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Abstract 23 

 24 

Explicit information obtained through instruction profoundly shapes human choice behaviour. However, this 25 
has been studied in computationally simple tasks, and it is unknown how model-based and model-free 26 
systems, respectively generating goal-directed and habitual actions, are affected by the absence or 27 
presence of instructions. We assessed behaviour in a novel variant of a computationally more complex 28 
decision-making task, before and after providing information about task structure, both in healthy volunteers 29 
and individuals suffering from obsessive-compulsive (OCD) or other disorders. Initial behaviour was model-30 
free, with rewards directly reinforcing preceding actions. Model-based control, employing predictions of 31 
states resulting from each action, emerged with experience in a minority of subjects, and less in OCD. 32 
Providing task structure information strongly increased model-based control, similarly across all groups. 33 
Thus, explicit task structural knowledge determines human use of model-based reinforcement learning, and 34 
is most readily acquired from instruction rather than experience.  35 
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Introduction 37 

 38 

The brain uses multiple systems to choose which actions to perform1–6.  One widely held distinction is made 39 
between goal-directed actions, guided by predictions of their specific outcomes, and habitual actions, 40 
performed according to preferences acquired through prior reinforcement1,7–9. This cognitive and 41 
behavioural classification is thought to correspond, at least in part, to a computational distinction between 42 
two different types of reinforcement learning (RL), termed model-based and model-free4,5,10,11. Model-based 43 
RL learns to predict the specific consequences of actions, and computes their values, i.e. long run utilities, 44 
by simulating likely future behavioural trajectories. This allows for statistically efficient use of experience, 45 
and thus behavioural flexibility, at the cost of the computational demands of planning. Model-free RL, by 46 
contrast, learns estimates of the value of states or actions directly from experience, and updates these 47 
estimates using reward prediction errors. This allows for rapid action selection at low computational cost, 48 
but uses information less efficiently, resulting in slower adaption to changes in the environment. It is thought 49 
that the brain takes advantage of the complementary strengths of both prospective (model-based) and 50 
retrospective (model-free) approaches to decision-making, through mechanisms that  estimate whether the 51 
payoff for more accurate prediction is worth the computational costs of planning4,12,13. 52 

Sequential, or multi-step, decision tasks have emerged as a powerful approach to study model-based and 53 
model-free RL in humans11,12,14,15. In such tasks, subjects move through a sequence of states to obtain 54 
rewards, typically with non-stationary reward and/or action-state transition probabilities, forcing continuous 55 
learning. The contributions of model-based and model-free RL can be determined by examining how 56 
subjects update their choices in light of recent experience. To date, the most commonly used task is the 57 
‘two-step’ task, employing a choice between two ‘first-step’ stimuli, which leads probabilistically to one of 58 
two ‘second-step’ states, where rewards may be obtained11. Each first-step stimulus commonly leads to 59 
one of the second-step states but, on a minority of trials, leads to the state commonly reached from the 60 
other stimulus. Model-based and model-free RL are identified according to how the trial outcome (rewarded 61 
or not) and state transition (common or rare) interact to affect the subsequent choice. Under model-free 62 
control, the agent will tend to repeat first-step choices that are followed by reward, irrespective of the state 63 
transition. By contrast, under model-based control, the agent will tend to switch first-step choice when a 64 
rare transition leads to reward, as the reward increases the value of the state commonly reached from the 65 
not-chosen first step option. The two-step task has been used to study neural correlates of model-based 66 
and model-free control in healthy subjects11,16,25,26,17–24, and to investigate decision making in clinical 67 
populations27–31.  68 

Human subjects typically receive extensive instruction about task structure prior to performing the two-step 69 
task11,32. However, and even though there is extensive literature showing that instruction profoundly shapes 70 
human behaviour in operant33–35 and fear36,37 conditioning, as well as value-based decision making38–41, 71 
little is known about how instruction affects behaviour in multi-step tasks that dissociate model-based and 72 
model-free control. To our knowledge, a single study in healthy humans has partially addressed this 73 
question, showing that making instructions more comprehensive and easier to understand, increases the 74 
influence of model-based relative to model-free RL32. This result, in combination with other analyses, led 75 
the authors to propose that humans are primarily model-based learners on this task, suggesting that 76 
apparent model-free behaviour, including in some clinical populations, may result from incorrect task 77 
models, rather than a true model-free strategy.  78 

However, no studies have explored behaviour on multi-step tasks in the absence of information about task 79 
structure, in either healthy or clinical populations. Thus, it remains unclear how model-based and model-80 
free RL contribute to action selection in situations where subjects must learn task structure directly and 81 
exclusively from experience, and how providing explicit information about task structure affects each 82 
system. To address these questions, we created a new version of the two-step task, requiring minimal prior 83 
instruction and we initially administered it with no information given about the task state space, transition 84 
structure, or reward probabilities. Then, the task was repeated following debriefing about these elements 85 
of the task’s structure. Behaviour was tested in healthy volunteers, as well as in a sample of individuals 86 
with obsessive-compulsive disorder (OCD), previously reported to have deficits in the degree to which 87 
model-based RL is employed28,30. To control for the effects of psychotropic medication and of unspecific 88 
mood and anxiety symptoms, data was also collected in a comparison sample of individuals with mood and 89 
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anxiety disorders. Initial behaviour, prior to instructions, was model-free across all groups, with model-90 
based control emerging with experience in only a minority of subjects, and to a lesser extent in OCD. 91 
However, once task structure information was provided, model-based control increased to a very similar, 92 
and significant extent in healthy volunteers and individuals with OCD or other disorders. These findings 93 
support the conclusion that explicit task structural knowledge determines human use of model-based RL, 94 
and is most readily acquired from instruction rather than experience.   95 

 96 

Results 97 

 98 

We developed a two-step task requiring minimal prior instruction, which we name ‘simplified two-step task’,  99 
by simplifying the visual representation of task states on the screen, the task structure (allowing only a 100 
single action rather than a choice in each second-step state), and the reward probability distribution (using  101 
blocks, instead of slowly fluctuating Gaussian random walks, to increase the contrast between good and 102 
bad options42,43; Figure 1). Two-hundred and four individuals were recruited in Lisbon and New York to 103 
perform this task: 109 were healthy volunteers, 46 were diagnosed with OCD and 49 with other mood and 104 
anxiety disorders. Sociodemographic and psychometric data from all participants is shown in table 1. While 105 
differences between groups were not found for age (F=2.4, P=0.1; one-way ANOVA) nor gender (χ2=5.1, 106 
P=0.3; Pearson’s chi-squared), they were present for years of education (F=5.7, P<0.01; one-way ANOVA), 107 
which were only slightly, but significantly, higher in healthy volunteers than the mood and anxiety group 108 
(P=0.01; Tukey’s HSD). As expected, both clinical groups had significantly higher anxiety and depression 109 
scores than healthy volunteers (F>55, P<0.001; across all one-way ANOVA’s for the depression and 110 
anxiety scales), while participants with OCD had higher obsessive-compulsive scores than participants in 111 
either of the two other groups (F>200; P<0.001; across all one-way ANOVA’s for the Yale-Brown  112 
Obsessive-Compulsive Scale total and sub-scores).  113 

While developing the task among healthy volunteers in Lisbon, participants were randomized between two 114 
different versions, one with fixed transition probabilities linking the first-step actions and second-step states 115 
(Fixed version; n=40), and one where the transition probabilities underwent periodic reversals (Changing 116 
version; n=42). The Changing version proved too complex for most subjects (see supplementary results for 117 
details) so we subsequently focused on the Fixed task, which is used for all data and figures in the main 118 
text.  All healthy controls recruited in New York (n=27), and all clinical subjects at both sites (n=95) were 119 
run on this version. All subjects in both versions performed 4 sessions of 300 trials each in a single day.  A 120 
subset of healthy controls, and all clinical subjects, were debriefed between sessions 3 and 4, with the task 121 
structure explained to them.  We assessed the effect of uninstructed experience by comparing behaviour 122 
between sessions 1 and 3, and the effect of explicit knowledge by comparing behaviour between sessions 123 
3 and 4.   124 

 125 

Initial behaviour is under model-free control 126 

As subjects were not told how their actions (arrow key presses) affected the stimuli shown on the screen, 127 
they had to learn both the correspondence between arrow keys and stimuli, and that stimuli could only be 128 
selected when highlighted. In the 67 healthy volunteers performing the Fixed version of the task, the number 129 
of invalid key presses per trial (i.e. presses to keys whose corresponding stimulus was not highlighted) 130 
decreased over the first 50-100 trials, before stabilising at a low level in all but a minority of subjects (Figure 131 
S1). To assess how trial events affected subject’s choices, we analysed the probability of repeating first-132 
step choices (termed ‘stay probabilities’) as a function of the previous state transition (common or rare), 133 
trial outcome (rewarded or not), and their interaction11. During session 1, stay probability was strongly 134 
influenced by trial outcome (P<0.0001, permutation test), but not by state transition (P=0.3) nor the 135 
transition-outcome interaction (P=0.1; Figure 2 a, d).  This pattern is consistent with a simple model-free 136 
strategy, in which the outcome received at the end of the trial directly reinforces the choice made at the 137 
first-step11.  This direct reinforcing effect of reward was evident from the very start of the first session (Figure 138 
2b), rather than emerging with task experience. Although state transitions in session 1 did not influence 139 
subsequent first-step choices, key-press reaction times at the second-step were faster following common 140 
than rare transitions (399.1 ± 16.9ms and 514.4 ± 20.5ms respectively; t66=7.81, P<0.0001, paired t-test; 141 
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Figure 2e).  This dissociation may reflect motor systems learning to predict and prepare upcoming actions 142 
before decision making systems are using a predictive model to evaluate choices. 143 
 144 

Uninstructed experience has limited effects on model-based control 145 

To assess how task experience affected behavioural strategy we compared behaviour in sessions 1 and 3. 146 
Stay probability at session 3 was more strongly influenced by both state transition (P=0.004, permutation 147 
test) and the transition-outcome interaction (P=0.002), while the influence of trial outcome increased only 148 
at trend level (P=0.06; Figure 2 c, d). This pattern is consistent with increased influence of model-based 149 
control, as model-based agents know that outcomes following rare transitions primarily influence the value 150 
of the first-step option that was not chosen11,42, leading to loading on the transition-outcome interaction 151 
predictor. Importantly, loading on the transition–outcome interaction parameter across sessions 1 to 3 was 152 

Figure 1. Behavioural Task.  The simplified two-step task was presented on a computer screen with 4 
circles visible on a grey background: 2 central circles (upper and lower) and two side circles (right and 
left). Each circle was coloured yellow when available for selection, and black when unavailable. Circles 
could be selected by pressing the corresponding arrow key (up, down, left or right) on the computer 
keyboard. a) Trial events. Each trial started with the central circles turning yellow, prompting the choice 
between either upper or lower circle (a1). Following the first-step choice, one of the side circles (left or 
right) would become yellow (a2), with differing probabilities (also see b). The subject would then select 
the yellow side circle resulting in a probabilistic monetary reward. Reward was indicated by the side circle 
changing to the image of a coin (a3 left) while no reward was indicated by the circle changing back to 
black (a3 right; also see c). b) Transition probabilities. At each trial, choosing one circle at the first step 
commonly (p=0.8) lit up one side circle and rarely (p=0.2) the other side circle, with inverse probabilities 
for choosing the alternate circle. Type A transition probabilities (common transitions from upper to left 
and from lower to right) are shown here. Reverse transition probabilities (Type B) are the alternate 
possibility. The transition probabilities were fixed (either A or B, counterbalanced across subjects) in the 
Fixed version of the task, or underwent reversals from A to B in the Changing version (see methods and 
supplementary results for additional details on this version). c) Reward probability blocks. The reward 
probabilities upon selection of the side circles changed in blocks that were either neutral (p=0.4 for both 
left and right sides), or higher on one of the sides (p=0.8 vs p=0.2, i.e., non-neutral blocks), as shown 
here. Non-neutral blocks ended when subjects consistently chose the first-step option (upper or lower) 
that most frequently lead to the high reward probability side. Neutral blocks ended probabilistically, 
independent of subjects’ behaviour (see methods for details). To maximize reward rate, subjects must 
choose the first step action which commonly leads to the second-step state with higher reward probability, 
tracking the best option across reward-probability reversals.
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positively correlated with the number of rewards obtained by each subject (rho=0.67, P<0.001), suggesting 153 
that subjects who learned a model of the task obtained rewards at a higher rate.  Furthermore, we have 154 
previously shown that, when transition probability estimates are updated based on experienced state 155 
transitions, as is the case here, model-based agents tend to repeat the same choice after common 156 
transitions, producing a positive coefficient for state transition as a predictor of stay probability42. Increased 157 
loading on the state transition predictor thus provides added support for development of model-based 158 
control with task experience between sessions 1 and 3.  While key-press reaction times at the second-step 159 
became faster overall between session 1 and 3 (main effect of session P<0.0001, repeated measures 160 
ANOVA), this was more pronounced following common than rare transitions (session-transition interaction 161 
P=0.008; Figure 2e).   162 

To further explore model-free and model-based control prior to receiving instructions, we fit RL models to 163 
data from sessions 1-3. Model-comparison combining data from sessions 1-3 indicated that a mixture model 164 
including model-free and model-based components fit data better than a purely model-free or a purely 165 
model-based model, as reflected by lower Bayesian Information Criteria (BIC) scores for the mixture model 166 

  

 

Figure 2.  Uninstructed behaviour is predominantly model-free.  a) Session 1 stay probability 
analysis showing the probability of repeating the first step choice on the next trial as a function of trial 
outcome (rewarded or not rewarded) and state transition (common or rare) across 67 healthy volunteers. 
Error bars indicate across subject standard error (SEM).  b) Stay probability for rewarded and non-
rewarded trials as a function of trial number in session 1. Shaded area shows across subject standard 
error.  c) Stay probabilities for session 3. d) Logistic regression analysis of how the outcome (rewarded 
or not), transition (common or rare) and their interaction, predict the probability of repeating the same 
choice on the subsequent trial. Dots indicate maximum a posteriori parameter values for individual 
subjects, bars indicate the population mean and 95% confidence interval of the mean. In this and other 
panels, blue indicates session 1 while red indicates session 3. e) Reaction times after common and rare 
transitions in session 1 and 3.   f) Comparison of mixture model fits between session 1 and session 3.  
Dots and bars are represented as in panel C. RL model parameters: MF: Model-free strength, MB: Model-
based strength, αQ: Value learning rate, λ: Eligibility trace, αT: Transition prob. learning rate, bias: Choice 
bias, pers.: Choice perseveration. In all figures significant differences are indicated as: * P<0.05, ** 
P<0.01, *** P<0.001.
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(Figure S2, left panel). Models that included a “bias” parameter, capturing bias towards the upper or lower 167 
first-step choice, and a “perseveration” parameter, capturing a tendency to repeat the previous choice, fit 168 
the data better than a model not including these parameters (Figure S2, right panel). To assess uninstructed 169 
learning effects, we compared parameter values of the fitted models for sessions 1 and 3.  The value 170 
learning rate increased significantly between session 1 and 3 (P=0.04, permutation test), but no other 171 
parameter changed significantly, including the strength of model-based control (Figure 2f). The discrepancy 172 
with increased loading on the ‘transition x outcome’ predictor in the stay-probability analysis may reflect 173 
lower statistical power to detect subtle strategy changes in the strongly non-linear and higher parameter 174 
count RL model.  This is supported by findings from model comparison for individual subjects between the 175 
mixture RL model and a simpler model-free RL model, indicating that only about 15% of subjects (10/67) 176 
had learned to use model-based RL at session 3 (likelihood ratio test, threshold P=0.05).  Overall, this data 177 
shows that model-free RL dominated initial human behaviour in this unfamiliar domain and remained the 178 
strongest influence on choice behaviour for most subjects over the 900 uninstructed trials. 179 

 180 

In OCD uninstructed behaviour is biased towards model-free control 181 

Ninety-five individuals with either OCD or other mood and anxiety disorders (Table 1) also completed the 182 
Fixed version of the simplified two-step task. In the stay probability analysis, when comparing session 1 183 
with session 3, the OCD group (n=46) did not show the increased influence of transition or transition-184 
outcome interaction that was seen in healthy controls (P=0.08 and P=0.71 respectively; Figure 3a, b). 185 
Instead there was an increased influence of trial outcome over uninstructed learning (P=0.001), not seen 186 
in controls, that may reflect enhanced model-free control with experience. However, in direct comparisons 187 
with healthy volunteers (n=67), session by group interaction was significant only for the transition-outcome 188 
interaction parameter (P=0.01), but not for the transition (P=0.6) or outcome parameters (P=0.2).   189 

As in healthy subjects, second-step reaction times were faster following common than rare transitions (main 190 
effect of transition, P<0.0001, repeated measures ANOVA; Figure 3c), and also faster in session 3 than 191 
session 1 (main effect of session, P=0.003). However, the session by transition interaction did not reach 192 
significance (P=0.2), indicating that for this group the effect of experience on RT did not differentiate 193 
between common and rare transitions. Directly comparing OCD and healthy volunteers, while individuals 194 
with OCD had slower reaction times overall (P=0.03, linear mixed model), interactions with group were not 195 
significant for session (P=0.9), transition (P=0.4), nor session by transition interaction (P=0.7). Finally, 196 
consistent with the stay probability analysis, RL mixture model fits to sessions 1 and 3 (Figure 3c) showed 197 
an increase in the influence of model-free action values on choice over learning (P=0.008, permutation 198 
test), that was not seen in healthy volunteers, with a trend toward significant session-by-group interaction 199 
(P=0.07).  200 

To investigate potential contributions of medication or of unspecific mood and anxiety symptoms for the 201 
findings in the OCD group, equivalent experiments and comparisons were performed in a sample of 202 
individuals with other mood and anxiety disorders (n=49). Here, in stay probability analysis (Figure 3e, f) 203 
we found an increased influence of trial outcome (P<0.001) and transition (P=0.01) with task experience, 204 
but not the transition-outcome interaction predictor (P=0.7). Second-step reaction times were faster 205 
following common than rare transitions (main effect of transition, P<0.0001, Figure 3g), and faster in session 206 
3 than session 1 (main effect of session, P<0.0001), but the session by transition interaction was not 207 
significant (P=0.4). Compared with the healthy volunteers, this group had slower second-step reaction times 208 
overall (main effect of group, P=0.03), but particularly on rare transition trials (transition by group interaction, 209 
P=0.03). Finally, RL model fits showed only an increased value learning rate (P=0.01), but no changes in 210 
the influence of model-free or model-based action values on choice over learning (Figure 3h). Importantly, 211 
there were no significant session by group interactions between these patients and healthy volunteers for 212 
the stay probability analysis or RL model fits. Overall, these data suggest a different pattern of learning from 213 
experience in individuals with OCD, with a failure to learn the task-transition structure and exhibit model-214 
based RL, but an increased influence of model-free action values. 215 
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Figure 3.  Uninstructed behaviour is biased towards model-free control in OCD. Data for individuals 
with OCD (n=46) is represented in panels a-c while that for individuals with other mood and anxiety 
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 216 

Explicit knowledge reduces model-free and increases model-based control. 217 

We next assessed how providing explicit information about the task structure changed behaviour, by 218 
comparing behaviour in sessions 3 and 4 in a group that received debriefing about task structure after 219 
session 3, and in another group that was not provided such information. To avoid ceiling effects in subjects 220 
who already acquired a model of the task, these analyses only included the 57 subjects for whom a 221 
likelihood ratio test indicated model-based RL was not being used significantly in session 3, as described 222 
above. Among these subjects, in session 4, more than 50% of those that were debriefed were identified by 223 
the likelihood-ratio test as using model-based RL (21/41), while in the absence of debriefing, only one 224 
subject became model-based (1/16; z=3.13, P=0.002, z-test for difference in proportions; Figure 4a, f). 225 
Consistently, debriefing strongly affected how events on each trial influenced the subsequent choice (Figure 226 
4b, c, g, h), with increased influence of state transition (P<0.001; session by group interaction P=0.03; 227 
permutation tests) and transition-outcome interaction (P<0.001; session by group interaction P=0.01) on 228 
stay probability.  229 

RL mixture model fits of pre and post debriefing data (Figure 4e, j) confirmed that the influence of model-230 
based action values on choice was increased by debriefing (P<0.001; session by group interaction P=0.01). 231 
Furthermore, the influence of model-free action values on choice reduced after debriefing (P=0.008), while 232 
value learning rates increased (P<0.001), though the session by group interactions were not significant 233 
(P=0.7 and P=0.6 respectively). In addition to modifying choice behaviour, debriefing increased differences 234 
in second-step key-press reaction times between common and rare transition trials (session-transition 235 
interaction P<0.0001, repeated measures ANOVA; Figure 4d), further supporting that the influence of state 236 
transition on RT in this task comprises both a motor component, which is independent of the use of model-237 
based RL, and a cognitive component which manifests when subjects are using model-based RL. No 238 
significant differences were found for any comparisons between sessions 3 and 4 in the no debriefing group 239 
(Figure 4f-j). 240 

Finally, among participants recruited in Lisbon, where neuropsychological data was available, we tested for 241 
correlations between test scores, namely from the Corsi block tapping test (assessing visuospatial working 242 
memory) and a Go/No-Go task (number of No-Go errors and reaction-time, assessing impulsivity), with 243 
several behavioural measures, specifically the outcome and transition-outcome interaction logistic 244 
regression predictor loadings, as well as the RL model parameters controlling the influence of model-free 245 
and model-based values on choice. Significant correlations were not found, neither among all healthy 246 
volunteers using data from session 3 (-0.27<r<0.31; 0.054<P<0.8), nor among the debriefing group using 247 
data from session 4 (-0.45<r<0.38; 0.07<P<0.8). 248 

disorders (n=49) are in panels d-f. (a, d) Stay probability analysis showing the probability of repeating 
the first step choice on the next trial as a function of trial outcome (rewarded or not rewarded) and state 
transition (common or rare). Error bars indicate the cross subject standard error of the mean (SEM). The 
left (blue) panel shows data from the first session, the right (red) panel shows data from session 3.  (b, 
e) Logistic regression analysis of how the outcome (rewarded or not), transition (common or rare) and 
their interaction, predict the probability of repeating the same choice on the subsequent trial. Dots indicate 
maximum a posteriori loading for individual subjects, bars indicate the population mean and 95% 
confidence interval on the mean. (c, f) Comparison of mixture model fits. Dots and bars are represented 
as in panels C and G. RL model parameters: MF, Model-free strength; MB, Model-based strength; αQ, 
Value learning rate; λ, Eligibility trace; αT, Transition probability learning rate; bias, Choice bias; pers., 
Choice perseveration.
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Figure 4. Explicit knowledge modifies the balance between model-based and model-free control.  
(a, f) Per-subject likelihood ratio test for use of model-based strategy on session 3 (left panel) and session 
4 (right panel) among 57 healthy volunteers that did not use model-based RL significantly in session 3, 
as indexed by a likelihood ratio test. Data were analysed separately for groups with (a) and without (f) 
debriefing. Y-axis shows difference in log likelihood between a mixture (model-free and model-based) 
RL model and a model-free only RL model, with blue bars indicating subjects for whom the test favours 
the latter model, and green bars the subjects using a mixture model, using a p<0.05 threshold for rejecting 
the simpler model. (b, g) Stay probability analysis showing the probability of repeating the first step choice 
on the next trial as a function of trial outcome (rewarded or not rewarded) and state transition (common 
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 249 

Explicit knowledge affects model-free value updates and choice perseveration 250 

Unexpectedly, the RL model also indicated that the eligibility trace parameter decreased after debriefing 251 
(P=0.004; session by group interaction P=0.03). This parameter controls the relative influence of the 252 
second-step state’s value and the trial outcome on updates to model-free first-step action values. Debriefing 253 
increased the influence of the second-step state value and decreased that of the trial outcome.  As there is 254 
no obvious reason why providing task structure information should change model-free eligibility traces, we 255 
hypothesized that this effect is in fact mediated by the influence of task structural knowledge on 256 
representation of the task state space. By telling subjects that the reward probabilities depend on the 257 
second-step state reached, these states are likely made more distinct and salient in their internal 258 
representation of the task, and hence better able to accrue value, which can then drive model-free updates 259 
of first step action values. Consistent with this interpretation, subjects who, following debriefing, had large 260 
increases in the strength of model-based control, indicating that they had correctly understood the task 261 
structure, also had a larger decrease in the eligibility trace parameter (r=-0.34, P=0.03; Figure S3).  262 

Debriefing also increased how often subjects repeated choices independent of subsequent trial events, as 263 
reflected by a significant increase in the ‘perseveration’ parameter of the RL model (P<0.001; session by 264 
group interaction P=0.001). This may result from information that reward probabilities on the left and right 265 
reversed only occasionally and are thus stable for extended periods of time. In this case, one would expect 266 
a reduction in perseveration across the course of each block, from shortly after a reversal, when reward 267 
probabilities are stable, to late in the block, when the next reversal is anticipated. Consistent with this 268 
hypothesis, we found that participants with larger post-debriefing increases in overall perseveration also 269 
had larger declines in perseveration within post-debriefing non-neutral blocks, from trials 10-20 (early) to 270 
30-40 (late; r=-0.35, P=0.02; Figure S3).  271 

Since all participants in the no debriefing group were recruited in Lisbon, while the debriefing group also 272 
included participants from the New York site, all analyses were repeated including only participants 273 
recruited in Lisbon, which did not affect the results qualitatively (data not shown). Furthermore, we tested 274 
for differences in learning or debriefing effects between the Lisbon and New York debriefing groups, and 275 
did not find any significant differences (Supplementary table sT1).  276 

 277 

Explicit knowledge increases model-based control in OCD 278 

In the 41 of 46 individuals with OCD that were model-free at session 3, 37% (15 subjects) started using 279 
model-based RL after debriefing (Figure 5a, likelihood ratio test with threshold P=0.05).  Consistent with 280 
this, the stay probability analysis showed increased loading on both the transition (P=0.002) and transition-281 
outcome interaction (P<0.001) predictors, similarly to that observed in healthy controls (Figure 5b, c). 282 
Increased use of model-based RL after debriefing was confirmed by model fitting (Figure 5d), which showed 283 
increased influence of model-based action values on choice (P<0.001), and a trend towards reduced 284 
influence of model-free action values (P=0.06).  As in healthy volunteers, debriefing in participants with 285 
OCD increased differences in second step reaction times between common and rare transition trials 286 
(session-transition interaction P<0.0001, repeated measures ANOVA; Figure 5d), while overall reaction 287 
times remained slower than in healthy volunteers (P=0.045, linear mixed model).  Again similarly to healthy  288 

or rare). In these and remaining panels, red indicates session 3 (before instruction in the debriefing group) 
while yellow indicates session 4 (after instruction in the debriefing group).  Error bars indicated the cross 
subject standard error of the mean (SEM). (c, h) Logistic regression analysis of how the outcome 
(rewarded or not), transition (common or rare) and their interaction, predict the probability of repeating 
the same choice on the subsequent trial. Dots indicate maximum a posteriori parameter values for 
individual subjects, while bars indicate the population mean and 95% confidence interval on the mean. 
(d, i) Cumulative distribution of reaction times for common and rare transitions. (e, j) Comparison of 
mixture model fits. Dots and bars are as in panel c. RL model parameters: MF, Model-free strength; MB, 
Model-based strength; αQ, Value learning rate; λ, Eligibility trace; αT, Transition probability learning rate; 
bias, Choice bias; pers., Choice perseveration. 
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Figure 5. Explicit knowledge enhances model-based control in OCD. Among participants in the 
clinical groups, we analysed the effects of debriefing in 41 individuals with OCD (panels a-e) and 37 
individuals with other mood and anxiety disorders (panels f-j) that did not use model-based RL in session 
3. (a, f) Per-subject likelihood ratio test for use of model-based strategy on session 3 (left panel) and 
session 4 (right panel). Y-axis shows difference in log likelihood between mixture (model-free and model-
based) RL model and model-free only RL model, with blue bars indicating subjects for whom the test 
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 289 

volunteers, debriefing reduced the value of the eligibility trace parameter (P=0.01), and this decrease 290 
correlated with increased use of model-based RL (r=-0.56, P=0.0001; figure S3). Though debriefing 291 
increased choice perseveration in OCD subjects (P=0.02), the effect was significantly smaller than in 292 
healthy volunteers (session by group interaction P=0.04), and unlike in healthy volunteers, did not correlate 293 
with decreases in perseveration from early to late in blocks after debriefing (r=-0.09, P=0.5; figure S3).  This 294 
was the only significant interaction between debriefing and OCD diagnosis in direct comparisons with data 295 
from healthy volunteers for stay probability analysis and RL model fits. 296 

In the group with other mood and anxiety disorders, among 37 subjects that were model-free at session 3, 297 
debriefing increased the influence of transition (P=0.002) and transition-outcome interaction (P<0.001) 298 
predictors on stay probability (Figure 5f, g), similarly to healthy volunteers and individuals with OCD. The 299 
RL model fit confirmed that debriefing increased the influence of model-based action values on choice 300 
(P<0.001), and reduced influence of model-free action values (P=0.016; Figure 5h).  As in the other groups, 301 
debriefing increased the difference in second-step reaction times between common and rare transition trials 302 
(P<0.0001), and there was no difference in reaction time effects between this group and healthy controls 303 
(P>0.3). Debriefing effects observed in healthy volunteers for the value learning rate and eligibility trace 304 
parameters were also replicated here (P=0.014 and P=0.04 respectively), with decrease in the latter again 305 
correlating with increased use of model-based RL (r=-0.45, P=0.005; figure S3). However, there was no 306 
effect of debriefing on choice perseveration (P=0.4; session by group interaction P=0.001), and no 307 
correlation across subjects between the debriefing effect on perseveration and post debriefing change in 308 
perseveration from early to late in blocks (r=-0.16, p=0.36).  This was the only significant session by group 309 
interaction for stay probability analysis and RL model fits. Overall, this suggests that, with the exception of 310 
model-free strength, that was not significantly reduced by debriefing in individuals with OCD, both clinical 311 
groups were influenced by debriefing similarly to healthy volunteers, with all groups equally able to use the 312 
information about task structure to employ a model-based strategy. 313 

To further explore potential effects of medication, we also tested for differences in RL strategies between 314 
the clinical groups recruited in Lisbon, the majority of whom were receiving pharmacological treatment 315 
(13/16 in OCD group, 14/16 in mood and anxiety disorders group), and the clinical groups recruited in New 316 
York, who were tested in the absence of such treatment. We found that debriefing reduced the strength of 317 
model-free RL and increased the value learning rate in treated, but not untreated, individuals with OCD 318 
(P=0.04 for group-debriefing interactions in both cases; Supplementary table sT2, Supplementary figure 319 
s4). Among individuals with other mood and anxiety disorders, significant differences were not found 320 
between Lisbon and New York samples (Supplementary table sT3). 321 

Finally, among clinical groups recruited in Lisbon, where neuropsychological data was available, we tested 322 
correlations between test scores from the Corsi block tapping test or a Go/No-Go task, and outcome or 323 
transition-outcome interaction logistic regression predictor loadings, as well as model-free or model-based 324 
the RL model parameters, as described above for healthy volunteers. While in the OCD group we did not 325 
find significant correlations (data not shown), in the with mood and anxiety disorder group there were 326 
significant positive correlations between reaction time in the Go/No-Go task and several measures of 327 

favours the model-free only model, and green bars the subjects using a mixture model, using a p<0.05 
threshold for rejecting the simpler model. (b, g) Stay probability analysis showing the probability of 
repeating the first step choice on the next trial as a function of trial outcome (rewarded or not rewarded) 
and state transition (common or rare). Error bars indicated the cross subject standard error of the mean 
(SEM). In this and all panels, red indicates session 3 (before instruction) while yellow indicates session 
4 (after instruction). (c, h) Logistic regression analysis of how the outcome (rewarded or not), transition 
(common or rare) and their interaction, predict the probability of repeating the same choice on the 
subsequent trial. Dots indicate maximum a posteriori loading for individual subjects, bars indicate the 
population mean and 95% confidence interval on the mean. (d, i) Cumulative distribution of reaction 
times for common and rare transitions. (e, j) Comparison of mixture model fits. Dots and bars are as in 
panel c. RL model parameters: MF, Model-free strength; MB, Model-based strength; αQ, Value learning 
rate; λ, Eligibility trace; αT, Transition probability learning rate; bias, Choice bias; pers., Choice 
perseveration.
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model-based control, namely the transition-outcome interaction predictors from sessions 3 (r=0.69; 328 
P=0.007), and 4 (r=0.54; P=0.048), and the fitted model-based strength parameter value from session 4 329 
(r=0.58; P=0.03). Other correlations were not significant. 330 

 331 

Discussion 332 

We developed a simplified two-step task to examine how model-based and model-free RL contribute to 333 
behaviour in healthy and clinical populations, when task structure must be learned directly from experience. 334 
This allowed for subsequent testing of modifications of behavioural strategies once information about task 335 
structure was provided. Uninstructed behaviour was initially model-free, with strong direct reinforcement of 336 
choices by rewards from the start of the first session, but no evidence of subjects using knowledge of task 337 
structure early on. In fact, even after extensive experience, model-based control emerged only in a minority 338 
of subjects. This is striking given the relative simplicity of the task and suggests that humans are surprisingly 339 
poor at learning causal models from experience when they lack prior expectations about task structure.  340 
When learning from experience, individuals with OCD were impaired in their use of model-based control 341 
and biased towards a model-free strategy. Providing explicit information about task structure strongly 342 
increased the use of model-based control, across all tested populations, including individuals with OCD, 343 
with additional unexpected effects on model-free action value updates and choice perseveration. The 344 
absence of a model-based control deficit in OCD following debriefing is surprising, given the compelling 345 
evidence for such deficits in the original two-step task. This raises questions about task properties 346 
underlying the different pattern of deficits and suggests the possibility that real-world deficits in OCD 347 
patients may be rather due to an excessive use of a model-free learning system. 348 

The increasing influence of model-based RL with experience contrasts with habit formation in rodent 349 
instrumental conditioning, where actions are initially goal-directed but become habitual with extended 350 
experience44, a process thought to involve a transition from model-based to model-free control4. This 351 
transition, and arbitration between model-based and model-free control more generally, has been proposed 352 
to occur through meta-cognitive mechanisms which assess whether the benefits of improved prediction 353 
accuracy are worth the costs of model-based evaluation4,12,13. The different trajectory in the current task 354 
likely results from a more complex state space that increases model uncertainty in early learning and makes 355 
model-based learning more demanding, and from ongoing changes in reward probability that prevent the 356 
model-free system from converging to accurate value estimates in late learning4. In fact, it has been recently 357 
suggested that performance during initial stages of action selection tasks may be primarily based on trial-358 
and-error exploration, with progression towards model-based RL occurring in intermediate stages, as 359 
subjects acquire a model of the environment45.  360 

Our finding that model-free RL dominates uninstructed behaviour on a two-step task contrasts with recent 361 
arguments from Silva & Hare32 that humans are primarily model-based learners on two-step tasks, and that 362 
apparent model-free behaviour is in fact model-based control using muddled or incorrect task models.  We 363 
cannot rule out the possibility that some apparently model-free behaviour at later uninstructed sessions in 364 
our task was in fact model-based control with an incorrect model. However, we do not think this is a 365 
plausible overall explanation for the observed predominance of model-free behaviour prior to instructions. 366 
Firstly, because stay probabilities at session one showed a strong main effect of outcome but no transition-367 
outcome interaction, i.e. the canonical picture of a model-free agent. This is not consistent with Silva and 368 
Hare’s simulations of agents with muddled models, which show a strong effect of transition-outcome 369 
interaction32. Secondly, our subjects showed a direct reinforcing effect of reward on first-step choice from 370 
their very first interactions with the task. It does not appear likely that subjects almost instantly acquire 371 
muddled models of the task which happen to produce the exact effect predicted by model-free 372 
reinforcement. Rather, we propose that, consistent with findings as early as Thorndike’s law of effect46, 373 
rewards in our task had a direct reinforcing effect on actions performed shortly prior to their being obtained. 374 
While these findings provide evidence that subjects use model-free control in unfamiliar domains, this 375 
speaks only indirectly to the question of whether model-free RL or muddled models underlie apparent 376 
model-free behaviour in the original two-step task.  377 

Providing explicit information about task structure strongly boosted the influence of model-based RL and 378 
reduced the influence of model-free RL.  This complements Silva and Hare’s findings that model-based 379 
control is increased by making instructions more complete and embedding them in a narrative to make 380 
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them easier to remember and understand.  Such instruction effects are consistent with meta-cognitive cost-381 
benefit decision making, since an accurate model of the task structure will boost the estimated accuracy of 382 
model-based predictions and hence the expected payoffs from model-based control. Our findings also build 383 
on extensive literature examining how instruction and experience interact to determine human behaviour, 384 
in tasks that do not discriminate model-free and model-based control. Early work examining instruction 385 
effects on operant conditioning found that after explicit information about the schedule of reinforcement, 386 
responses match the contingencies explained to subjects (e.g. fixed interval, variable interval or fixed ratio), 387 
even when these differ substantially from the actual contingencies33–35. In common with our study, these 388 
results emphasize that humans learn about task structure much more readily from explicit information than 389 
via trial and error learning. More recent work has focused on the effect of advice, i.e. informing subjects 390 
that one option is particularly good or bad, on reward guided decision making in probabilistic settings38,39. 391 
Such advice impacts not only initial estimates of how good or bad different options are, but also modifies 392 
subsequent learning, by up-weighting and down-weighting outcomes. Whether such bias effects extend to 393 
learning about task structure, in addition to simple reward learning, is an open question for further work.  394 
Functional neuroimaging has also shown that instructions change responses to outcomes in the striatum, 395 
ventromedial prefrontal cortex and orbitofrontal cortex, potentially mediated by representations of instructed 396 
knowledge in the dorsolateral prefrontal cortex37,40,47. Our task provides a potential tool for extending such 397 
mechanistic investigation of instruction effects into the domain of task structure learning and model-based 398 
RL. 399 

Our findings may have translational relevance for OCD. Prior studies have shown that individuals with OCD, 400 
as well as healthy volunteers with self-reported OCD-like symptoms, have deficits in model-based control 401 
in the original two-step task28,30. There is also data showing that these findings reflect a transdiagnostic 402 
compulsivity dimension, rather than an OCD-specific characteristic30,48. Consistent with these reports, 403 
comparing OCD subjects with healthy volunteers we found evidence for impaired acquisition of model-404 
based control, and increased influence of model-free values, when learning directly and exclusively from 405 
experience. No difference was found in comparisons between healthy volunteers and individuals with other 406 
mood and anxiety disorders during uninstructed experience. Surprisingly, following debriefing we did not 407 
observe deficits in the ability of OCD subjects to adopt a model-based strategy, demonstrating that, under 408 
some conditions, individuals with OCD recruit model-based control as readily as healthy volunteers, which 409 
is of particular interest given the established efficacy of cognitive-behavioural therapy (CBT) in the treatment 410 
of OCD49. The evidence for increased influence of model-free values prior to instructions rather suggests 411 
that in OCD there may be a bias towards increased use of model-free RL, which is consistent with the view 412 
that OCD may be driven by an hyperactive habit system28,50,51. Potentially relevant regarding this 413 
hypothesis, while debriefing had no effect on use of model-free RL in non-medicated patients, this was 414 
reduced after debriefing in treated patients, with learning rates increased in medicated but not unmedicated 415 
participants with OCD. Treated OCD subjects were thus, in these respects, closer to healthy subjects. 416 
Although it has been shown that, in OCD subjects, cognitive-behavioural therapy does not change use of 417 
model-based control in the original two-step task52, our results suggest that pharmacological treatment may 418 
have an effect on the ability to suppress model-free control and modify behaviour once a correct model is 419 
acquired. We did make a trend observation that the influence of model-free values on choices increases 420 
with experience in OCD, but not in healthy volunteers (group difference: P = 0.07). Given the clinical 421 
relevance of this observation, it would be valuable to attempt a formal replication, potentially using more 422 
extensive training in studies including clinical samples.  423 

There are substantial differences between our paradigm and the original two-step task, that may explain 424 
the different pattern of deficits observed in individuals with OCD. Our task is structurally simpler due to 425 
having no choice at the second-step, which will reduce working memory load and hence make model-based 426 
control easier. Indeed, while in the original two-step task working memory capacity is correlated with the 427 
use of a model-based strategy19,20, we did not find any such correlations here, neither in healthy volunteers 428 
nor in clinical populations. The fact that subjects in our task have extensive prior experience before being 429 
told its structure may also help them understand or remember this information when it is provided. 430 
Furthermore, in our task, actions and states were differentiated by location rather than identity of visual 431 
stimuli, and these locations were fixed across trials rather than randomized as in the original two-step task.  432 
This allows model-free RL operating over spatial-motor representations, as has been demonstrated by 433 
others53, to contribute more meaningfully to choice. Fixed spatial-motor contingencies also permit of use of 434 
action-outcome, rather than stimulus-outcome, mappings for model-based control, with the former thought 435 
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to preferentially recruit the anterior cingulate cortex, rather than the OFC54,55. They may also underpin our 436 
observation of reaction-time differences following common and rare transitions, even when choices were 437 
model-free, that is consistent with a recent report that motor actions are distinct according to state 438 
transitions, even when choice is model-free56. Finally, unlike the original two-step task, where model-based 439 
and model-free RL achieved similar reward rates42,43, here use of model-based RL positively correlated 440 
with reward rate, generating a desirable trade-off between performance and cognitive effort that may 441 
influence arbitration between strategies43. 442 

In addition to increasing model-based control, debriefing had unexpected effects on model-free value 443 
updates, increasing the influence of second-step state values relative to trial outcomes on model-free first-444 
step action values. This effect was robust and replicated in both clinical groups and healthy volunteers.  We 445 
hypothesized that this was mediated by effects of debriefing to modify internal representations of the task 446 
state-space. Knowledge that the reward probability depended on the second-step state that was reached 447 
likely made internal representation of these states more salient and differentiated, and hence better able to 448 
accrue value, and thus driving model-free learning at the first step. Consistent with our hypothesis, subjects 449 
who became more strongly model-based following debriefing - indicating that they had acquired a correct 450 
model of the task, showed larger changes in model-free value updates. This result emphasizes that model-451 
free RL operates over an internal representation of the states of the external world that must be learnt from 452 
sometimes ambiguous experience and is malleable in the face of new information57. A second unexpected 453 
effect of debriefing was an increased tendency to repeat choices, as indexed by the RL model’s 454 
perseveration parameter. We hypothesized that this effect was mediated by explicit knowledge that the 455 
reward probabilities changed only occasionally. Consistent with this hypothesis, post-debriefing increases 456 
in perseveration correlated with decreases in perseveration over the course of each block.  It thus seems 457 
that, after debriefing, subjects inferred the occurrence of a reward probability reversal, and expected 458 
stability in the trials immediately following. These two unexpected findings show that the ‘model’ of a task 459 
that may be acquired through explicit information comprises not just the action-state contingencies that are 460 
required for model-based RL, but also beliefs about which distinct states of the environment are relevant 461 
for behaviour, and how the world may change over time, both of which can influence ‘model-free’ value 462 
learning. It is also important to note that the most significant difference between clinical populations and 463 
healthy volunteers following debriefing was that, while the latter became more perseverative in their 464 
choices, this effect was smaller in OCD, absent in individuals with other mood and anxiety disorders, and 465 
did not correlate in either patient population with changes in perseveration from early to late in post-466 
debriefing blocks. This evidence that inference based updating was impaired in OCD and other psychiatric 467 
diagnoses is particularly interesting given that the orbitofrontal cortex, which is consistently dysfunctional 468 
in OCD patients58–60, is thought to build cognitive maps needed to infer task states that are not directly 469 
observable from sensory input61.   470 

We should note a number of limitations and directions for future studies. First, as well as standard blocks, 471 
in which transition probabilities were asymmetric, the task included neutral blocks with equal reward 472 
probabilities on the left and right sides. For comparison with the original two-step task, it would be interesting 473 
to assess the influence of the latter on the dominance of model-free control in the uninstructed case. 474 
Equally, it would be worth looking parametrically at the effect of instructions as a function of the amount of 475 
uninstructed experience in our task. Second, since prior work has identified that symptom dimensions can 476 
be a better predictor of behavioural phenotypes than clinical diagnoses, applying our task with dimensional 477 
methods in large online samples could provide further insight into clinical differences in learning and 478 
instruction effects48. Finally, although we know of no study showing a positive correlation between years of 479 
education and use of model-based or model-free control, the small but significant difference in terms of 480 
education between healthy volunteers and individuals with the mood and anxiety disorders might limit the 481 
comparisons between these samples. We did observe substantial heterogeneity across subjects in 482 
uninstructed behaviour, and it is likely that increased variability is an inherent feature of uninstructed tasks 483 
that may complicate assessing group differences.   484 

In summary, we developed a new sequential decision task which dissociates the effects of uninstructed 485 
experience and explicit information on RL strategy.  We found that model-free RL dominates initial 486 
behaviour and maintains a strong influence throughout uninstructed learning, with model-based RL 487 
emerging only in a subset of individuals prior to receiving task structure information, and to a lesser extent 488 
in individuals with OCD. Receiving such information strongly increased model-based control, both in healthy 489 
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individuals and those with OCD and other mood and anxiety diagnoses. Use of this new task to dissociate 490 
effects of implicit and explicit information on RL strategy thus offers further insight into the content of 491 
learning and the imbalance between RL systems in neuropsychiatric disorders.  492 
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Methods 528 

 529 
Participants and Testing Procedures 530 
The research protocol was conducted in accordance with the declaration of Helsinki for human studies of 531 
the World Medical Association and approved by the Ethics Committees of the Champalimaud Centre for 532 
the Unknown, NOVA Medical School and Centro Hospitalar Psiquiátrico de Lisboa (CHPL), and the 533 
Institutional Review Board of the New York State Psychiatric Institute (NYSPI). Written informed consent 534 
was obtained from all participants. Clinical samples were recruited at the Champalimaud Clinical Centre 535 
(CCC), CHPL and the NYSPI. In each of these centres, individuals with OCD were recruited from clinical 536 
or research databases. A mood and anxiety disorder control group was recruited randomly from patient 537 
lists (CCC and CHPL), or sequentially (NYSPI), among individuals with the following diagnoses: major 538 
depressive episode or disorder, dysthymia, bipolar disorder, generalized anxiety disorder, post-traumatic 539 
stress disorder, panic disorder or social anxiety disorder. Healthy controls were recruited sequentially as a 540 
convenience sample of community-dwelling participants and tested at the same locations. 541 

Following consent, each participant was screened for the presence of exclusion criteria using a clinical 542 
questionnaire assessing history of: acute medical illness; active neurological illness; clinically significant 543 
focal structural lesion of the central nervous system; history of chronic psychosis, dementia, developmental 544 
disorders with low intelligence quotient or any other form of cognitive impairment and illiteracy. Active 545 
psychiatric illness, including substance abuse or dependence, was also an exclusion criterion, with the 546 
exception of the diagnoses defining inclusion in the OCD and the mood and anxiety groups. In the absence 547 
of exclusion criteria, each participant then performed the simplified two-step task (see below).  548 

Participants also performed a battery of structured interviews, scales and self-report inventories, including 549 
the MINI Neuropsychiatric Interview62, the Structured Clinical Interview for the DSM-IV63, the Yale-Brown 550 
Obsessive-Compulsive Scale (Y-BOCS)64,65 and the State-Trait Anxiety Inventory (STAI)66. As the groups 551 
recruited in Lisbon were assessed using the Y-BOCS-II while the groups recruited in New York were 552 
assessed using the original Y-BOCS, we converted the Y-BOCS-II score into original Y-BOCS score by 553 
transforming each item which was scored as 6 into a score of 565,67. In the groups recruited in Lisbon, the 554 
Beck Depression Inventory-II (BDI-II)68 was also applied to assess depressive symptoms, the Corsi block-555 
tapping task to assess working memory69 and a Go/No-Go task to assess impulsivity70, while in New York, 556 
the Depression Anxiety Stress Scales (DASS)71 were applied to assess symptoms of depression, anxiety 557 
and stress. Group differences in sociodemographic and psychometric measures were tested using one-558 
way ANOVA for continuous variables (with Tukey’s HSD for multiple comparisons) and Pearson’s chi-559 
squared for categorical variables. Correlations between neuropsychological test measures (Corsi; Go/No-560 
GO) and the simplified two-step task measures were performed using Pearson’s product moment 561 
correlation coefficient. 562 

 563 

Simplified two-step task 564 
The simplified two-step task was implemented in MATLAB R2014b using Psychtoolbox (Mathworks, Inc., 565 
Natick, Massachusetts, USA). The task consisted of a self-paced computer interface with 4 circles always 566 
visible on the screen: 2 central circles (upper and lower) flanked by two side circles (left and right) (Figure 567 
1). Each circle was coloured yellow when available for selection, and black when unavailable, and could be 568 
selected by pressing the corresponding arrow key (up, down, left or right) on the computer keyboard. Each 569 
trial started with both of the central circles turning yellow, prompting a choice between the two (Figure 1a). 570 
This first step choice then activated one of the side circles in a probabilistic fashion, according to a structure 571 
of transition probabilities described below (Figure 1b). The active side circle could be selected with the 572 
corresponding arrow key, resulting either in reward (indicated by the circle changing to the image of a coin) 573 
or no reward (indicated by the circle changing to black). The reward probabilities on the right and left side 574 
changed in blocks that were either neutral (p=0.4 on each side) or non-neutral (p=0.8 on one side and 575 
p=0.2 on the other; Figure 1c). Changes from non-neutral blocks were triggered based on each subject’s 576 
behaviour, occurring 20 trials after an exponential moving average (tau = 8 trials) crossed a 75% correct 577 
threshold. In half of the cases this led to the other non-neutral block (reward probability reversals), and the 578 
other half to a neutral block. Changes from neutral blocks occurred with 10% probability on each trial after 579 
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the 40th trial of that block, and always led to the non-neutral block that did not precede that neutral block. 580 
All participants performed 1200 trials on the same day, divided in 4 sessions of 300 trials each. 581 

 582 

We ran two variants of the task which differed with respect to whether the transition probabilities linking the 583 
first-step actions to the second step states were fixed or underwent reversals. In both cases these 584 
probabilities were defined such that choosing one of the central circles (e.g. high) would cause one of the 585 
side circles (e.g. left) to turn yellow with high probability (p=0.8 – common transition), while causing the 586 
other side circle to turn yellow only in a minority of trials, i.e., with low probability (p=0.2 – rare transition). 587 
Choosing the other central circle would lead to common and rare transitions to the opposite sides. In the 588 
Fixed task, the transition probabilities were fixed for each individual throughout the entire task (e.g., 589 
common transitions for high-left and low-right, and rare transitions for high-right and low-left). In the 590 
Changing task, the transition probabilities underwent reversals on 50% of reward probability block changes 591 
after non-neutral blocks, such that the common transition became rare and vice versa (Figure 1b). In an 592 
initial group of healthy volunteers recruited in Lisbon, subjects were randomized between the two versions 593 
of the task. In all clinical samples as well as healthy volunteers from New York, however, only the Fixed 594 
task was used. 595 

 596 

Prior to starting the task, subjects were given minimal information about task structure. They were only told 597 
that arrow keys could be used to interact with the screen, and that the image of a coin signalled accrual of 598 
a monetary reward.  To test how providing explicit information about the task structure affected behaviour, 599 
debriefing was provided between the 3rd and the 4th sessions in some participants, with the 4th session of 600 
the task performed immediately after debriefing. Among healthy volunteers recruited in Lisbon and 601 
randomized between the two versions of the task, debriefing was performed in 17 participants performing 602 
the Fixed version and in 16 participants performing the Changing version of the task. In all other samples, 603 
debriefing was performed for everyone. Please see supplementary material for the specific information 604 
provided to subjects prior to the task and during debriefing. 605 

 606 
Data analysis 607 
Data analysis was performed using Python (Python Software Foundation, http://python.org) and SPSS 608 
(Version 21.0, SPSS Inc., Chicago, IL, USA), and centred on three main analyses of behaviour on the task: 609 
reversal analysis, logistic regression analyses of stay probability, and RL model comparison and fitting. The 610 
reversal analysis assessed overall task performance according to the average first step choice trajectory 611 
around reward probability reversals between non-neutral blocks, from which we extracted two measures. 612 
One was the fraction of correct choices at the end of the block before the reversal, with correct defined as 613 
the first step choice with a common transition to the side (i.e., state), with highest reward probability. The 614 
second measure was the time constant of adaptation to the reversal, estimated by a least squares 615 
exponential fit to the cross subject mean choice trajectory following the reversal. For the Changing version 616 
of the task, reversal analysis was performed according to the average trajectory for reversals in both 617 
transition and reward probabilities. Importantly, while reversal analyses provide information about how well 618 
subjects are able to track which option is correct, they do not differentiate between use of model-free and 619 
model-based strategies. 620 

 621 

The first analysis used to assess model-free vs. model-based behavioural strategies was an analysis of 622 
‘stay-probability’11,16,25,26,17–24, defined as the probability of repeating the first-step choice on any given trial 623 
as a function of the outcome (rewarded or not) and transition (common or rare) on the previous trial. In 624 
addition to plotting raw stay probabilities, we analysed the effect of trial events on the subsequent choice 625 
using a logistic regression model with several binary predictors.  The outcome, transition and transition-626 
outcome interaction predictors modelled the influence of the previous trial’s outcome, transition and their 627 
interaction on the probability of repeating the previous first step choice.  We additionally included a bias 628 
predictor capturing bias towards the upper or lower circle, and a correct predictor, which modelled the 629 
influence of whether the previous trials choice was correct (i.e. high reward probability) on the probability 630 
of repeating that choice. The latter prevents spurious loading on the transition-outcome interaction 631 
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predictor, which has been described in two-step tasks with high contrast between good and bad options, 632 
due to correlation between action values at the start of the trial and subsequent trial events42.  633 

 634 

RL modelling 635 

Additional analyses of behavioural strategy were obtained by fitting reinforcement learning models to 636 
observed behaviour.  We first detail the model used for the main analyses then a set of alternative models 637 
that were rejected by model-comparison. The model followed those typically used in analysis of the original 638 
two-step task11 in combining a model-based and a model-free RL component, both with value estimates 639 
contributing to behaviour. The model-free component maintained estimates of the values 𝑄𝑚𝑓(𝑎) of the 640 
first-step actions (up or down), and 𝑉(𝑠) of the second step states (left and right).   These values were 641 
updated as: 642 

 𝑄𝑡+1
𝑚𝑓 (𝑎) = (1 − 𝛼𝑄)𝑄𝑡

𝑚𝑓(𝑎) + 𝛼𝑄(𝜆𝑟 + (1 − 𝜆)𝑉𝑡(𝑠)) 643 

 𝑉𝑡+1(𝑠) =  (1 − 𝛼𝑄)𝑉𝑡(𝑠) +  𝛼𝑄𝑟 644 

Where 𝑟 is the reward obtained on trial t (1 or 0), 𝛼𝑄is the value learning rate and 𝜆 is the eligibility trace 645 
parameter.  646 

The model-based component maintained estimates of the transition probabilities linking the first step 647 
actions to the second step states (𝑃(𝑠2|𝑎1)), updated as: 648 

 𝑃𝑡+1(s|𝑎) = (1 − 𝛼𝑇)𝑃𝑡(s|a) + 𝛼𝑇  649 

𝑃𝑡+1(𝑠′|a) = (1 − 𝛼𝑇)𝑃𝑡(s′|a) 650 

where 𝛼𝑇 is a learning rate for transition probabilities, s is the second step state reached and 𝑠′ the second 651 
step state not reached on trial t.  652 

At the start of each trial, model-based action values were calculated as: 653 

𝑄𝑡
𝑚𝑏(𝑎) = ∑ 𝑃(𝑠𝑗|a)𝑄𝑚𝑓(𝑠𝑗)

𝑗

 654 

Model-free and model-based action values were combined with perseveration and bias to given net action 655 
values, calculated as: 656 

 𝑄𝑡
𝑛𝑒𝑡( 𝑎𝑖) =  𝐺𝑚𝑓𝑄𝑡

𝑚𝑓( 𝑎𝑖) + 𝐺𝑚𝑏𝑄𝑡
𝑚𝑏(𝑎) + 𝑏𝐵𝑖 + 𝑝𝑃𝑖 657 

Where 𝐺𝑚𝑓 and 𝐺𝑚𝑏 are parameters controlling, respectively, the strength of influence of model-free and 658 
model-based action values on choice, b is a parameter controlling the strength of choice bias, 𝐵𝑖 is a 659 
variable which takes a value of 1 for the high action and zero for the low action, p is a parameter controlling 660 
the strength of choice perseveration, 𝑃𝑖 is a variable which takes a value of 1 if action 𝑎𝑖 was chosen on the 661 
previous trial and 0 if it was not.  662 

The model’s probability of choosing action 𝑎𝑖 was given by 𝑃( 𝑎𝑖) =  
𝑒𝑄𝑛𝑒𝑡( 𝑎𝑖)

∑ 𝑒
𝑄𝑛𝑒𝑡( 𝑎𝑗)

𝑗

. 663 

For model comparison, several reduced variants were considered. For the Model-free only variant the 664 
model-based component was removed such that the net action values were: 665 

 𝑄𝑡
𝑛𝑒𝑡( 𝑎𝑖) =  𝐺𝑚𝑓𝑄𝑡

𝑚𝑓( 𝑎𝑖) + 𝑏𝐵𝑖 + 𝑝𝑃𝑖.  666 

For the Model-based only variant the model-free component was removed such that the net action values 667 
were: 668 

 𝑄𝑡
𝑛𝑒𝑡( 𝑎𝑖) =  𝐺𝑚𝑏𝑄𝑡

𝑚𝑏(𝑠1, 𝑎𝑖) + 𝑏𝐵𝑖 + 𝑝𝑃𝑖.  669 

For the No bias variant the bias strength variable 𝑏 was set to zero. For the No perseveration variant the 670 
perseveration strength variable 𝑝 was set to zero. 671 
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Hierarchical modelling: 672 

Fits of both the logistic regression model and reinforcement learning models to populations of subjects used 673 
a Bayesian hierarchical modelling framework 72, in which parameter vectors 𝒉𝑖 for individual sessions were 674 
assumed to be drawn from Gaussian distributions at the population level with means and variance 𝜽 =675 
{𝝁, 𝜮}.  The population level prior distributions were fit to their maximum likelihood estimate: 676 

𝜽𝑀𝐿 =  𝑎𝑟𝑔𝑚𝑎𝑥𝜽{𝑝(𝐷|𝜽) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜽{∏ ∫ 𝑑 𝒉𝑖  𝑝(𝐷𝑖|𝒉𝑖)𝑝(𝒉𝑖|𝜽)

𝑁

𝑖

} 677 

Optimization was performed using the Expectation-Maximization algorithm with a Laplace approximation 678 
for the E-step at the k-th iteration given by: 679 

𝑝(𝒉𝑖
𝑘|𝐷𝑖) = 𝑁(𝒎𝑖

𝑘, 𝑽𝑖
𝑘) 680 

𝒎𝑖
𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝒉{𝑝(𝐷𝑖|𝒉)𝑝(𝒉|𝜽𝑘−1)} 681 

Where 𝑁(𝒎𝑖
𝑘 , 𝑽𝑖

𝑘) is a normal distribution with mean 𝒎𝑖
𝑘 given by the maximum a posteriori value of the 682 

session parameter vector 𝒉𝑖 given the population level means and variance 𝜽𝑘−1, and the covariance 𝑽𝑖
𝑘 683 

given by the inverse Hessian of the likelihood around 𝒎𝑖
𝑘.  For simplicity we assumed that the population 684 

level covariance 𝜮 had zero off-diagonal terms.  For the k-th M-step of the EM algorithm the population 685 
level prior distribution parameters 𝜽 = {𝝁, 𝜮} are updated as: 686 

𝝁𝑘 =  
1

𝑁
∑ 𝒎𝑖

𝑘

𝑁

𝑖=1

 687 

𝜮 =
1

𝑁
∑ [(𝒎𝑖

𝑘)
𝟐

+ 𝑽𝑖
𝑘]

𝑁

𝑖=1

− (𝝁𝑘)2 688 

Parameters were transformed before inference to enforce constraints: 689 

 0 <  { 𝐺𝑚𝑓 , 𝐺𝑚𝑏} 690 

0 < {𝛼𝑄 , 𝛼𝑇 , 𝜆} < 1 691 

95% confidence intervals on population means 𝝁 were calculated as  𝑐𝑖 = ±1.96√−1/𝐻𝑖 where 𝑐𝑖 is the 692 
confidence interval for parameter 𝑖 and 𝐻𝑖 is the 𝑖-th diagonal element of the Hessian at 𝜽𝑀𝐿 with respect 693 
to 𝝁. 694 

 695 

Model comparison:  696 

To compare the goodness of fit for hierarchical models with different numbers of parameters we used the 697 
integrated Bayes Information Criterion (iBIC) score. The iBIC score is related to the model log likelihood 698 
𝑝(𝐷|𝑀) as: 699 

log 𝑝(𝐷|𝑀) = ∫ 𝑑𝜽  𝑝(𝐷|𝜽)𝑝(𝜽|𝑀) 700 

≈ −
1

2
𝑖𝐵𝐼𝐶 = log 𝑝(𝐷| 𝜽𝑀𝐿) −

1

2
|𝑀|log |D| 701 

Where |M| is the number of fitted parameters of the prior, |D| is the number of data points (total choices 702 
made by all subjects) and iBIC is the integrated BIC score. The log data likelihood given maximum likelihood 703 
parameters for the prior log 𝑝(𝐷| 𝜽𝑀𝐿) is calculated by integrating out the individual session parameters: 704 

log 𝑝(𝐷| 𝜽𝑀𝐿) = ∑ 𝑙𝑜𝑔 ∫ 𝑑𝒉  𝑝(𝐷𝑖|𝒉)𝑝(𝒉|

𝑁

𝑖

𝜽𝑀𝐿) 705 
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≈ ∑ 𝑙𝑜𝑔
1

𝐾
∑ 𝑝(𝐷𝑖|𝒉𝑗)

𝐾

𝑗=1

𝑁

𝑖

 706 

Where the integral is approximated as the average over K samples drawn from the prior 𝑝(𝒉|𝜽𝑀𝐿).   707 

 708 

Permutation testing: 709 

Permutation testing was used to assess the statistical significance of learning and instruction effects on RL 710 
and logistic regression model fits, and the reversal analysis. To assess the effects of experience in the task 711 
we compared behavior between sessions 1 and 3, while to assess the effects of explicit knowledge we 712 
compared behavior between sessions 3 and 4 in the groups that did and did not receive instruction between 713 
these sessions. 714 

To test for a significant difference in behavioral parameter 𝑥 between conditions (e.g. session 1 vs 3), we 715 
evaluated the population mean value of the parameter for each conditions and calculated the difference 716 
∆x𝑡𝑟𝑢𝑒 between them.  We then constructed an ensemble of 5000 permuted datasets in which the 717 
assigments of sessions to the two conditions was randomised. Randomisation was performed within 718 
subject, such that the number of sessions from each subject in each condition was preserved. For each 719 
permuted dataset we re-ran the analysis and evaluated the difference in parameter 𝑥 between the two 720 
conditions, to give a distribution of ∆x𝑝𝑒𝑟𝑚, which in the limit of many permutations is the distribution of ∆x 721 
under the null hypothesis that there is no difference between the conditions. The two tailed P value for the 722 
observed difference is given by: 723 

𝑃 = 2 min (
M

𝑁
, 1 −  

M

𝑁
)  724 

Where N is the number of permutations and M is the number of permutations for which ∆x𝑝𝑒𝑟𝑚 > ∆x𝑡𝑟𝑢𝑒. 725 

To assess significant differences in learning or debriefing effects between clinical groups and healthy 726 
controls, and for differences in the healthy controls between groups who did and did not receive debriefing, 727 
we tested for a significant interaction between session number and group.  The significance of the 728 
interaction was assessed using a permutation test in which we evaluated the difference ∆g𝑡𝑟𝑢𝑒 = ∆x𝑖,𝑗

𝐴 −729 
∆x𝑖,𝑗

𝐵  where ∆x𝑖,𝑗
𝐴  is the difference in behavioural parameter 𝑥 between sessions i and j in group A, and ∆x𝑖,𝑗

𝐵  730 
is the difference in behavioural parameter 𝑥 between sessions i and j in group B.  We then constructed an 731 
ensemble of 5000 permuted datasets by randomly permuting subjects between groups while preserving 732 
the total number of subjects in each group.  We assessed ∆g𝑝𝑒𝑟𝑚 = ∆x𝑖,𝑗

𝐴 − ∆x𝑖,𝑗
𝐵  for each permuted dataset 733 

and calculated P values for the interaction as above.  734 
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Table 1 – Sociodemographic and psychometric characterization of study samples 909 

 HV  OCD  

 

MA 

Sex (% males) 33% 41% 31% 

Age (years) 30.4 (7.1) 34.1 (12.4) 32.6 (13.1) 

Education (years completed) 16.2 (2.5) 15.1 (2.9) 14.5 (4.1) 

YBOCS total score 1.5 (3.5) 23 (6.4) 2.7 (4.8) 

Y-BOCS obsessions 0.6 (1.8) 11 (3.3) 2.1 (3.7) 

Y-BOCS compulsions 0.9 (1.9) 12 (3.5) 0.6 (1.9) 

STAI-state score 31.5 (8.1) 47.6 (15.4) 47.9 (11.3) 

STAI-trait score 30.8 (8) 56.6 (12) 53.1 (10.1) 

BDI-II scorea 4 (4.8) 21.1 (16.2) 24.8 (12.1) 

DASS depression scoreb 1.5 (1.8) 7.8 (5.6) 7.9 (4.4) 

DASS anxiety scoreb 0.6 (1.2) 5.2 (4.4) 5.8 (4.3) 

DASS stress scoreb 2.5 (2.2) 10.4 (4.7) 8.5 (4.5) 

Corsi block tapping  test - total spana 16 (3.1) 15.4 (3.9) 13.1 (2.5) 

No-Go errors in Go/No-Go task (n) 11.2 (7.4) 16 (12.5) 21.2 (11.6) 

Reaction time in Go/No-Go task (ms) 470 (44.4) 517 (55.1) 510 (55.1) 

 910 

HV = Healthy volunteers; OCD = Obsessive-compulsive disorder; MA = Mood and anxiety disorders. a - 911 
only in Lisbon groups; b - only in New York groups; YBOCS-II = Yale-Brown Obsessive-Compulsive 912 
Scale-II; STAI = State-Trait Anxiety Inventory; BDI-II = Beck Depression Inventory; DASS = Depression 913 
Anxiety Stress Scales. Data presented are mean values (standard deviations). 914 
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Supplementary results 924 

 925 

Changing transition probabilities inhibit model-based control 926 

In 42 healthy volunteers recruited in Lisbon, we tested a version of the task in which transition probabilities 927 
linking the first step actions and second-step states underwent periodic reversals. In this Changing version 928 
of the task (Figure S5), subjects were still able to successfully track which first step action was correct, 929 
choosing the correct option at the end of block well above chance level, (session 1: 0.77, session 3: 0.76; 930 
Figure S5c), and adapting to reversals in reward probabilities with a similar trajectory relative to the Fixed 931 
task (exponential fit tau, session 1: 22.8 trials, session 3: 14.0 trials). Again, neither of these measures of 932 
overall performance changed significantly between sessions 1 and 3 (P>0.3). 933 

However, unlike in the Fixed task, the stay-probability analysis did not show increased influence of transition 934 
and transition-outcome interaction in session 3 relative to session 1 (P=0.2 for both), consistent with no 935 
changes in the use of model-based RL. On the contrary, there was an increase in the influence of trial 936 
outcome (P=0.01), associated with a model-free direct reinforcement strategy11,42 (Figure 51a,b). Similarly 937 
to the Fixed task, there was a significant correlation between loading on the transition–outcome interaction 938 
parameter and the number of rewards obtained (rho=0.4, P<0.01). Model comparison indicated that the 939 
mixture and model-free-only RL models fitted the data much better than the model-based-only model, and 940 
that the difference in BIC scores between the mixture model and model-free-only model was negligible 941 
(ΔiBIC = 3; Figure S5d left panel). Again similarly to the Fixed task, the model including both “bias” and 942 
“perseveration” parameters fits the data better than a model lacking these parameters (Figure S5d, right 943 
panel).  For consistency with analysis of the Fixed task, we used the mixture model to look for differences 944 
in behaviour between sessions 1 and 3 but found no significant change in model parameters (Figure S5e).  945 
These data suggest that changes in the action-state transition probabilities prevented most subjects from 946 
learning a model-based strategy. 947 

In this version of the task, debriefing did not increase the use of model-based RL among subjects for whom 948 
a likelihood ratio test indicated model-based RL was not being used significantly in session 3 (n=36; Figure 949 
S6).  The fraction of subjects identified as using a model-based strategy at session 4 was the same in the 950 
debriefing and no-debriefing groups (debriefing group 2/12, no-debriefing group 4/24; z = 0, P=1, z-test for 951 
difference of proportions; Figure S2A, F). Subjects in the debriefing group adapted faster to reversals in 952 
session 4 than session 3 (P=0.03, Figure S6b), and the logistic regression analysis showed an increased 953 
influence of the trial outcome on subsequent choice in session 4 compared to 3 in the debriefing group 954 
(P=0.02, Figure S6d), but the session by group interaction did not reach significance in both cases (P=0.2 955 
and P=0.06 respectively).  The influence of the transition and transition-outcome interaction parameters on 956 
subsequent choice were unaffected by debriefing (P=0.99 and P=0.3 respectively, Figure S6d) and no 957 
parameters of the RL model differed significantly pre and post-debriefing (P>0.19, Figure S6e). As 958 
expected, no significant differences were observed in any analyses between sessions 3 and 4 in the no-959 
debriefing group (Figure S6g-j).  These results indicate that in the more complex Changing task, subjects 960 
either did not understand the debriefing or decided the effort of trying to use information about the task 961 
structure was not worthwhile. 962 

963 
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Supplementary table sT1 - Differences in learning and debriefing effects in healthy volunteers 964 
between the Lisbon and New York samples.  965 

 966 

 967 

 968 

 969 

 970 

 971 

 972 

 973 

 974 

 975 

 976 

 977 

aPermutation tests (5000 permutations) were used to assess differences in the fitted model parameter 978 
loadings between Fixed task Lisbon (n=40) and New York (n=27) samples in the effect of learning (defined 979 
as change between session 1 and 3) and debriefing (defined as change between session 3 and 4, taking 980 
only subjects who are MF at session 3). P-values for interactions between group and the effect of interest 981 
are shown.  982 

  983 

Model parameters Learning 
effectsa 

Debriefing 
effectsa 

Model-free strength (MF)  0.96 0.92 

Model-based strength (MB)  0.26 0.25 

Value learning rate (αQ) 0.37 0.56 

Eligibility trace (λ) 0.2 0.1 

Transition learning rate (αT) 0.14 0.62 

Choice bias 0.4 0.73 

Choice perseveration 0.69 0.32 
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Supplementary table sT2 - Differences in learning and debriefing effects in individuals with OCD 984 
between the Lisbon and New York samples.  985 

 986 

 987 

 988 

 989 

 990 

 991 

 992 

 993 

 994 

 995 

 996 

 997 

 998 

aPermutation tests (5000 permutations) were used to assess differences in the fitted model parameter 999 
loadings between Fixed task Lisbon (n=16) and New York (n=30) samples in the effect of learning (defined 1000 
as change between session 1 and 3) and debriefing (defined as change between session 3 and 4, taking 1001 
only subjects who are MF at session 3). P-values for interactions between group and the effect of interest 1002 
are shown. 1003 

  1004 

Model parameters Learning 
effectsa 

Debriefing 
effectsa 

Model-free strength (MF)  0.38 0.04 

Model-based strength (MB)  0.1 0.66 

Value learning rate (αQ) 0.88 0.04 

Eligibility trace (λ) 0.87 0.87 

Transition learning rate (αT) 0.95 0.24 

Choice bias 0.86 0.58 

Choice perseveration 0.17 0.79 
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Supplementary table sT3 - Differences in learning and debriefing effects in individuals with other 1005 
mood and anxiety disorders between the Lisbon and New York samples.  1006 

 1007 

 1008 

 1009 

 1010 

 1011 

 1012 

 1013 

 1014 

 1015 

 1016 

 1017 

 1018 

 1019 

aPermutation tests (5000 permutations) were used to assess differences in the fitted model parameter 1020 
loadings between Fixed task Lisbon (n=16) and New York (n=33) samples in the effect of learning (defined 1021 
as change between session 1 and 3) and debriefing (defined as change between session 3 and 4, taking 1022 
only subjects who are MF at session 3). P-values for interactions between group and the effect of interest 1023 
are shown. 1024 

  1025 

Model parameters Learning 
effectsa 

Debriefing 
effectsa 

Model-free strength (MF)  0.61 0.52 

Model-based strength (MB)  0.99 0.51 

Value learning rate (αQ) 0.64 0.84 

Eligibility trace (λ) 0.42 0.66 

Transition learning rate (αT) 0.96 0.58 

Choice bias 0.71 0.71 

Choice perseveration 0.25 0.39 
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Supplementary figure S1. Invalid key presses.  Top panels show the mean number of invalid 1026 
key presses per trial as a function of trial number,  Gaussian smoothed with an SD of 10 trials, 1027 
shaded area shows SEM across subjects.  Bottom panels show histogram of the mean number 1028 
of invalid presses per trial across the entire session for each subject. 1029 

 1030 

Supplementary figure S2. Model comparison.  Model comparison for sessions 1-3 of the 1031 
Fixed task.  Panels show the difference in BIC score relative to the best fitting model.  Left 1032 
panel, comparison of model-based (MB), model-free (MF) and MB-MF mixture (Mix) models.  1033 
Right panel, comparison of mixture model with bias parameter, perseveration parameter, and 1034 
bias + perseveration parameters. 1035 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2021. ; https://doi.org/10.1101/2020.09.06.20189241doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.06.20189241
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1036 

Supplementary figure S3. Debriefing effect correlations. Left panels – Correlation across subjects 1037 
between the effect of debriefing on subjects use of model-based RL (as assessed by the RL model’s 1038 
model-based weight parameter) and that on the RL model’s eligibility trace parameter.  Right panels – 1039 
Correlation between the effect of debriefing on subjects overall perseveration (as assessed by the RL 1040 
models perseveration parameter), and post debriefing, their change in perseveration from early to late in 1041 
blocks, assessed using logistic regression analysis of data from early (10-20 trials post block transition) 1042 
and late (30-40 trials) in each block. 1043 
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 1044 

Supplementary figure S4 – Comparison of debriefing effects in individuals with OCD between 1045 
Lisbon and New York Samples. For each RL model parameter, dots indicate maximum a posteriori 1046 
model parameter loading for individual subjects, bars indicate the population mean and 95% confidence 1047 
interval on the mean. For each model parameter, permutation tests were used to assess effect of 1048 
debriefing on the fitted loadings, separately for individuals with OCD recruited in New York (n=30), who 1049 
were tested in the absence of pharmacological treatment (top panel), and in Lisbon (n=16), the majority of 1050 
whom were under pharmacological treatment (bottom panel). These analyses were not performed in the 1051 
remaining groups, because significant group-debriefing interactions were found only for the OCD sample 1052 
(see Supplementary table sT1-3). Regarding the two variables for which such interactions were significant 1053 
(P=0.04 for both; Supplementary table sT2), debriefing was found to reduce the strength of model-free RL 1054 
(MF) and increase the value learning rate (αQ) in treated, but not untreated, individuals with OCD.  RL 1055 
model parameters: MF, Model-free strength; MB, Model-based strength; αQ, Value learning rate; λ, 1056 
Eligibility trace; αT, Transition probability learning rate; bias, Choice bias; pers., Choice perseveration. 1057 
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1058 
Supplementary figure S5. Learning effects in the Changing transition probabilities task. a) Stay 1059 
probability analysis showing the probability of repeating the first step choice on the next trial as a function 1060 
of trial outcome (rewarded or not rewarded) and state transition (common or rare). Error bars indicate the 1061 
cross subject standard error (SEM). The left panel shows data from the first session, the right panel shows 1062 
data from session 3.  b) Logistic regression analysis of how the outcome (rewarded or not), transition 1063 
(common or rare) and their interaction, predict the probability of repeating the same choice on the 1064 
subsequent trial. Positive loading on the ‘outcome’ predictor indicates a tendency to repeat rewarded 1065 
choices. Positive loading on the ‘transition’ predictor reflects a tendency to repeat choices followed by 1066 
common transitions. Positive loading on the ‘transition x outcome’ interaction predictor indicates a tendency 1067 
to repeat choices that were rewarded following a common transition, or that were not rewarded following a 1068 
rare transition. Dots indicate maximum a posteriori loadings for individual subjects, bars indicate the 1069 
population mean and 95% confidence interval on the mean. Statistical significance of differences in factor 1070 
loadings for each predictor between session 1 (blue) and 3 (red) were evaluated using permutation tests.  1071 
c) Mean first-step choice trajectories around reversals.  In this and all panels, blue indicates session 1 while 1072 
red indicates session 3. Dashed lines show exponential curves fitted to the average trajectories to obtain 1073 
estimates of the time-course of learning following reversals.  Confidence regions (mean ± cross subject 1074 
standard error) are represented by shaded areas.  d) Bayesian Information Criteria (BIC) model comparison 1075 
for sessions 1-3.  Left panel, comparison of model-based (MB), model-free (MF) and mixture (MF+MB) 1076 
models.  Right panel, comparison of mixture model with bias parameter, perseveration parameter, and bias 1077 
+ perseveration parameters.   e) Comparison of mixture model fits between session 1 and session 3. RL 1078 
model parameters: MF, Model-free strength; MB, Model-based strength; αQ, Value learning rate; λ, 1079 
Eligibility trace; αT, Transition probability learning rate; bias, Choice bias; pers., Choice perseveration. 1080 
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 1081 

Supplementary figure S6. Effects of explicit knowledge in the Changing transition probabilities 1082 
task. (a, f) Per-subject likelihood ratio test for use of model-based strategy on session 3 (left panel) and 1083 
session 4 (right panel). Data was analysed separately for groups with (A) and without (F) debriefing. Y-1084 
axis shows difference in log likelihood between mixture (model-free + model-based) RL model and model-1085 
free only RL model. Blue bars indicate subjects for which likelihood ratio test favours model-free only 1086 
model, green bars indicate subjects for which test favours mixture model, using a p<0.05 threshold for 1087 
rejecting the simpler model. We compared sessions 3 and 4 only in the subjects for whom a likelihood 1088 
ratio test indicated that model-based RL was not used in session 3.  (b, g) Mean first-step choice 1089 
trajectories around reversals. In these and all remaining panels, red indicates session 3 (before 1090 
instruction) while gold indicates session 4 (after instruction). Dashed lines show exponential curves fitted 1091 
to the average trajectories to obtain estimates of the adaptation time-course of learning following 1092 
reversals.  Confidence regions (mean ± across subject standard error) are represented by shaded areas.  1093 
(c, h) Stay probability analysis showing the probability of repeating the first step choice on the next trial as 1094 
a function of trial outcome (rewarded or not rewarded) and state transition (common or rare). Error bars 1095 
indicated the cross subject standard error of the mean (SEM). In each group data was analysed 1096 
separately for session 3 (red graph) and session 4 (gold graph).  (d, i) Logistic regression analysis of how 1097 
the outcome (rewarded or not), transition (common or rare) and their interaction, predict the probability of 1098 
repeating the same choice on the subsequent trial. (e, j) Comparison of mixture model fits between 1099 
session 3 (red) and session 4 (gold) in the group without instruction (left panels) and the group with 1100 
instruction (right panels).  RL model parameters: MF, Model-free strength; MB, Model-based strength; 1101 
αQ, Value learning rate; λ, Eligibility trace; αT, Transition probability learning rate; bias, Choice bias; 1102 
pers., Choice perseveration. 1103 

  1104 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2021. ; https://doi.org/10.1101/2020.09.06.20189241doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.06.20189241
http://creativecommons.org/licenses/by-nc-nd/4.0/


Information provided to study participants 1105 

 1106 

A) Information before task 1107 

 1108 

“You will now play a game in order to gain of as many rewards as possible. 1109 

Rewards will be represented in the screen as coins. Every time you get a coin, it will show up in the screen 1110 
and it will be added to your total number of rewards. The number of coins you get will determine the value 1111 
of the gift-card that you will receive at the end of your participation. 1112 

You will perform 1200 trials and in each trial you can get either one coin or no coin. At the end of those 1113 
1200 trials, 400 will be randomly chosen to count the final number of coins. 1114 

The minimum amount of money in your gift card will be 10 euros. For each coin that you get above 150 1115 
coins, you will get an increase of 20 cents in your gift card. Therefore, if you get 175 coins the amount will 1116 
be 15 euros, 200 coins correspond to 20 euros and 225 coins correspond to the maximum amount that the 1117 
gift-card can have, which is 25 euros. Amounts will be distributed rounded to the closer multiple of 5 euros. 1118 

At the top left corner of the screen, there will be a coin counter which shows how many coins you got in 1119 
each session. That number may not have direct correspondence with the final amount, since that amount 1120 
will be calculated using a random sample of trials. 1121 

You will play the game using the arrow keys after stimuli show up in the screen. 1122 

Each session of the game will last for approximately 15 minutes. Once the session is completed, a sentence 1123 
thanking you for your participation will show up in the screen. When that screen shows up you should leave 1124 
the room. 1125 

 1126 

 1127 

 1128 

 1129 

 1130 

 1131 

 1132 

 1133 

 1134 

 1135 

 1136 

 1137 

 1138 

 1139 

 1140 

 1141 

 1142 

 1143 

 1144 
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B) Debriefing – Fixed transition probabilities version 1145 

 1146 

We will now explain the structure of the game. 1147 

First the two central circles (upper and lower) are yellow, indicating that you can choose one of them. 1148 

 1149 

 1150 

If you press the upper arrow key, you will choose the upper circle. If you press the lower arrow key, you will 1151 
choose the lower circle. 1152 

After you choose the upper or the lower circle, one of the two side circles will light up, i. e., will turn yellow 1153 
(left or right). After you press the arrow key that corresponds to the lateral circle that lit up (left or right), a 1154 
coin may or may not appear. 1155 

The probability according to which the central circles give access to either one of the lateral circle also 1156 
follows some rules. 1157 

If you choose the upper circle, one of two different things can happen. Most of the times (actually 80% of 1158 
the times) the right side circle will light up. Rarely, the left side circle will light up. 1159 

If you choose the lower circle, most of the times (actually 80% of the times) the left side circle will light up. 1160 
On the remaining occasions, the right side circle will light up. 1161 

 1162 

 1163 

The left and right circles give access to the rewards, which are symbolized as coins. However, the 1164 
probability of winning a coin is not equal on the left or on the right: it is always higher on one of the sides. 1165 
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Sometimes it is higher on the left and sometimes it is higher on the right. The side in which that probability 1166 
is higher changes after 20 or more trials. 1167 

 1168 

You will now play a last session, with the same rules. Good luck! 1169 

 1170 

 1171 

 1172 

 1173 

 1174 

 1175 

 1176 

 1177 

 1178 

 1179 

 1180 

 1181 

 1182 

 1183 

 1184 

 1185 

 1186 

 1187 

 1188 

 1189 

 1190 

 1191 

 1192 

 1193 

 1194 

 1195 

 1196 

 1197 

 1198 

 1199 

 1200 

 1201 

 1202 
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C) Debriefing – Changing transition probabilities version 1203 

 1204 

We will now explain the structure of the game. 1205 

First the two central circles (upper and lower) are yellow, indicating that you can choose one of them. 1206 

 1207 

 1208 

 1209 

If you press the upper arrow key, you will choose the upper circle. If you press the lower arrow key, you will 1210 
choose the lower circle. 1211 

After you choose the upper or the lower circle, one of the two side circles will light up, i. e., will turn yellow 1212 
(left or right). After you press the arrow key that corresponds to the lateral circle that lit up (left or right), a 1213 
coin may or may not appear. 1214 

 1215 

The probability according to which the central circles give access to either one of the lateral circle also 1216 
follows some rules. The game is divided in two types of blocks. 1217 

In “A” blocks, choosing the upper circle leads more frequently (80% of the times) to the lighting up of the 1218 
right side circle. On the other hand, in these blocks, choosing the lower circle, leads more frequently (80% 1219 
of the times) to the lighting up of the left side circle. 1220 

In “B” blocks, choosing the upper circle leads more frequently (80% of the times) to the lighting up of the 1221 
left side circle. On the other hand, in these blocks, choosing the lower circle, leads more frequently (80% 1222 
of the times) to the lighting up of the right side circle. 1223 

 1224 

Therefore, in “A” blocks, if you choose the upper circle, one of two things can happen. Most of the times 1225 
(actually 80% of the times), the right side circle will light up. Rarely (20% of the time), the left side circle will 1226 
light up. 1227 

In these same “A” blocks, if you choose the lower circle, one of two things can happen. Most of the times 1228 
(actually 80% of the times), the left side circle will light up. Rarely (20% of the time), the right side circle will 1229 
light up. 1230 

 1231 

Schematic representation of the structure of “A” blocks: 1232 
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 1233 

 1234 

In “B” blocks, if you choose the upper circle, one of two things can happen. Most of the times (actually 80% 1235 
of the times), the left side circle will light up. Rarely (20% of the time), the right side circle will light up. 1236 

In these same “B” blocks, if you choose the lower circle, one of two things can happen. Most of the times 1237 
(actually 80% of the times), the right side circle will light up. Rarely (20% of the time), the left side circle will 1238 
light up. 1239 

 1240 

Schematic representation of the structure of “B” blocks: 1241 

 1242 

 1243 

“A” blocks and “B” blocks alternate between them after 20 or more trials. 1244 

The left and right circles give access to the rewards, which are symbolized as coins. However, the 1245 
probability of winning a coin is not the equal on the left or on the right: it is always higher on one of the 1246 
sides. Sometimes it is higher on the left and sometimes it is higher on the right. The side in which that 1247 
probability is higher changes after 20 or more trials. 1248 

You will now play a last session, with the same rules. Good luck! 1249 

 1250 

 1251 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2021. ; https://doi.org/10.1101/2020.09.06.20189241doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.06.20189241
http://creativecommons.org/licenses/by-nc-nd/4.0/

