, x6, x7, x8)T

the model (3) can be re-written in the form

dX

dt
= f = (f1, f2, f3, f4, f5, f6, f7, f8)T

10
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as follows:

dx1

dt
= Λh − (λhp + λcl)x1 − µhx1 := f1

dx2

dt
= λhpx1 + εpλhpx4 + λhpx6 + ρl1x7 − (δp1 + µh + ρp + ηs)x2 − ξp1λclx2 := f2

dx3

dt
= ηsx2 + ρl2x8 − ξp2λclx3 − (ρsp + µh)x3 := f3

dx4

dt
= ρpx2 + ρspx3 − (µh + εpλhp + λcl)x4 := f4

dx5

dt
= λclx1 + εlλclx6 + λclx4 + ρp1x7 + ρp2x8 − (ρl + δl1 + µh)x5 − ξl1λhpx5 := f5

dx6

dt
= ρlx5 − (µh + εlλcl + λhp)x6 := f5

dx7

dt
= ξp1λclx2 + ξl1λhpx5 − (µh + δp2 + δl2 + ρp1 + ρl1 + ηs1)x7 := f7

dx8

dt
= ξp2λclx3 + ηs1x7 − (µh + δl2 + ρp2 + ρl2)x8 := f8

(14)

with

λhp =
βhp[x2 + τpx3 + ϕl(x7 + τpx8)]∑8

i=1 xi

λcl =
βcl[x5 + ϕp(x7 + τpx8)]∑8

i=1 xi

(15)

Consider the case when R0H = 1. Assume, further, that βhp is chosen as a bifurcation parameter. Solving
for βhp = β*

hp from R0hp = 1 gives

βhp = β∗hp =
G1G2

(G2 + ηsτp)

Evaluating the Jacobian of the system (14) at the DFE, J(ξ0), and evaluating the right eigenvector, w =
[ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8]T , associated with the simple zero eigenvalue of J(ξ0), gives

ω1 = − G1

µhηsτp
< 0, ω2 =

1

ηsτp
> 0, ω3 =

1

G2

> 0, ω4 =
ρpG2 + ρspηsτp
µhG2ηsτp

> 0, ω5 = ω6 = ω7 = ω8 = 0

(16)

Likewise, the components of the left eigenvector of J(ξ0)|βhp=β∗hp , v = (ν1, ν2, ..., ν8), satisfying v.w = 1 are

ν1 = 0, ν2 =
ηs(G2 + ηsτp)

G1G3ηsτp
> 0, ν3 =

1

G2
> 0, ν4 = ν5 = ν6 = 0, ν7 =

[G1G2ϕl + ρl1(G2 + ηsτp)]G5 +G1ηsηs1ϕlτpρl2
G3G4G5

> 0,

ν8 =
ϕlρl2
G3G5

> 0.

(17)

The non-zero second partial derivatives of the functions fi(i = 1, ..., 8) are given by

∂2f2

∂x2
2

= −2β∗hp
N∗h

,
∂2f2

∂x2∂x3
=
−(1 + τp)β

∗
hp

N∗h
,

∂2f2

∂x2∂x4
=

(εp − 1)β∗hp
N∗h

,
∂2f2

∂x2
3

=
−2β∗hpτp
N∗h

,
∂2f2

∂x3∂x4
=
τp(εp − 1)β∗hp

N∗h

The associated bifurcation coefficients defined by a and b, are given by:

a =

n∑
k,i,j=1

νkωiωj
∂2fk
∂xi∂xj

(0, 0) and b =

n∑
k,i=1

νkωi
∂2fk

∂xi∂β∗hp
(0, 0),

are computed to be

a = −2β∗hpν2
N∗h

(ω2 + τpω3)(ω2 + ω3 + ω4 − εpω4) (18)

and

b =

20∑
k,i=1

νkωi
∂2fk

∂xi∂β∗hp
(0, 0) = (ω2 + τpω3)ν2 > 0
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Since the bifurcation coefficient b is positive, it follows from Theorem 4.1 in [5] that the model (3), or the
transformed model (14), will undergo the phenomenon of backward bifurcation if the coefficient, a, given
by (18) is positive. Setting the HPV re-infection term εp = 0, it is well observed that the bifurcation
coefficient, a < 0. Hence, backward bifurcation does not occur in the HPV-Chlamydia co-infection model,
in the absence of HPV re-infection. The epidemiological interpretation is that if recovery from HPV does
not confer lifelong immunity, then the control of HPV-Chlamydia trachomatis becomes difficult, even when
the associated reproduction number R0 < 1 �.

4 Analysis of the optimal control model

In this section, the Pontryagin’s Maximum Principle is used to determine the necessary conditions for
the optimal control of the oncogenic HPV-Chlamydia co-infection model. Time dependent controls are
incorporated into the model (3) to determine the optimal strategy for curbing the co-infections of the two
diseases. Thus,

dSh

dt
= Λh − ((1− u1)λhp + (1− u2)λcl)Sh − µhSh

dIhp
dt

= (1− u1)λhpSh + εpλhpRhp + λhpRcl + u4ρl1Ihpcl − (δp1 + µh + ρp + u3ηs)Ihp − ξp1λclIhp

dIshp
dt

= u3ηsIhp + u4ρl2Ishpcl − ξp2λclIshp − ρspIshp − µhIshp

dRhp

dt
= ρpIhp + ρspIshp − (µh + εpλhp + λcl)Rhp

dIcl
dt

= (1− u2)λclSh + εlλclRcl + λclRhp + ρp1Ihpcl + ρp2Ishpcl − (ρl + δl1 + µh)Icl − ξl1λhpIcl

dRcl

dt
= ρlIcl − (µh + εlλcl + λhp)Rcl

dIhpcl
dt

= ξp1λclIhp + ξl1λhpIcl − (µh + δp2 + δl2 + ρp1 + u3ηs1 + u4ρl1)Ihpcl

dIshpcl
dt

= ξp2λclIshp + u3ηs1Ihpcl − (µh + δl2 + ρp2 + u4ρl2)Ishpcl

(19)

subject to the initial conditions Sh(0) = S0
h, Ihp(0) = I0

hp, Ishp(0) = I0
shp, Rhp(0) = R0

hp, Icl(0) = I0
cl, Rcl(0) =

R0
cl, Ihpcl(0) = I0

hpcl, I
p
shpcl(0) = Ip0

shpcl

with:

λhp =
βhp[Ihp + τpIshp + ϕcl(Ihpcl + τpIshpcl)]

Nh

λcl =
βcl[Icl + ϕhp(Ihpcl + τpIshpcl)]

Nh

(20)

The control functions, u1(t), u2(t), u3(t) and u4(t) are bounded, Lebesgue integrable functions. The control
u1(t) and u2(t) represent the efforts (such as HPV vaccination, sexual abstinence, monogamous relationship
with an uninfected partner and condom use by sexually active susceptible individuals) aimed at preventing
incident HPV and Chlamydia infections, respectively. The control u3(t) is the effort aimed at screening of
HPV infected individuals so as to reduce their transmission probability. Chlamydia treatment control for
individuals dually infected with HPV and Chlamydia is denoted by u4(t). The controls u1 and u2 satisfies
0 ≤ u1, u2 ≤ 0.9, the control u3 satisfies 0 < u3 ≤ 1, whereas the control u4 satisfies 0 < u4 ≤ θ, where
θ is the Chlamydia drug efficacy used for the treatment of co-infected individuals. Our optimal control
problem involves a situation where the number of HPV-infected, Chlamydia-infected, the co-infection cases
and the cost of implementing preventive, screening and treatment controls u1(t), u2(t), u3(t) and u4(t) are
minimized subject to the state system (19). For this, the objective functional below, is considered.

J
[
u1, u2, u3, u4

]
=

∫ T

0

[
Ihp(t) + Ishp(t) + Icl(t) + Ipl(t) + Isl(t) +

χ1

2
u2

1 +
χ1

2
u2

2 +
χ1

2
u2

3 +
χ1

2
u2

4

]
dt (21)

T is the final time. An optimal control, u∗1 , u
∗
2 , u
∗
3 , u
∗
4 , is to be found, such that

J(u∗1 , u
∗
2 , u
∗
3 , u
∗
4 ) = min{J(u∗1 , u

∗
2 , u
∗
3 , u
∗
4 )|u1, u2, u3, u4 ∈ U} (22)
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where U = {(u∗1 , u∗2 , u∗3 , u∗4 )} such that u∗1 , u
∗
2 , u
∗
3 , u
∗
4 are measurable with 0 ≤ u∗1 ≤ 0.9, 0 ≤ u∗2 ≤ 0.9, 0 ≤

u∗3 ≤ 1, 0 ≤ u∗4 ≤ θ, for t ∈ [0, T ] is the control set.

4.1 Existence of Optimal Control

The existence of such an optimal solution which minimizes the objective functional J is now established.

Theorem 4.1 Given the objective functional J , defined on the control set U , and subject to the state
system (19) with non-negative initial conditions at t = 0, then there exists an optimal control triple u∗ =
(u1, u2, u3, u4) such that J(u∗) = min {J(u1, u2, u3, u4)|u1, u2, u3, u4 ∈ U}.

Let U = [0, 1]4 be the control set, υ = (u1, u2, u3, u4) ∈ U , x = (Sh, Ihp, Ishp, Rhp, Icl, Rcl, Ihpcl, Ishpcl) and
f(t, x, υ) be the right hand of (19), that is

f(t, x, υ) =



Λh − ((1− u1)λhp + (1− u2)λcl)Sh − µhSh

(1− u1)λhpSh + εpλhpRhp + λhpRcl + u4ρl1Ihpcl − (δp1 + µh + ρp + u3ηs)Ihp − ξp1λclIhp
u3ηsIhp + u4ρl2Ishpcl − ξp2λclIshp − ρspIshp − µhIshp

ρpIhp + ρspIshp − (µh + εpλhp + λcl)Rhp

(1− u2)λclSh + εlλclRcl + λclRhp + ρp1Ihpcl + ρp2Ishpcl − (ρl + δl1 + µh)Icl − ξl1λhpIcl
ρlIcl − (µh + εlλcl + λhp)Rcl

ξp1λclIhp + ξl1λhpIcl − (µh + δp2 + δl2 + ρp1 + u3ηs1 + u4ρl1)Ihpcl
ξp2λclIshp + u3ηs1Ihpcl − (µh + δl2 + ρp2 + u4ρl2)Ishpcl


(23)

To prove Theorem 4.1, it is necessary to verify the following conditions proposed by Fleming and Rishel [9]:

i. The solution set for the model system (19) with corresponding control functions in U is non empty:
To establish the existence of a solution corresponding to every admissible control in U , it is required to
show that the state variables associated with the state equations are bounded and the state equations
are continuous and Lipschitz in state variables. Clearly, it is observed that all the state equations
are continuous in state variables. Moreover, since the total population Nh(t) is bounded above by
Λh
µh

, it follows that the state variables are bounded above by Λh
µh

. Equally, the Lipschitz condition
with respect to state variables follows from the boundedness of the partial derivatives with respect to
state variables in the state system. Consequently, the set of all solutions of the control system (19) is
non-empty.

ii. The control model system can be expressed as a linear function of control variables (u1, u2, u3, u4),
with the coefficients as functions of time and state variables:

f(t, x, υ) = γ(t, x) + ζ(t, x)υ

with

γ(t, x) =



Λh − (λhp + λcl)Sh − µhSh

λhpSh + εpλhpRhp + λhpRcl − (δp1 + µh + ρp)Ihp − ξp1λclIhp
−ξp2λclIshp − ρspIshp − µhIshp

ρpIhp + ρspIshp − (µh + εpλhp + λcl)Rhp

λclSh + εlλclRcl + λclRhp + ρp1Ihpcl + ρp2Ishpcl − (ρl + δl1 + µh)Icl − ξl1λhpIcl
ρlIcl − (µh + εlλcl + λhp)Rcl

ξp1λclIhp + ξl1λhpIcl − (µh + δp2 + δl2 + ρp1)Ihpcl
ξp2λclIshp − (µh + δl2 + ρp2)Ishpcl


,

ζ(t, x) =



λhpSh λclSh 0 0
−λhpSh 0 −ηsIhp ρl1Ihpcl

0 0 ηsIhp ρl2Ishpcl
0 0 0 0
0 −λclSh 0 0
0 0 0 0
0 0 −ηs1Ihpcl −ρl1Ihpcl
0 0 ηs1Ihpcl −ρl2Ishpcl


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iii. There exists constants α1, α2 and α3 such that the Lagrangian of the problem, L ≥ α1|υ|α3−α2, α1 > 0,
α2 > 0, α3 > 1

The Lagrangian of the problem (19) is given as L = Ihp(t) + Ishp(t) + Icl(t) + Ihpcl(t) + Ishpcl(t) + χ1

2 u
2
1 +

χ2

2 u
2
2 + χ3

2 u
2
3 + χ4

2 u
2
4 . The lagrangian, L, is a quadratic function of υ = (u1, u2, u3, u4) and hence convex on

U . The bound on L is now established. Note that χ4u
2
4 ≤ χ4 since u4 ∈ [0, 1], so that 1

2χ4u
2
4 ≤ 1

2χ4. Now,

L > χ1

2
u2

1 +
χ2

2
u2

2 +
χ3

2
u2

3 +
χ4

2
u2

4

≥ χ1

2
u2

1 +
χ2

2
u2

2 +
χ3

2
u2

3 +
χ4

2
u2

4 −
χ4

2

≥ min
(χ1

2
,
χ2

2
,
χ3

2
,
χ4

2

) (
u2

1 + u2
2 + u2

3 + u2
4

)
− χ4

2

≥ min
(χ1

2
,
χ2

2
,
χ3

2
,
χ4

2

)
|u1, u2, u3, u4|2 −

χ4

2

Hence,

L ≥ α1|υ|α3 − α2, where, α1 = min
(χ1

2
,
χ2

2
,
χ3

2
,
χ4

2

)
> 0, α2 =

χ4

2
> 0 and α3 = 2 > 1. �

The Pontryagin’s Maximum Principle [30] gives the necessary conditions which an optimal control pair
must satisfy. This principle transforms (19), (21) and (22) into a problem of minimizing a Hamiltonian, H,
pointwisely with regards to the control functions, u1, u2, u3, u4:

H = Ihp(t) + Ishp(t) + Icl(t) + Ihpcl(t) + Ishpcl(t) +
χ1

2
u2

1 +
χ2

2
u2

2 +
χ3

2
u2

3 +
χ4

2
u2

4

+ λSh

[
Λh − ((1− u1)λhp + (1− u2)λcl)Sh − µhSh

]
+ λIhp

[
(1− u1)λhpSh + εpλhpRhp + λhpRcl + u4ρl1Ihpcl − (δp1 + µh + ρp + u3ηs)Ihp − ξp1λclIhp

]
+ λIshp

[
u3ηsIhp + u4ρl2Ishpcl − ξp2λclIshp − ρspIshp − µhIshp

]
+ λRhp

[
ρpIhp + ρspIshp − (µh + εpλhp + λcl)Rhp

]
+ λIcl

[
(1− u2)λclSh + εlλclRcl + λclRhp + ρp1Ihpcl + ρp2Ishpcl − (ρl + δl1 + µh)Icl − ξl1λhpIcl

]
+ λRcl

[
ρlIcl − (µh + εlλcl + λhp)Rcl

]
+ λIhpcl

[
ξp1λclIhp + ξl1λhpIcl − (µh + δp2 + δl2 + ρp1 + u3ηs1 + u4ρl1)Ihpcl

]
+ λIshpcl

[
ξp2λclIshp + u3ηs1Ihpcl − (µh + δl2 + ρp2 + u4ρl2)Ishpcl

]

(24)

Theorem 4.2 For an optimal control set u1, u2, u3, u4 that minimizes J over U , there are adjoint variables,
λ1, λ2, ..., λ8 satisfying

−∂λi
∂t

=
∂H
∂i

and with transversality conditions

λi(tf ) = 0, where, i = Sh, Ihp, Ishp, Rhp, Icl, Rcl, Ihpcl, Ishpcl. (25)

Furthermore,

u∗1 = max

{
0,min

(
1,

(λ2 − λ1)βhpSh[Ihp + τpIshp + ϕl(Ihpcl + τpIshpcl)]

χ1Nh

)}
,

u∗2 = max

{
0,min

(
1,

(λ5 − λ1)βclSh[Icl + ϕp(Ihpcl + τpIshpcl)]

χ2Nh

)}
,

u∗3 = max

{
0,min

(
1,

(λ2 − λ3)Ihpηs + (λ7 − λ8)Ihpclηs1
χ3

)}
,

u∗4 = max

{
0,min

(
1,

(λ7 − λ2)Ihpclρl1 + (λ8 − λ3)Ishpclρl2

χ4

)}
,

(26)

Proof of Theorem 4.2
Suppose U∗ = (u∗1, u

∗
2, u
∗
3, u
∗
4) is an optimal control and S∗h , I

∗
hp, I

∗
shp, R

∗
hp, I

∗
cl, R

∗
cl, I

∗
hpcl, I

*
shpcl are the corre-

sponding state solutions. Applying the Pontryagin’s Maximum Principle [30], there exist adjoint variables
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satisfying:

−dλSh

dt
=
∂H
∂Sh

, λSh(tf ) = 0, −dλIhp
dt

=
∂H
∂Ihp

, λIhp(tf ) = 0, −dλIshp
dt

=
∂H
∂Ishp

, λIshp(tf ) = 0,

−dλRhp

dt
=

∂H
∂Rhp

, λRhp(tf ) = 0,−dλIcl
dt

=
∂H
∂Icl

, λIcl(tf ) = 0, −dλRcl

dt
=

∂H
∂Rcl

, λRcl(tf ) = 0,

−dλIhpcl
dt

=
∂H
∂Ihpcl

, λIhpcl(tf ) = 0, −dλIshpcl
dt

=
∂H
∂Ishpcl

, λIshpcl(tf ) = 0

(27)

with transversality conditions;
λSh(tf ) = λIhp(tf ) = λIshp(tf ) = λRhp(tf ) = λIcl(tf ) = λRcl(tf ) = λIhpcl(tf ) = λIshpcl(tf ) = 0 The
behaviour of the control can be determined by differentiating the Hamiltonian, H with respect to the
controls(u1, u2, u3, u4) at t. On the interior of the control set, where 0 < uj < 1 for all (j = 1, 2, 3, 4),

0 =
∂H
∂u1

= χ1Nhu
∗
1 − (λ2 − λ1)βhpSh[Ihp + τpIshp + ϕl(Ihpcl + τpIshpcl)],

0 =
∂H
∂u2

= χ2Nhu
∗
2 − (λ5 − λ1)βclSh[Icl + ϕp(Ihpcl + τpIshpcl)],

0 =
∂H
∂u3

= χ3u
∗
3 − (λ2 − λ3)Ihpηs − (λ7 − λ8)Ihpclηs1

0 =
∂H
∂u4

= χ4u
∗
4 − (λ7 − λ2)Ihpclρl1 − (λ8 − λ3)Ishpclρl2

(28)

Therefore, the following is obtained [15]

u∗1 =
(λ2 − λ1)βhpSh[Ihp + τpIshp + ϕl(Ihpcl + τpIshpcl)]

χ1Nh

,

u∗2 =
(λ5 − λ1)βclSh[Icl + ϕp(Ihpcl + τpIshpcl)]

χ2Nh

,

u∗3 =
(λ2 − λ3)Ihpηs + (λ7 − λ8)Ihpclηs1

χ3
,

u∗4 =
(λ7 − λ2)Ihpclρl1 + (λ8 − λ3)Ishpclρl2

χ4
,

(29)

u∗1 = max

{
0,min

(
1,

(λ2 − λ1)βhpSh[Ihp + τpIshp + ϕl(Ihpcl + τpIshpcl)]

χ1Nh

)}
,

u∗2 = max

{
0,min

(
1,

(λ5 − λ1)βclSh[Icl + ϕp(Ihpcl + τpIshpcl)]

χ2Nh

)}
,

u∗3 = max

{
0,min

(
1,

(λ2 − λ3)Ihpηs + (λ7 − λ8)Ihpclηs1
χ3

)}
,

u∗4 = max

{
0,min

(
1,

(λ7 − λ2)Ihpclρl1 + (λ8 − λ3)Ishpclρl2

χ4

)}
,

(30)

5 Simulations

In this section, uncertainty and sensitivity analyses of the parameters of the model are carried out due to
imprecision which may arise from the estimates of some of the parameters in the model. It is imperative
to state here that, very limited data is available on the co-infection of HPV and Chlamydia trachomatis.
Numerical simulations be carried out on the optimal control model (19), in order to assess the effect of
different interventions on the dynamics of the co-infections of HPV and Chlamydia trachomatis.

5.1 Uncertainty and sensitivity analyses

As a result of the uncertainties which are expected to come up in parameter estimates used in the numerical
simulations, a Latin Hypercube Sampling (LHS) [2] is implemented on the parameters of the model. For
the sensitivity analysis, a Partial Rank Correlation Coefficient (PRCC) was carried out. 1,000 simulations
of the co-infection model (3) per LHS were run. Using the HPV associated basic reproduction number,
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R0hp, as the response function, it is observed in Table 1 that the three top-ranked parameters that drive the
dynamics of the co-infection model are effective contact rate for HPV transmission, βhp and the recovery
rate from HPV, ρp, and the modification parameter accounting for the infectiousness of individuals who
have undergone HPV screening, τp. In addition, using the Chlamydia trachomatis associated reproduction
number, R0CL, as the response function, the two key parameters that drive the dynamics of the model are
the effective contact rate for Chlamydia trachomatis transmission, βcl as well as the recovery rate from
Chlamydia trachomatis ρl.

Using the total number of individuals infected with HPV (Ihp) as the response function, the parameters
that strongly drive the dynamics of the HPV-Chlamydia trachomatis co-infection model (3) are the effective
contact rate for HPV transmission, βhp and the recovery rate from Chlamydia trachomatis infection for dually
infected individuals, ρl2. When total population of individuals infected with Chlamydia trachomatis (Icl)
is used as the response function, the parameters that strongly drive the dynamics of the HPV-Chlamydia
trachomatis co-infection model (3) are the effective contact rate for HPV transmission, the effective contact
rate for Chlamydia trachomatis transmission, βcl, the recovery rate from HPV infection for dually infected
individuals, ρp1. Finally, using the population of individuals dually infected with HPV and Chlamydia
trachomatis (Ihpcl) as the input, the eight highly ranked parameters that influence the dynamics of the
co-infection model are the effective contact rate for HPV transmissibility, βhp, the effective contact rate
neccesary for Chlamydia trachomatis transmission, βcl, HPV screening rate for dually infected individuals,
ηs1, the modification parameters accounting for increased infectiousness of dually infected individuals, ϕp

and ϕl, respectively, the modification parameter accounting for the infectiousness of individuals who have
undergone HPV screening, τp, and the modification parameters accounting for increased susceptibility to
HPV and Chlamydia trachomatis infections, ξp1 and ξl1, respectively.

Table 1: PRCC values for the HPV-Chlamydia trachomatis co-infection model (3) parameters using the total number of
singly infected individuals: HPV (Ihp), Chlamydia trachomatis (Icl), and individuals dually infected with HPV and Chlamydia
trachomatis (Ihpcl), respectively, as well as the associated reproduction numbers for HPV, R0H, and Chlamydia trachomatis,
R0cl, respectively, as response functions. Paramters which strongly influence the dynamics of the co-infection model with
respect to each of the response functions are shown in bold fonts.

Parameters Ihp Icl Ihpcl R0hp R0cl

µh -0.0907 -0.1446 -0.2267 -0.2966 -0.2768
βhp 0.7144 0.4504 0.7352 0.9109 –
βcl -0.3704 0.7686 0.7772 – 0.9333
εp 0.1187 0.0081 0.00378 – –
εl -0.0411 0.1390 0.0235 – –
ηs -0.1697 0.0241 -0.1123 -0.2972 –
ηs1 -0.0992 -0.0660 -0.4016 – –
ρp -0.2339 0.0351 -0.1122 -0.8833 –
ρsp 0.0013 0.0716 0.0180 -0.5813 –
ρp1 -0.0780 0.4483 -0.2613 – –
ρp2 0.0661 0.1218 0.2024 – –
ρl 0.0254 -0.3618 -0.1380 – -0.9548
ρl1 0.5196 -0.1482 -0.3858 – –
ρl2 0.0062 -0.0287 -0.0278 – –
δl1 -0.0056 -0.0376 0.0054 – -0.1198
δl2 -0.0493 -0.0539 -0.398 – –
δp1 0.0173 0.0090 -0.0230 -0.0481 –
δp2 0.0198 -0.0165 0.058 – –
ϕp -0.2266 0.3749 0.5488 – –
ϕl 0.3460 -0.3086 0.5124 – –
τp 0.1251 0.0711 0.4002 0.5518 –
ξp1 -0.2933 0.1845 0.4017 – –
ξp2 0.000665 0.1103 0.0608 – –
ξl1 0.1739 -0.3048 0.4203 – –
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5.2 Numerical simulations

Numerical simulations of the optimal control problem (19), adjoint equations (27) and characterizations of
the control (30) are implemented by the Runge Kutta method using the forward backward sweep (carried
out in MATLAB). The algorithm used for the solution of the state system (19) is based on the approach
proposed in [15]. The weight constants are assumed to be: χ1 = 500, χ2 = 500, χ3 = 400 and χ4 = 400.
Demographic data relevant to the dynamics of the co-infection of HPV and Chlamydia in Uganda are used
[42]. The initial conditions are assumed to be: Sh(0) = 10000, Ihp(0) = 2000, Ishp(0) = 2500, Rhp(0) =
2000, Icl(0) = 2000, Rcl(0) = 2000, Ihpcl(0) = 2500, Ishpcl(0) = 2000. Based on the sensitivty analysis results
in Section 5.1, the following four different control strategies are implemented for the numerical simulations
of the co-infection model (19).

i. Strategy A: HPV prevention (u1 6= 0) and Chlamydia trachomatis prevention (u2 6= 0);

ii. Strategy B: HPV prevention (u1 6= 0) and screening of HPV infected individuals (u3 6= 0);

iii. Strategy C: Chlamydia trachomatis prevention (u2 6= 0) and treatment (u4 6= 0).

iv. Strategy D: HPV screening (u3 6= 0) and Chlamydia trachomatis treatment (u4 6= 0).

Table 2: Description of parameters in the model (3)

Parameter Description Value Reference

Λh Recruitment rate 365,052 [42]
µh Natural death rate 0.0178 [42]
βhp Effective contact rate for HPV transmission 1.0 [27]
βcl Effective contact rate for Chlamydia trachomatis transmission 1.1 [36]
τp modification parameter accounting for reduced transmission

probability of HPV infected individuals who have undergone screening, relative
to those who have not been screened 0.9 Assumed

δp1, δp2 HPV-induced death rate for singly and dually infected
individuals, respectively 0.001 [26]

δl1, δl2 Chlamydia trachomatis-induced death rate for singly and dually infected
individuals, respectively 0.05 Assumed

εp HPV re-infection rate for individuals who recovered from HPV 0.3 [25]
εl Chlamydia trachomatis re-infection rate for individuals who

recovered from previous infection 0.3 [36]
ϕl modification parameter accounting for increased transmission

probability of dually infected individuals due to Chlamydia trachomatis 1.3 Assumed
ϕp modification parameter accounting for increased transmission

probability of dually infected individuals due to HPV 1.3 [26]
ξp1 , ξ

p
2 Modification parameter for increased susceptibility

to Chlamydia trachomatis due to HPV infection 1.3 [34, 35]
ξl1 Modification parameter accounting for increased susceptibility to HPV

due to Chlamydia trachomatis infection 1.2 [10, 16]
ηs, ηs1 Screening rate for HPV infected individuals 0.90 Assumed
ρp Recovery rate from HPV for singly infected individuals 0.90 [26]
ρl Recovery rate from Chlamydia trachomatis for singly infected individuals 0.90 [26]
ρp1, ρp2 Recovery rate from HPV for dually infected individuals 0.90 [26]
ρl Recovery rate from HPV for singly infected individuals 0.90 assumed
ρl1, ρl2 Recovery rate from Chlamydia trachomatis for dually infected individuals 0.90 assumed

5.2.1 Strategy A: HPV prevention (u1 6= 0) and Chlamydia trachomatis prevention (u2 6= 0)
controls

Simulations of the optimal control system (19) when HPV prevention (u1 6= 0) and Chlamydia trachomatis
prevention (u2 6= 0) controls are applied, are shown in Figure 3. It is observed that when this control
strategy is implemented, there is a significant reduction in the total number of individuals singly infected
with HPV (Figure 3 (a)), total number of individuals singly infected with Chlamydia trachomatis (Figure
3b) and the total number of individuals dually infected with HPV and Chalmydia trachomatis (Figure 3
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Figure 3: Plots of the total number of individuals singly infected with HPV (Figure 3 (a)), total number
of individuals singly infected with Chlamydia trachomatis (Figure 3 (b)), as well as the total number of
individuals dually infected with HPV and Chlamydia trachomatis (Figure 3 (c)), in the presence of HPV
prevention (u1 6= 0) and Chlamydia trachomatis prevention (u2 6= 0) controls. Here, βhp = 1.35, βcl = 1.0.
All other parameters are as in Table 2

(c)). Particularly, in addition to averting 64,133 new cases of HPV infections and preventing 35,660 new
cases of Chlamydia trachomatis infection, this control strategy also averts 3,364 new co-infection cases. The
control profile for this strategy given in Figure 4 (a) shows that control u1 is at its peak for the first 4.2
years and ultimately declines to zero at final time (when t= 5 years). In a similar manner, the control u2 is
at the upper bound for the first 4.6 years before finally declining to zero. The cost function for the combined
effects of these two controls is given by Figure 4 (b).

5.2.2 Strategy B: HPV prevention (u1 6= 0) and screening (u3 6= 0) controls

The simulations of the total number of infected individuals in the presence of HPV-only intervention controls
(prevention (u1) and screening (u3)) are depicted in Figures 5(a) -5(c). Applying this intervention strategy,
it is observed that the total number of individuals singly infected with HPV (Figure 5 (a)) and the total
number of individuals dually infected with HPV and Chlamydia trachomatis (Figure 5 (c)), respectively,
decrease significantly in comparison to when no control strategy is applied. However, a positive population
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Figure 4: Control profile (Figure 4 (a)) and cost function (Figure 4 (b)) for the combined effects of the
controls u1 and u2 on the dynamics of the HPV-Chlamydia trachomatis co-infection model (3). Here,
βhp = 1.35, βcl = 1.0. All other parameters are as in Table 2

18

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.07.20190025doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.07.20190025


0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7
x 10

4

Time (Years)

In
d

iv
id

u
al

s 
si

n
g

ly
 in

fe
ct

ed
 w

it
h

 H
P

V

 

 

u
1
 = u

2
 = u

3
 = u

4
 = 0

u
1
 ≠ 0, u

3
 ≠ 0

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Time (Years)

In
d

iv
id

u
al

s 
si

n
g

ly
 in

fe
ct

ed
 w

it
h

 
C

h
la

m
yd

ia
 T

ra
ch

o
m

at
is

   
   

   
   

 

 

u
1
 = u

2
 = u

3
 = u

4
 = 0

u
1
 ≠ 0, u

3
 ≠ 0

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

1500

2000

2500

3000

3500

Time (Years)

In
d

iv
id

u
al

s 
d

u
al

ly
 in

fe
ct

ed
 w

it
h

 
H

P
V

 a
n

d
 C

h
la

m
yd

ia
 T

ra
ch

o
m

at
is

   
 

 

 

u
1
 = u

2
 = u

3
 = u

4
 = 0

u
1
 ≠ 0, u

3
 ≠ 0

(c)

Figure 5: Plots of the total number of individuals singly infected with HPV (Figure 5 (a)), total number
of individuals singly infected with Chlamydia trachomatis (Figure 5 (b)), as well as the total number of
individuals dually infected with HPV and Chlamydia trachomatis (Figure 5 (c)), in the presence of HPV
prevention (u1 6= 0) and screening (u3 6= 0) controls. Here, βhp = 1.35, βcl = 1.0. All other parameters are
as in Table 2

level impact is observed on the total number of individuals singly infected with Chlamydia trachomatis
(Figure 5(b)). Specifically, in addition to averting 64,132 new HPV cases, this strategy equally prevents
6,570 new cases of Chlamydia trachomatis infection. This intervention strategy also averts 3,347 new co-
infection cases. This result conforms with the epidemiological findings reported in Section 1 that higher
prevalence of Chlamydia trachomatis infection has been observed in HPV infected individuals [10, 16].
Hence, focusing only on HPV controls, can in turn bring down the burden of the Chlamydia trachomatis as
well as the co-infection of the two diseases. The control profile for this strategy presented in Figure 6 (a)
shows that control u1 is at its peak for the first 4.4 years and ultimately declines to zero at time, t= 5 years.
In a similar manner, the control u3 is at the maximum level of 100% for the first 0.75 year before gradually
declining to zero at time, t= 5 years. The cost function for the combined effects of these two controls is
given by Figure 6 (b).
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Figure 6: Control profile (Figure 6 (a)) and Cost function (Figure 6(b)) for the combined effects of the
controls u1 and u3 on the dynamics of the HPV-Chlamydia trachomatis co-infection model (3). Here,
βhp = 1.35, βcl = 1.0. All other parameters are as in Table 2
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Figure 7: Plots of the total number of individuals singly infected with HPV (Figure 7 (a)), total number
of individuals singly infected with Chlamydia trachomatis (Figure 7 (b)), as well as the total number
of individuals dually infected with HPV and Chlamydia trachomatis (Figure 7 (c)), in the presence of
Chlamydia tracahomatis prevention (u2 6= 0) and treatment (u4 6= 0) controls. Here, βhp = 1.35, βcl = 1.0.
All other parameters are as in Table 2
.

5.2.3 Strategy C: Chlamydia trachomatis prevention (u2 6= 0) and treatment (u4 6= 0) controls

Implementing Chlamydia trachomatis-only intervention controls (Chlamydia trachomatis prevention (u2)
and treatment (u4)), without applying any HPV intervention control (u1 = u3 = 0), it is observed in Figures
7(b) and 7 (c), that the total number of individuals singly infected with Chlamydia trachomatis and the
total number of individuals dually infected with HPV and Chlamydia trachomatis, respectively, are less
than the populations when no control strategy is applied. In addition, this control strategy has an indirect
benefit on the total number of individuals singly infected with HPV (see Figure 7(a)). Particularly, despite
preventing 35,896 new Chlamydia trachomatis cases, this intervention strategy also prevents 6,970 new cases
of HPV infections. Moreover, this intervention strategy averts 3,304 new co-infection cases. It is interesting
to note that the Chlamydia trachomatis-only intervention strategy averts more co-infection cases compared
to HPV-only intervention strategy (strategy B). The simulation results agree with the epidemioloical reports
in [34, 35] that prior Chlamydia trachomatis infection increases susceptibility to multiple infections. The
control profile for this strategy presented in Figure 8 (a) shows that control u3 is at its peak for the first
4.5 years and finally declines to zero. Similarly, the control u4 is at the peak level of 100% for the first 2.7
years before gradually declining to zero at final time (when t= 5 years). The cost function for the combined
effects of these two controls is given by Figure 8 (b).

5.2.4 Strategy D: HPV screening (u3 6= 0) and Chlamydia trachomatis treatment (u4 6= 0)
controls

The plots of the total number of infected individuals when HPV screening (u3 6= 0) and Chlamydia tra-
chomatis treatment (u4 6= 0) controls are applied, are given by Figures 9 (a) - 9 (c). It is observed that when
this control strategy is administered, there is a significant reduction in the total number of individuals singly
infected with HPV (Figure 9 (a)), total number of individuals singly infected with Chlamydia trachomatis
(Figure 9b) and the total number of individuals dually infected with HPV and Chalmydia trachomatis
(Figure 9 (c)). In particular, despite averting 29,150 new cases of HPV infections and preventing 13,600
new cases of Chlamydia trachomatis infection, strategy D also averts 2,606 new co-infection cases. The
control profile for this strategy given in Figure 10 (a) shows that control u3 is at its peak for the first 2.7
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Figure 8: Control profile (Figure 8 (a)) and Cost function (Figure 8 (b)) for the combined effects of controls
u2 and u4 on the dynamics of the HPV-Chlamydia trachomatis co-infection model (3). Here, βhp = 1.35,
βcl = 1.0. All other parameters are as in Table 2

years and ultimately declines to zero at final time (when t= 5 years). In a similar manner, the control u4 is
at the maximum level of 100% for the first 4.0 years before finally declining to zero. The cost function for
the combined effects of these two controls is given by Figure 10 (b).

Simulations of the controls u1 and u2, where the weight constants χ1 and χ2 are varied, while fixing
the values of the other weight constants χ3 = χ4 = 400, are depicted in Figures 11 (a) and 11 (b),
respectively. It is observed from Figure 11 (a), that the control u1 was at its maximum value for 2 years,
when χ1 = χ2 = 5000; was at its peak value for 3.7 years when χ1 = χ2 = 1000 and was at its highest value
for 4.2 years when χ1 = χ2 = 500, respectively, before steadily declining to zero at final time (when t= 5
years). A similar trend is observed for the control profile of u2 when χ1 and χ2 are varied. It is seen from
Figure 11 (b) that the peak of u2 lasted for 2.9 years, 4.4 years and 4.7 years, respectively, before declining
steadily to its lower bound, when χ1 = χ2 = 5000, χ1 = χ2 = 1000 and χ1 = χ2 = 500, respectively. It is
worthy of note that decreasing the weight constants from 5000 to 500 over time, increases the duration of
the peak values of the controls u1 and u2 in minimizing the total number of infected individuals.

Also, the simulations of the controls u3 and u4, while keeping the weight constants χ1 and χ2 fixed and
varying the values of χ3 and χ4, are depicted in Figures 12 (a) and 12 (b), respectively. It is observed
from Figure 12 (a), that the control u3 was at its maximum value for 1.5 years, when χ3 = χ4 = 5000;
was at its peak value for 3.4 years when χ3 = χ4 = 1000 and was at its highest value for 4.0 years when
χ3 = χ4 = 400, respectively, before steadily declining to its lower bound when t= 5 years. A similar trend
is observed for the control profile of u4 when χ3 and χ4 are varied. It is observed from Figure 12 (b) that
the peak of u4 lasted for 1.5 years, 3.4 years and 4.0 years, respectively, before declining steadily to zero,
when χ3 = χ4 = 5000, χ3 = χ4 = 1000 and χ3 = χ4 = 400, respectively. More so, It is equally observed
that decreasing the weight constants from 5000 to 400 over time, increases the duration of the peak values
of the controls u3 and u4 in minimizing the total number of infected individuals.

5.3 Cost-effectiveness analysis

The cost-effectiveness analysis is now applied to assess and evaluate the benefits associated with the health
intervention strategies in order to justify the costs of the strategies [3]. This is obtained by relating the
differences between the health outcomes and costs of those interventions, achieved by computing the incre-
mental cost-effectiveness ratio (ICER), which is defined as the cost per health outcome. It is given by:

ICER =
Difference in costs between strategies

Difference in health effects between strategies
.

The total number of infections prevented and the total cost of the strategies applied are calculated in Table
3. The total number of infections averted is obtained by computing the difference between the total number
of individuals when controls are administered and the total number when no control is applied. Likewise,
the cost functions 1

2χ1u
2
1 ,

1
2χ2u

2
2 ,

1
2χ3u

2
3 and 1

2χ4u
2
4 , are applied over time, to compute the total cost for

the various strategies implemented. The cost-effectiveness of strategy D (HPV screening and Chlamydia
trachomatis treatment controls) and strategy C (Chlamydia trachomatis prevention and treatment controls)
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Figure 9: Plots of the total number of individuals singly infected with HPV (Figure 9 (a)), total number
of individuals singly infected with Chlamydia trachomatis (Figure 9 (b)), as well as the total number of
individuals dually infected with HPV and Chlamydia trachomatis (Figure 9 (c)), in the presence of HPV
screening (u3 6= 0) and Chlamydia trachomatis treatment (u4 6= 0) controls. Here, βhp = 1.35, βcl = 1.0. All
other parameters are as in Table 2
.
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Figure 10: Control profile (Figure 10 (a)) and Cost function (Figure 10) for the combined effects of controls
u3 and u4 on the dynamics of the HPV-Chlamydia trachomatis co-infection model (3). Here, βhp = 1.35,
βcl = 1.0. All other parameters are as in Table 2
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Figure 11: Plots of the controls u1 and u2 at different values of the weight constants χ1 and χ2. Here,
βhp = 1.35, βcl = 1.0. All other parameters are as in Table 2
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Figure 12: Plots of the controls u3 and u4 at different values of the weight constants χ3 and χ4. Here,
βhp = 1.35, βcl = 1.0. All other parameters are as in Table 2

are now compared.

ICER (D) =
899.1

45, 356
= 0.0198

ICER (C) =
809.8− 899.1

46, 170− 45, 356
= −0.1097

From ICER (D) and ICER (C), it is observed that the ICER for strategy D is greater than the ICER
for strategy C. This implies that strategy D strongly dominates strategy C, indicating that strategy C is
less costly and more effcetive in comparison with strategy D. As a result, strategy D is eliminated from
subsequent ICER computations, as illustrated by Table 4. Strategies C and B are now compared.

Table 3: Increasing order of the total infections averted due to the control various strategies

Strategy Total infection averted Total cost ($) ACER ICER

D: u3(t), u4(t) 45, 356 899.1 0.0198 0.0198
C: u2(t), u4(t) 46, 170.4 809.8 0.00175 -0.1097
B: u1(t), u3(t) 73, 949 804.8 0.0109 -0.000180
A: u1(t), u2(t) 103, 157 804 0.00779 -0.00002739

ICER (C) =
809.8

46, 170
= 0.0175

ICER (B) =
804.8− 809.8

73, 949− 46, 170
= −0.000180

From ICER (C) and ICER (B), it is observed that a cost saving of 0.000180 is noticed for strategy B over
strategy C. This implies that strategy C strongly dominates strategy B, indicating that strategy B is less
costly and more effective in comparison with strategy C. Hence, strategy C is removed from subsequent
ICER computations, as given by Table 5. Strategies B and A are now compared.

Table 4: Increasing order of the total infections averted due to the control various strategies

Strategy Total infection averted Total cost ($) ICER

C: u2(t), u4(t) 46, 170.4 809.8 -0.1097
B: u1(t), u3(t) 73, 949 804.8 -0.000180
A: u1(t), u2(t) 103, 157 804 -0.00002739

ICER (B) =
804.8

73, 949
= 0.0109

ICER (A) =
804− 804.8

103, 157− 73, 949
= −0.00002739
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From ICER (B) and ICER (A), it is observed that strategy B strongly dominates strategy A, showing that
strategy B is more costly and less effective in comparison with strategy A. In conclusion, strategy A (the
strategy that implements HPV and Chlamydia trachomatis prevention controls) has the least ICER and is
thus most cost-effective of all the control strategies in combating the co-infections of HPV and CHlamydia
trachomatis. This result equally conforms with the results obtained before using the ACER method in
Table 3, that strategy A is the most cost-effective strategy.

Table 5: Increasing order of the total infections averted due to the control various strategies

Strategy Total infection averted Total cost ($) ICER

B: u1(t), u3(t) 73, 949 804.8 -0.000180
A: u1(t), u2(t) 103, 157 804 -0.00002739

6 Conclusion

In this work, a co-infection model for human papillomavirus and Chlamydia trachomatis with cost-effectiveness
optimal control analysis was developed and analyzed. Using the approach in Castillo-Chavez [4], the disease-
free equilibrium of the model was proven not to be globally asymptotically stable. The model was shown
to undergo the phenomenon of backward bifurcation when the associated reproduction number is less than
unity. The HPV re-infection term (εp 6= 0) induced the phenomenon of backward bifurcation in the HPV-
Chlamydia trachomatis co-infection model. In addition, analysis of the HPV-only sub-model revealed the
co-existence of two equilibria (a stable disease free equilibrium and a stable endemic equilibrium) when the
reproduction number is less than unity. It was shown that HPV re-infection also induced the phenomenon
of bakward bifurcation in the HPV-only sub-model. The necessary conditions for the existence of opti-
mal control and the optimality system for the co-infection model was established using the Pontryagin’s
Maximum Principle [30].

From the qualitative analysis of the model, it was observed that HPV re-infection εp 6= 0, induced
the phenomenon of backward bifurcation in the HPV-Chlamydia co-infection model. The epidemiological
interpretation is that if recovery from HPV does not confer lifelong immunity, then the control of HPV-
Chlamydia trachomatis becomes difficult in the population, even when the associated reproduction number
R0 < 1. Hence, it is recomended that efforts should be made by government and health agencies to prevent
re-infection with HPV so as to bring the burden of the co-infection of HPV and Chlamydia trachomatis
very low at the community level. Moreover, sensitivity analysis of the model using the population of
individuals co-infected with HPV and Chlamydia trachomatis revealed that the parameters that strongly
influence the dynamics of the co-infection model are the effective contact rate for HPV transmissibility, βhp,
the effective contact rate neccesary for Chlamydia trachomatis transmission, βcl, HPV screening rate for
dually infected individuals, ηs1, the modification parameters accounting for increased infectiousness of dually
infected individuals, ϕp(ϕl), the modification parameter accounting for the infectiousness of individuals who
have undergone HPV screening, τp, and the modification parameters accounting for increased susceptibility
to HPV (Chlamydia trachomatis) infection, ξp1(ξ

l
1). It is therefore, strongly recommended that efforts to

bring down the burden of the co-infection of HPV and Chlamydia trachomatis should involve prevention
strategies for both diseases, treatment and strict HPV screening policies.

Numerical simulations of the optimal control model showed that:

i. Focusing on HPV intervention strategies alone (HPV prevention and screening), in the absence of
Chlamydia trachomatis control, a positive population level impact on the total number of individuals
singly infected with Chlamydia trachomatis, is observed. This was shown in Figure 3 (b).

ii. Concentrating on Chlamydia trachomatis intervention controls alone (Chlamydia trachomatis preven-
tion and treatment), in the absence of HPV intervention strategies, a positive population level impact
on the total number of individuals singly infected with HPV, is observed. This was illustrated in
Figure 7 (a).

iii. The strategy that combines and administers HPV and Chlamydia trachomatis prevention controls is
the most cost-effective of all the control strategies in fighting the burden of the co-infection of HPV
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and Chlamydia trachomatis.

Furthermore, simulations of the various controls, where the weight constants are varied revealed that sig-
nificant decrease in the weight constants from over time, increases the duration of the peak values of the
associated controls in minimizing the total number of infected individuals (For instance, as observed in
Figures 11 (a) and 11 (b), respectively).
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