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Abstract 

Liquid-based disinfection of environmental surfaces is a momentary intervention while the 

recontamination of these surfaces is continuous. In between disinfection cycles, contaminated 

surfaces remain a potential source of infection. The use of continuously active antimicrobial 

surface coatings would reduce the risk of transmission between routine cleaning and liquid 

disinfection events by serving as an “always-on” approach to reduce pathogen burden. We have 

recently reported on a surface coating having antiviral properties. Here, the spectrum of activity 

was broadened assessment efficacy of the coating to withstand multiple contamination events 

against viruses and pathogenic bacteria. 
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The role of surfaces in disease transmission has been well established (1,2,3). The cleaning and 

disinfection of environmental surfaces is a critical component in reducing the rate of health care-

associated infections (HAI) as demonstrated when effective measures of environmental hygiene 

are implemented (4-8). The primary method of reducing pathogen exposure from surfaces is 

through disinfection with a liquid that remains active for only minutes after application. Although 

liquid-based surface disinfection is effective in the short term, pathogen deposition onto surfaces 

is a continuous process (9).  Low levels of surface contamination have been found to impart an 

increase in the risk of transmission (5). Many in vitro studies of microbial transfer from 

contaminated surfaces to hands also support these findings (10). Therefore, an intervention that 

continuously reduces the viability of pathogens deposited onto surfaces between routine 

cleanings has the potential to disrupt this mode of environmental transmission. The use of 

antimicrobial surface coatings to serve this purpose have been successfully implemented in the 
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healthcare setting and resulted in reduction of HAI’s (8). We recently reported on an improved 

formula (SurfaceWise2TM) of this continuously active antimicrobial coating technology that 

reduces levels of infectious human coronavirus 229E (HCoV 229E), an enveloped virus, by 

99.99% within 2 hours (Ikner, medrxiv 2020). In the study described herein, this coating 

technology was found to remain efficacious after multiple contamination events over 8-12 hours 

against HCoV 229E, as well as Gram-negative and Gram-positive bacteria. This simulates the 

re-contamination events that a surface would undergo over a typical workday, and at higher 

microbial load levels.   

Methods 

Test Sample preparation: 

SurfaceWise2™ (a quaternary ammonium polymer coating) coated surfaces were prepared by 

Allied BioScience, Inc (Dallas, Texas). Stainless steel coupons (annealed 304) measuring 1” x 

1” (used in bacteria studies) and 2” x 2” (used in virus studies) were cleaned with acetone, 

sterilized by autoclaving, and arranged onto a panel for spraying using a robotic slider equipped 

with an electrostatic sprayer. Coating coverage was monitored using an XRF (X-Ray 

Fluorescence Spectroscopy) spectrometer analyzer to ensure uniform application of the 

coating.  

After coating, the coupons were removed from the panel and the coating was cured overnight. 

Prior to efficacy testing, the coupons were sterilized under UV light for 20 minutes in a biosafety 

cabinet. Coated stainless steel coupons were held under ambient conditions for 3 days after 

treatment before use in virus testing and for 2-9 days prior to use in bacterial testing. Non-

coated stainless steel carriers were cleaned and sterilized in the same manner for use in the 

study as control surfaces.  

Preparation of the test virus: 

Human coronavirus 229E (HCoV 229E, ATCC VR-740), was propagated and assayed using the 
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human lung fibroblast MRC-5 cell line (ATCC CCL-171). Infected cells were subjected to three 

freeze-thaw cycles to release the virus after cytopathogenic effects (CPE) were observed in the 

monolayer. The cell lysates were then centrifuged at 1,000 x g for 10 minutes to pellet the cell 

debris for disposal. Viruses were extracted from the supernatant using polyethylene glycol [9% 

(w/v), MW 8000] and 0.5 M sodium chloride, with mixing overnight at 4°C. After centrifugation 

at 10,000 x g for 30 min, the pelleted viruses were resuspended in 0.01 M phosphate buffered 

saline (PBS; pH 7.4) (Sigma, St. Louis, MO) to approximately 5% of the original virus suspension 

volume. The virus stocks were then aliquoted and stored at −80°C. HCoV 229E viral stocks 

were enumerated on MRC-5 cells seeded into 96-well cell culture trays using the TCID50 (tissue 

culture infectious dose at the 50% endpoint) technique as described previously (11). Taking the 

inverse log of this dilution gives a titer of the virus per ml TCID50. The minimum detection for the 

method described was 3.16 viruses per mL. 

Preparation of bacteria: 

Staphylococcus aureus 6538, Pseudomonas aeruginosa 15442, and Klebsiella aerogenes 13048 

were purchased from American Type Culture Collection (ATCC; Manassas, VA). All strains were 

re-animated and prepared for storage at -80°C per the vendor’s instructions. Each strain was 

grown in Nutrient Broth (BD Biosciences; San Jose, CA) at 37°C (S. aureus and P. aeruginosa) 

or 30°C (K. aerogenes). Three successive daily transfers were performed for each test organism 

following incubation at the appropriate temperature, and the final test cultures were incubated for 

48 hours. Dilutions were conducted as appropriate for each strain to achieve an approximate 

inoculation concentration of 5x104 colony-forming units (CFU).  

Test description: 

The test method was designed to assess the efficacy of a continuously active antimicrobial 

surface coating when subjected to multiple reinoculations. Between 2 and 6 total inoculations 

were performed at 2-hour intervals on non-coated control and coated carriers in triplicate. At time 
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zero, all carriers were inoculated the test organism. After 2 hours, one triplicate set each of non-

control and coated carriers were neutralized, and all remaining carriers were re-inoculated. After 

an additional 2 hours (4 hours from time zero), another triplicate set of non-coated control and 

coated carriers were neutralized, and all remaining carriers were re-inoculated. This pattern 

continued until the final set of non-coated control and coated carriers completed a 2-hour contact 

time with the final re-inoculation (Figure 1). For HCoV 229E, efficacy was assessed for 1, 2, 3 

and 4 inoculations. For S. aureus, P. aeruginosa and K. aerogenes, efficacy was assessed for 

1, 2, 3, 4, 5 and 6 (S. aureus and P. aeruginosa only) inoculations.  

Test procedures: 

Virus 

A 0.1 mL viral suspension of HCoV 229E with a soil load of 5% FBS (fetal bovine serum) was 

inoculated and spread over the 2” x 2” surface of control and coated stainless steel carriers, and 

incubated at room temperature under 45-55% relative humidity. The target initial inoculum for all 

control and treated carriers was 6.0 log10, and 3.5 log10 for all subsequent re-inoculations. After 

each 2-hour contact time, carriers were neutralized by rinsing with 1 mL of Letheen Broth Base 

(LBB) (Hardy Diagnostics; Santa Martin, CA) with concurrent scraping using a cell scraper tool 

to further release remaining infectious viruses from the surface. The virus suspension was then 

immediately passed through a Sephadex G-10 (Sigma; St. Louis, MO) gel filtration column for 

secondary neutralization and to decrease cytotoxic effects on MRC-5 host cell monolayers. 

Columns were centrifuged for 5 minutes at 4,000 x g to extract the liquid. Appropriate 1:10 

dilutions of neutralized control and test extracts were made using Eagle Minimal Essential Media 

(MEM) (Mediatech; Manassas, CA), followed by plating onto MRC-5 monolayers prepared in 24-

well trays in replicates of four per dilution (0.100 mL per well). The efficacy of the coating was 

determined by comparing the TCID50 levels recovered from the non-coated controls and coated 

carriers for each group of inoculations. Cytotoxicity and neutralization validations were also 
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performed for confirmation of methodology (data not shown). 

Bacteria 

A 0.01 mL volume of bacterial suspension with a 5% FBS soil load was inoculated and spread 

over the 1” x 1” surface of non-coated control and coated stainless steel carriers, and incubated 

at 25°C with 50-55% relative humidity. All inoculations were performed with the same bacterial 

concentration of approximately 4.7 log10. After each 2-hour contact time, the carriers were fully 

submerged in 20 mL of Dey-Engley (D/E) Neutralizing Broth (Hardy Diagnostics; Santa Martin, 

CA) and vortexed for 30 seconds to remove remaining viable cells from the surface. Appropriate 

1:10 dilutions of neutralized extracts were made using PBS followed by plating onto Tryptic Soy 

Agar (BD Biosciences; San Jose, CA) using the pour plate method. Plates were incubated at 

37°C or 30°C as appropriate for 48 hours before enumeration. Plates with 30-300 colonies were 

used to determine the CFU per carrier for control and test conditions; the detection limit was 10 

CFU per carrier. 
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Figure 1. Diagram of the procedure 
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Results: 

The results shown in Figure 2 demonstrate that the continuously active antimicrobial surface 

coating reduces viable viral and bacterial levels to below the limit of detection even after multiple 

contamination events. This translates to a greater than 3-log reduction at all inoculation 

intervals compared to titers observed for non-coated control surfaces.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Continuously active antimicrobial surface remains biocidal after multiple 

contamination events. The efficacy of the antimicrobial surface coating is shown by comparing 

the amount of virus (A) or bacteria (B-D) recovered from non-coated control (gray circles) and 

coated (colored squares) stainless steel surfaces.  
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Discussion: 

Antimicrobial coatings that remain active for extended periods of time can be utilized to guard 

against continual surface contamination events that may occur between routine disinfection 

cycles. They are intended for use as a supplemental tool to reduce pathogen burden and infection 

risk from surfaces. Broad spectrum antimicrobial coatings that are efficacious against viruses and 

bacteria serve as a more robust solution to mitigate infections that might occur due to surface 

contamination. This study demonstrated that a continuously active disinfectant coating remained 

efficacious following multiple inoculations of an enveloped virus, and both Gram-positive and 

Gram-negative bacteria. Such endurance is necessary for practical application in any heavily-

trafficked area where large numbers of people come into contact with the same surface multiple 

times, and cleaning in-between these occasions is neither feasible or practical. In the wake of the 

COVID-19 pandemic, standard disinfection of surfaces using widely-available disinfectants has 

been put into practice several times a day to reduce the risk of surface-sourced infections.  This 

approach increases the user’s exposure to these harsh chemicals. Continuously active 

disinfection technology has the potential to benefit healthcare entities, as well as businesses 

seeking to re-open to the public following mandated closures, thereby providing a safe and 

practical alternative to reduce the risk of infection from contaminated surfaces.  
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