1	Efficacy and safety of dihydroartemisinin-piperaquine for the treatment of					
2	uncomplicated Plasmodium falciparum and Plasmodium vivax malaria in Northern					
3	Papua and Jambi, Indonesia					
4	Puji BS Asih ¹ , Ismail E Rozi ¹ , Farahana K Dewayanti ¹ , Suradi Wangsamuda ¹ , Syarifah					
5	Zulfah ² , Marthen Robaha ³ , Jonny Hutahaean ³ , Nancy D Anggraeni ⁴ , Marti Kusumaningsih ⁴ ,					
6	Pranti S Mulyani ⁴ , Elvieda Sariwati ⁴ , Herdiana H Basri ⁵ , Maria Dorina G Bustos ⁵ , and Din					
7	Syafruddin ^{1,6}					
8						
9	¹ Malaria and Vector Resistance Unit, Eijkman Institute for Molecular Biology, Jakarta,					
10	Indonesia					
11	² Jambi Provincial Health Department, Jambi Province, Indonesia					
12	³ Papua Provincial Health Department, Papua Province, Indonesia					
13	⁴ Malaria Sub Directorate, Ministry of Health, Republic of Indonesia					
14	⁵ World Health Organization					
15	⁶ Department of Parasitology, Faculty of Medicine, University of Hasanuddin, Makasar,					
16	Indonesia					
17						
18	Din Syafruddin = <u>https://orcid.org/0000-0001-7141-2545</u>					
19	Puji Budi Setia Asih = <u>https://orcid.org/0000-0002-4582-9133</u>					
20						
21	Dr. Din Syafruddin,					
22	Eijkman Institute for Molecular Biology, Jakarta, Indonesia.					
23	Tel +62-21-3917131, Fax +62-21-3147982					

- 24 Puji BS Asih, <u>puji@eijkman.go.id</u>
- 25 Ismail E Rozi, <u>eko@eijkman.go.id</u>
- 26 Suradi Wangamuda, <u>suradi@eijkman.go.id</u>
- 27 Farahana K Dewayanti, farahanakd@eijkman.go.id
- 28 Syarifah Zulfah, <u>zulfahsyarifah@yahoo.com</u>
- 29 Marthen Robaha, <u>robaha.marthen@yahoo.com</u>
- 30 Jonny Hutahaean, jonny.hutahaean@yahoo.com
- 31 Nancy D Anggraeni, <u>anancydian@gmail.com</u>
- 32 Marti Kusumaningsih, kusumaningsihmarti@gmail.com
- 33 Pranti Sri Mulyani, pranti68@yahoo.com
- 34 Elvieda Sariwati, <u>vielang@yahoo.com</u>
- 35 Herdiana H Basri, <u>basrih@who.int</u>
- 36 Maria Dorina G Bustos, <u>bustosm@who.int</u>
- 37 Din Syafruddin, <u>din@eijkman.go.id</u>

38	ABSTRACT Dihydroartemisinin-piperaquine (DHA-PPQ) has been adopted as first-line
39	therapy for uncomplicated falciparum malaria in Indonesia since 2010. The efficacy of
40	DHA-PPQ was evaluated in 2 sentinel sites in Keerom District, Papua and Merangin
41	District, Jambi Provinces from April 2017 to April 2018. Clinical and parasitological
42	parameters were monitored over a 42-day period following the WHO standard in vivo
43	protocol and subjects meeting the inclusion criteria were treated with DHA-PPQ once daily
44	for 3 days, administered orally. In Keerom District, 6339 subjects were screened through
45	active and passive cases detection. A total of 114 subjects infected by P. falciparum and 83
46	subjects infected by P. vivax agreed to take a part through written informed consent. Kaplan-
47	Meier analysis of microscopy readings and PCR-corrected falciparum cases revealed a 93.1%
48	(95%CI:86.4-97.2) and 97.9% (95%CI:92.7-99.7) DHA-PPQ efficacy, respectively and were
49	classified as Adequate Clinical Parasitological Responses (ACPRs). For vivax malaria, the
50	DHA-PPQ efficacy were 89% (95%CI: 80.2 – 94.9) and 100% (95%CI: 95.1-100)
51	respectively. In Merangin District, 751 subjects were screened and 41 subjects infected by P.
52	vivax were recruited. Microscopy reading and PCR-corrected analysis revealed a 97.4%
53	(95%CI:86.2-99.9) and 100% (95%CI: 90.5-100) DHA-PPQ efficacy, respectively. No
54	severe adverse events were found in both sites. In both sites, there was no delay in parasite
55	clearance and no mutations in the PfK13 and PvK12 genes. Of the 6 recurrent <i>P. falciparum</i>
56	found, 2 indicated recrudescent and 4 cases were re-infection. Analysis of the PfPM2 gene at
57	day 0 and day of recurrence in recrudescent cases revealed the same single copy number,
58	whereas 3 of the 4 re-infection cases carried 2-3 copy numbers. In conclusion, treatment of
59	falciparum and vivax malaria cases with DHA-PPQ showed a high efficacy and safety. DHA-
60	PPQ regimen is also efficacious against P. vivax cases in the absence of primaquine.
61	Keywords: Therapeutic efficacy, Dihydroartemisinin-piperaquine (DHA-PPQ), P.
62	falciparum and P. vivax, Indonesia

63 Author Summary

64	This study aims to determine the efficacy and safety of dihydroartemisinin-piperaquine
65	(DHA-PPQ) to treat malaria patients in Indonesia. The study was conducted in 2 sites,
66	Keerom, Papua and Merangin, Jambi Provinces. In Keerom District, a total of 114 P.
67	falciparum-infected and 83 P. vivax-infected were recruited, treated under supervision with
68	DHA-PPQ once daily for 3 days. Kaplan-Meier analysis of microscopy readings and PCR-
69	corrected falciparum cases revealed a 93.1% and 97.9% efficacy, respectively and were
70	classified as Adequate Clinical Parasitological Responses (ACPRs). For vivax malaria, the
71	DHA-PPQ efficacy were 89% and 100%. In Merangin District, 751 subjects were screened
72	and 41 subjects were recruited. Microscopy reading and PCR-corrected analysis revealed a
73	97.4% and 100% efficacy. No severe adverse events were found in both sites. No delay in
74	parasite clearance was found and no mutations observed in the PfK13 and PvK12 genes. Of
75	the 6 recurrent P. falciparum found, 2 indicated recrudescent and 4 cases were re-infection.
76	Analysis of the PfPM2 gene at day 0 and day of recurrence in recrudescent cases revealed the
77	same single copy number, whereas 3 of the 4 re-infection cases carried 2-3 copy numbers.
78	Treatment of falciparum and vivax malaria cases with DHA-PPQ showed a high efficacy and
79	safety.

80 Introduction

81	In Indonesia, reports to date revealed that Artemisinin Combination Therapies
82	(ACTs), particularly dihydroartemisinin-piperaquine (DHA-PPQ) are still highly effective to
83	treat any human malaria cases. Although certain studies reported few cases of delayed
84	parasite clearance [1], this evidence was not linked to the artemisinin resistance. Subsequent
85	analysis on the cases revealed that the delay may be related to the higher parasite load as the
86	parasite is eventually eliminated by day 7. Therefore, routine monitoring of the therapeutic
87	efficacy of ACTs is essential for making timely changes of treatment policy. It can also help
88	to detect early changes in the parasite susceptibility to antimalarial drugs [2].
89	Malaria control program in Indonesia has successfully brought down the malaria cases
90	within the last few decades and in 2017, more than half of the district and municipality have
91	been certified as malaria free areas. However, malaria cases remain high in eastern
92	provinces, such as Papua, West Papua, Molucca and East Nusa Tenggara. In Western part of
93	the country, malaria is either eliminated or significantly reduced and only several malaria foci
94	left in Sumatra, Java, Bali and Kalimantan. In 2017 Indonesia reported 261,000 malaria
95	cases with 74% of infections reported from Papua Province [3]. Malaria problem in Indonesia
96	represents a unique archipelago setting that is entirely different with that of Africa. Malaria
97	control program relies on three pillars such as early diagnosis and prompt treatment,
98	provision of LLIN and indoor residual spraying (IRS) [4]. Unfortunately, the health care
99	facilities in remote setting where malaria is highly endemic does not always meet the
100	requirement to provide necessary service to the people. The absence of microscopists and
101	vector control officers reduce the effectiveness of the pillar and also provision of diagnosis
102	and prompt treatment. To avoid the unnecessary antimalarial drug deployment, the Ministry
103	of Health has set a treatment guideline in which antimalarial drug will only be given to
104	laboratory confirmed cases, either by microscopy or rapid diagnostic test (RDT). In

105	Indonesia, follow up of the malaria treatment is rarely done and therefore supervisory
106	treatment has been recommended to ensure that the patients indeed consumed the antimalarial
107	as prescribed. Since 2010, Indonesia recommended DHA-PPQ as first line drug for
108	uncomplicated malaria [5]. This includes all species of human malaria. The side-effects of
109	DHA-PPQ are abdominal pain, asthenia, cough, diarrhea, dizziness, fever, headache, joint
110	and muscle pain, loss of appetite, rush, nausea, vomiting. abdominal discomfort, nausea,
111	headache and dizziness. The objective of this study is to assess the therapeutic efficacy and
112	safety of DHA-PPQ for the treatment of uncomplicated P. falciparum and P. vivax malaria in
113	Indonesia.
114	
115	Methods
116	
117	Ethics statement
117 118	Ethics statement This study was approved by the Ethics Committee of Research in Health, Medical Faculty of
117 118 119	Ethics statement This study was approved by the Ethics Committee of Research in Health, Medical Faculty of Hasanuddin University, Makassar, Indonesia (No. 663/H4.8.4.5.31/PP36-KOMETIK/2016
117 118 119 120	Ethics statementThis study was approved by the Ethics Committee of Research in Health, Medical Faculty ofHasanuddin University, Makassar, Indonesia (No. 663/H4.8.4.5.31/PP36-KOMETIK/2016)and No. 356/H4.8.4.5.31/PP36-KOMETIK/2017). The trial was registered with the clinical
117 118 119 120 121	Ethics statement This study was approved by the Ethics Committee of Research in Health, Medical Faculty of Hasanuddin University, Makassar, Indonesia (No. 663/H4.8.4.5.31/PP36-KOMETIK/2016 and No. 356/H4.8.4.5.31/PP36-KOMETIK/2017). The trial was registered with the clinical trial number ACTRN12616001533482.
117 118 119 120 121 122	Ethics statement This study was approved by the Ethics Committee of Research in Health, Medical Faculty of Hasanuddin University, Makassar, Indonesia (No. 663/H4.8.4.5.31/PP36-KOMETIK/2016 and No. 356/H4.8.4.5.31/PP36-KOMETIK/2017). The trial was registered with the clinical trial number ACTRN12616001533482.
117 118 119 120 121 122 123	Ethics statement This study was approved by the Ethics Committee of Research in Health, Medical Faculty of Hasanuddin University, Makassar, Indonesia (No. 663/H4.8.4.5.31/PP36-KOMETIK/2016) and No. 356/H4.8.4.5.31/PP36-KOMETIK/2017). The trial was registered with the clinical trial number ACTRN12616001533482. Study Site
117 118 119 120 121 122 123 124	Ethics statementThis study was approved by the Ethics Committee of Research in Health, Medical Faculty of Hasanuddin University, Makassar, Indonesia (No. 663/H4.8.4.5.31/PP36-KOMETIK/2016)and No. 356/H4.8.4.5.31/PP36-KOMETIK/2017). The trial was registered with the clinical trial number ACTRN12616001533482.Study SiteThe study was conducted in Keerom District and Merangin District from April 2017 – April
117 118 119 120 121 122 123 124 125	Ethics statementThis study was approved by the Ethics Committee of Research in Health, Medical Faculty of Hasanuddin University, Makassar, Indonesia (No. 663/H4.8.4.5.31/PP36-KOMETIK/2016)and No. 356/H4.8.4.5.31/PP36-KOMETIK/2017). The trial was registered with the clinical trial number ACTRN12616001533482.Study SiteThe study was conducted in Keerom District and Merangin District from April 2017 – April 2018. The location of the Keerom District in Papua and Merangin District in Jambi
117 118 119 120 121 122 123 124 125 126	Ethics statement This study was approved by the Ethics Committee of Research in Health, Medical Faculty of Hasanuddin University, Makassar, Indonesia (No. 663/H4.8.4.5.31/PP36-KOMETIK/2016) and No. 356/H4.8.4.5.31/PP36-KOMETIK/2017). The trial was registered with the clinical trial number ACTRN12616001533482. Study Site 1 2018. The location of the Keerom District and Merangin District from April 2017 – April Provinces within Indonesia archipelago is shown in Figure 1. The climate is typically tropical
117 118 119 120 121 122 123 124 125 126 127	Ethics statement This study was approved by the Ethics Committee of Research in Health, Medical Faculty of Hasanuddin University, Makassar, Indonesia (No. 663/H4.8.4.5.31/PP36-KOMETIK/2016) and No. 356/H4.8.4.5.31/PP36-KOMETIK/2017). The trial was registered with the clinical trial number ACTRN12616001533482. Study Site The study was conducted in Keerom District and Merangin District from April 2017 – April 2018. The location of the Keerom District in Papua and Merangin District in Jambi Provinces within Indonesia archipelago is shown in Figure 1. The climate is typically tropical in both sites. In Merangin District, Jambi Province the rainy season occurs from December to

129	rainfall occurred throughout the year. The average temperatures are 18–20°C during the
130	cooler rainy months from December to April and 25–33°C during the dry season.
131	
132	In vivo drug efficacy study
133	Participants were recruited from among malaria-infected persons found during active
134	malariometric surveys (active case detection (ACD)) or from persons attending outpatient
135	clinics at Primary Health Centres (passive case detection (PCD)) in Keerom District and
136	Merangin District. Persons were eligible to enrol in the study if they were aged between $1 -$
137	65 years, weighed more than 5 kgs, had fever or history of fever in the preceding 24 hours,
138	with slide-confirmed malaria with parasitemia of more that 500/ul asexual parasites for P.
139	falciparum and more than 250/ul asexual parasites for P. vivax. Persons were excluded if they
140	met any of the following exclusion criteria: 1) were pregnant, 2) had a history of allergy to
141	the study drugs or study drug's derivative, 3) had previously completed treatment with an
142	antimalarial drug in the preceding two weeks, or 4) had a medical history of untreated
143	hypertension or chronic heart, kidney, or liver disease [6].
144	
145	Laboratory procedures

146 Before enrolment, a finger prick was performed to obtain blood to prepare thick and thin 147 blood smears and blots on filter paper (Whatman International Ltd., Maidstone, United 148 Kingdom), for parasite genotyping, and for hemoglobin measurements (HemoCueTM 149 Hb201+; HemoCue, Angelholm, Sweden). Smears and filter paper blood samples were also 150 collected from finger pricks on days 1, 2, 3, 7, 14, 21, 28, 35 and 42 [6, 7]. Smears were read 151 by expert microscopists and confirmed by polymerase chain reaction (PCR). Any discordant 152 results between microscopy and PCR were resolved by independent PCR confirmation. All 153 study participants had the G6PD level checked using Care start Rapid G6PD deficiency

154 whole blood test.

155

156 Antimalarial therapy

157 All study participants were given a supervised treatment of dihydroartemisinin (DHA) and 158 piperaquine (PPQ), containing 40 mg DHA and 320 mg PPQ per tablet and was administered 159 once a day for 3 days, as a weight per dose regimen of 2.25 and 18 mg/kg of DHA-PPQ [8] 160 and followed-up weekly for 42 days. A study nurse distributed the drugs, observed and 161 recorded all treatments, and repeated the treatment if vomiting occurred within 30 minutes 162 following the drug administration. Parasitological responses were classified according to 163 criteria of the World Health Organization [9]. Adverse events observed during the study were 164 recorded by the study nurse and/or physician. Primaquine therapy was not provided until

discontinuation from the study i.e., day of recurrence or day 42.

166

165

167 Parasitological analysis

168 Thick and thin blood smears were stained with Giemsa and subsequently examined in light 169 microscopy. Parasitemia was determined with parasite counted per 200 white blood cells in 170 follow-up smears, counting will be done against at least 500 white blood cells. A blood slide 171 will be considered negative when examination of 1000 white blood cells or 100 fields 172 containing at least 10 white blood cells per field reveals no asexual parasites. All slides were 173 read by a certified microscopist and cross-checked by a second experienced microscopist. In 174 cases where readings were discordant, the slides were reread by third microscopist and a 175 consensus reached.

176

177 Preparation of genomic DNA

178	Parasite and human host DNA (on day of enrolment and day of recrudescence) was extracted						
179	from blood samples using Chelex-100 ion exchanger (Bio-Rad Laboratories, Hercules, CA)						
180	according to a previously published procedure [10]. Extracted DNA was either used						
181	immediately for Polymerase Chain Reaction (PCR) assays or stored at -20° C for later						
182	analysis.						
183							
184	PCR Correction						
185	Plasmodium was identified using microscopic test, which was followed by an evaluation						
186	using PCR. The PCR involved five primer sets. In the first amplification reaction (Nested 1),						
187	a pair of primers with genus specific of rPLU1 and rPLU5 was used and a total of 25 μl						
188	volume was used for all reactions. Furthermore, primers for the second amplification						
189	reaction (Nested 2) were used following the procedure described previously [11]. Data						
190	obtained from microscopy reading and PCR correction were calculated using Kaplan-Meier						
191	analysis.						
192							
193	Genotyping and PCR amplification of <i>P. falciparum</i> and <i>P. vivax</i> genes						
194	Genotyping using the genes for merozoite surface protein 1(MSP1), MSP2, and glutamate-						
195	rich protein (GLURP) was performed in certain participants to distinguish between pre-						
196	treatment and recrudescent parasites [12]. Amplifications of Pf K13 and Pv K12 genes for						
197	artemisinin resistance were performed according to previously published. The DNA was						
198	amplified by nested PCR and sequencing method to detect the mutations G449A, N458Y,						
199	T474I; M476I; A481V; Y493H; T508N; P527T; G533S; N537I; R539T; I543T; P553L;						
200	R561H; V568G; P574L; C580Y of P. falciparum K13 [13 - 17]. Identification of 8						
201	nonsynonymous K12 mutations at codons M448, T517, F519, I568, S578, D605, D691, L708						

202 for K12 of *P. vivax* K12 [18].

203	
204	Quantitative PCR to assess P. falciparum plasmepsin 2 gene copy number
205	Copy number of <i>P.falciparum</i> plasmepsin 2 gene determination consisted of several stages.
206	Initially, DNA was extracted from the blood spots on filter paper according to the Wooden
207	method [10] and purified using Qiagen Kit. The DNA extract were then used as templates in
208	the amplification process of the copy number gene target PfPM2 and Pftub genes using
209	quantification of the real time polymerase chain reaction (RT-qPCR) and assay parameters
210	according to the Witkowski method. The primers used for PfPM2 gene were 5'-
211	TGGTGATGCAGAAGTTGGAG -3' and 5'-TGGGACCCATAAATTAGCAGA -3', while
212	for Pftubulin these were 5'-TGATGTGCGCAAGTGATCC -3' and 5'-
213	TCCTTTGTGGACATTCTTCCTC -3' [19]. Each control and samples were quantified in
214	triplicates for PfPM2 and Pftub. The 3D7 strain were quantified in 6 replicates for PfPM2 and
215	Pftub. Interpretation of results and run validation followed the Witkowski method. The 3D7
216	strain line was included in each run as standard control for one copy of PfPM2 gene in 6
217	replicates. PfPM2 copy number was calculated by the 2- $\Delta\Delta$ Ct method [19] and the value was
218	rounded up.
219	
220	RESULTS
221	
222	Keerom District, Papua
223	Of the 6339 subjects screened through passive and active case detections (Fig 2), 1984
224	(31.3%) were found positive for malaria. Falciparum malaria dominated the malaria cases
225	(56%, 1112/1984) and followed by vivax malaria at 37.8% (749/1984). An additional 3.4%
226	(68/1984) were positive for Plasmodium malariae; 1 (0.05%) had Plasmodium ovale; 42

(2.1%) had mixed infections of P. falciparum and P. vivax, P. falciparum and P. ovale 1 227

228 (0.05%), 1 (0.05%) *P. vivax* and *P. malariae* (Fig 2 - 3).

229

230	A total of 114 (5.7%) of the 1984 P. falciparum cases and 83 (4.2%) P. vivax cases met
231	inclusion criteria (Table 1; Fig 2 - 3). The remaining subjects were excluded due to age,
232	inadequate asexual parasitemia, unplanned travelling, refusal to provide consent, and local
233	tribes war (unsecure situation for follow up activity).
234	
235	Table 1 lists the demographic characteristics of the study subjects at enrolment. Of the 114
236	enrolled subjects for falciparum cases, 56 were males and 58 were females with age ranging
237	from 1 to 65 years (mean 22 years). At enrolment, the density of asexual forms ranged from
238	600 to 213000 per μ l blood, whereas sexual stages (gametocytes) were found in 5 subjects
239	(4.4%) (Table 7). During the follow up, gametocytes were found in few cases (Table 4-5).
240	
241	Clinical and parasitological efficacy of DHA-PPQ for falciparum cases in Keerom,
241 242	Clinical and parasitological efficacy of DHA-PPQ for falciparum cases in Keerom, Papua
241 242 243	Clinical and parasitological efficacy of DHA-PPQ for falciparum cases in Keerom, Papua Classification of the treatment outcomes (microscopy and PCR corrected) for falciparum
241 242 243 244	Clinical and parasitological efficacy of DHA-PPQ for falciparum cases in Keerom,PapuaClassification of the treatment outcomes (microscopy and PCR corrected) for falciparumcases is presented in Table 2. At day 42, ACPR was noted in 93.1% by microscopy and PCR
241 242 243 244 245	Clinical and parasitological efficacy of DHA-PPQ for falciparum cases in Keerom,PapuaClassification of the treatment outcomes (microscopy and PCR corrected) for falciparumcases is presented in Table 2. At day 42, ACPR was noted in 93.1% by microscopy and PCRcorrection. No patients showed ETF, while LCF was reported in 1 study participant. LPF
241 242 243 244 245 246	Clinical and parasitological efficacy of DHA-PPQ for falciparum cases in Keerom, Papua Classification of the treatment outcomes (microscopy and PCR corrected) for falciparum cases is presented in Table 2. At day 42, ACPR was noted in 93.1% by microscopy and PCR correction. No patients showed ETF, while LCF was reported in 1 study participant. LPF was observed in 6 study participants with PCR correction. Withdrawn or drop out was
241 242 243 244 245 245 246 247	Clinical and parasitological efficacy of DHA-PPQ for falciparum cases in Keerom, Papua Classification of the treatment outcomes (microscopy and PCR corrected) for falciparum cases is presented in Table 2. At day 42, ACPR was noted in 93.1% by microscopy and PCR correction. No patients showed ETF, while LCF was reported in 1 study participant. LPF was observed in 6 study participants with PCR correction. Withdrawn or drop out was observed in 1 case (0.9%). Lost to followed up was observed in 11 study participants. Of the
241 242 243 244 245 246 247 248	Clinical and parasitological efficacy of DHA-PPQ for falciparum cases in Keerom, Papua Classification of the treatment outcomes (microscopy and PCR corrected) for falciparum cases is presented in Table 2. At day 42, ACPR was noted in 93.1% by microscopy and PCR correction. No patients showed ETF, while LCF was reported in 1 study participant. LPF was observed in 6 study participants with PCR correction. Withdrawn or drop out was observed in 1 case (0.9%). Lost to followed up was observed in 11 study participants. Of the 114 falciparum cases enrolled, 112 cases were successfully cleared at day 2. The remaining 2
241 242 243 244 245 245 246 247 248 249	Clinical and parasitological efficacy of DHA-PPQ for falciparum cases in Keerom, Papua Classification of the treatment outcomes (microscopy and PCR corrected) for falciparum cases is presented in Table 2. At day 42, ACPR was noted in 93.1% by microscopy and PCR correction. No patients showed ETF, while LCF was reported in 1 study participant. LPF was observed in 6 study participants with PCR correction. Withdrawn or drop out was observed in 1 case (0.9%). Lost to followed up was observed in 11 study participants. Of the 114 falciparum cases enrolled, 112 cases were successfully cleared at day 2. The remaining 2 cases were cleared at day 3. No delayed parasite clearance was observed. Recurrent parasites
241 242 243 244 245 246 247 248 249 250	Clinical and parasitological efficacy of DHA-PPQ for falciparum cases in Keerom, Papua Classification of the treatment outcomes (microscopy and PCR corrected) for falciparum cases is presented in Table 2. At day 42, ACPR was noted in 93.1% by microscopy and PCR correction. No patients showed ETF, while LCF was reported in 1 study participant. LPF was observed in 6 study participants with PCR correction. Withdrawn or drop out was observed in 1 case (0.9%). Lost to followed up was observed in 11 study participants. Of the 114 falciparum cases enrolled, 112 cases were successfully cleared at day 2. The remaining 2 cases were cleared at day 3. No delayed parasite clearance was observed. Recurrent parasites were detected in 6 cases, at days 21, 35 and day 42 (Table 6).

252 Differentiation of recrudescent with reinfection

253	Genotypic analyses of the parasites at day 0 and day of recurrence were conducted using the
254	3-markers recommended by WHO; msp1, msp2, and glurp genes as shown in Table 6. Of the
255	6 LPF cases, 4 cases were categorized as re-infection as the genotypes of the parasites found
256	at day of recurrence were different with that of day 0 (pre-treatment). The remaining 2
257	subjects showed the same genotypes for the 3 markers and therefore could be determined as
258	either recurrence or re-infection. Nonetheless, either case indicate resistance as they have
259	survived the challenge of sub-curative dose of piperaquine
260	
261	Determination of the existence of SNPs in the PfK13

PCR amplification and DNA sequencing of the Pf K13 gene to observe the 20 SNPs
associated with Artemisinin resistance; G449A, N458Y, T474I; M476I; A481V; Y493H;
T508N; P527T; G533S; N537I; R539T; I543T; P553L; R561H; V568G; P574L; C580Y
revealed that all *P. falciparum* isolates carried the wildtype allele.

266

267 *Plasmodium falciparum* plasmepsin 2 gene copy number

268 Late parasitological failure (LPF) was observed in 6 study participants with microscopy 269 reading (Table 2). The delta Ct from 6 LPF were compare with Ct from control, P. 270 falciparum strain 3D7. The estimation of the copy number from 6 LPF was calculated (Table 271 7). Three LPF (PAF 01, 08, and 19) had the same copy number of plasmepsin 2 in day 0 and 272 day recurrence. Two LPF (PAF 37 and 112) have increased 2 copy number of plasmepsin 2 273 in day 0 and day recurrence, while 1 LPF (PAF 133) had copy number 3. Of the 6 recurrent 274 P. falciparum found, 2 indicated recrudescence and 4 cases were re-infections (Table 9). 275 Analysis of the PfPM2 gene at day 0 and day of recurrence in recrudescent cases (PAF 01 276 and 19) revealed the same single copy number, whereas 3 of the 4 re-infection cases carried 277 2-3 copy numbers (Table 7).

278

279 Clinical and parasitological efficacy of DHP for vivax cases in Keerom, Papua 280 Table 3 lists the demographic characteristics of the study subject at enrolment. Of the 83 281 enrolled subjects for vivax cases, 42 were males and 41 were females with age ranging from 282 2 to 45 years (mean 15 years) (Table 1). At enrolment, the density of asexual forms ranged 283 from 40 to 31800 μ l, whereas the sexual stages (gametocytes) were found in 15 subjects 284 (18.1%) (Table 8). At follow up, gametocytes were only found in 3 cases; 1 in day 2, 1 in day 285 3 and 1 in day 42 (Table 5). Classification of the treatment outcomes (microscopy and PCR 286 corrected) for vivax cases is presented in Table 6. At day 42 an ACPR was noted in 89% by 287 microscopy and 100% after PCR correction. No patients showed ETF for vivax cases, while 288 LCF was reported in 1.2%. LPF was observed in 8 study participants without PCR 289 correction. Lost to followed up was observed in 1 study participant (Table 3). Of the 83 vivax 290 cases enrolled, no delayed parasite clearance was observed. 291 292 **Merangin District, Jambi Province** 293 Of the 751 subjects screened through passive and active case detection, 50 (66.7%) were 294 found positive for malaria. Only vivax malaria cases were found (Fig 4). A total of 41 (82%) 295 *P. vivax* cases met inclusion criteria. The remaining subjects were excluded due to age, inadequate asexual parasitemia, and refusal to provide consent. The demographic 296 297 characteristics of the study subject at enrolment is shown in Table 1. Of the 41 enrolled 298 subjects for vivax cases, 19 were males and 22 were females with age ranging from 2 to 58 299 years (mean 16 years). At enrolment, the density of asexual forms ranged from 40 to 9320 μ l, 300 whereas sexual stages (gametocytes) were found in 18 subjects (43.9%) (Table 5). 301

302 Clinical and parasitological efficacy of DHP for vivax cases in Merangin, Jambi

303	Classification of the treatment outcomes (microscopy and PCR corrected) for vivax cases is
304	presented in Table 3. At day 42, ACPR was noted in 97.4% of the cases by microscopy and
305	100% after PCR correction. No patients showed ETF and LCF for vivax cases, while LPF
306	was reported in 2.6%. LPF was observed in 1 study participant without PCR correction. One
307	study participant was withdrawn due to unscheduled traveling. Lost to followed up was
308	observed in 2 study participants (Table 3). No gametocyte was found after the treatment
309	completed and during the follow up period up to day 42 except for 1 case where gametocyte
310	appeared at day 35.
311	
312	Determination of the existence of SNPs in the PvK12
313	PCR amplification and DNA sequencing of the Pv K12 gene to observe the 8 SNPs
314	associated with Artemisinin resistance; M448, T517, F519, I568, S578, D605, D691, L708
315	revealed that all P. vivax isolates carried the wildtype allele for samples from Keerom
316	District and Merangin District.
317	
318	Evaluation of the adverse event
319	No adverse event was reported during the follow up of this study in Keerom (Papua) and
320	Merangin (Jambi).
321	
322	Gametocyte carriage during the treatment
323	Gametocytemia was present at enrolment in 5 patients in Keerom District (Papua) infected
324	with P. falciparum and 15 patients with P. vivax malaria while 18 patients had gametocyte
325	carriage at day of enrollment in Merangin District (Jambi) (Table 5). The proportion of
326	patients with patent gametocytemia in those with P. falciparum infection was 4.4% at D0,
327	1.7% at D2, 1,7% at D3, and 2.6% at D7. In Keerom patients with P. vivax malaria, the

328	proportion with game	tocyte fell from	18.1% at D0	to1.2% at D2	, D3 and D42.	, while in
-----	----------------------	------------------	-------------	--------------	---------------	------------

- 329 Merangin District (Jambi) the proportion of patients with patent gametocytemia in those with
- 330 *P. vivax* infection was 43.9% at D0 and 2.4% at D35 (Table 5).
- 331

332 Discussion

333 Development and spread of the parasite resistance to the currently available artemisinin-334 based combination therapy (ACT) poses a substantial threat to the currently endorsed malaria 335 elimination program as it may increase not only malaria morbidity but also re-introduction of 336 malaria in areas where elimination have been achieved. Results of this study clearly indicate 337 that DHA-PPQ is still highly effective in both study sites. Nevertheless, in Keerom District 338 Papua, evidence for the existence of parasite isolates that are resistant to PPQ alerts to the 339 proper deployment of the drug in the area. Piperaquine resistance is associated with the 340 increased copy number of the plasmepsin gene [19, 20] and as a result the treatment failed to 341 completely eliminate the parasite from the blood or prevent reinfection during the follow up 342 period. This study found the presence of 2 recrudescent cases at days 21 and 35 and re-343 infection at days 35-42 (Table 6). Recrudescence and re-infection following treatment with 344 DHP were associated with higher prevalence of Kelch13 mutations, higher piperaquine 50% 345 inhibitory concentration (IC50) values, and lower mefloquine IC50 values [19 - 23]. The 346 high gametocyte carriage at enrolment in vivax cases ($\sim 43.9\%$) in this study (Table 5) is 347 likely associated with the poor accessibility to treatment and also compliance to the treatment 348 regimen. Almost 50% of the subjects had received previous DHA-PPQ but never completed 349 the 14 day primaquine treatment as recommended. This situation requires attention as it may 350 expedite parasite resistance to the DHA-PPQ as well as support for local transmission. In 351 Papua the efficacy of DHA-PPQ against P. falciparum and P. vivax were 97.9% and 100% 352 respectively, with 6 recurrent infections for falciparum malaria. However, the proportion of

353	parasitemic patients fell rapidly and none of the patients were parasitemic at day 3. This
354	findings indicate that artemisinin is still highly effective but caution has to be given to the
355	partner drug, piperaquine. The results of the molecular analysis also support the finding as
356	none of the parasites had the polymorphisms in the K13 and K12 gene that have previously
357	been associated with artemisinin resistance. However, of the 6 recurrent parasites, 3 carried
358	the amplification of the <i>plasmepsin</i> 2–3 gene cluster. The evidence for DHA-PPQ late
359	treatment failure in this study alerts to the proper treatment of malaria in the area and also
360	anticipate having second line ACT to replace the piperaquine partner drug. Currently, the
361	Indonesia national policy to use quinine as second line drug is regarded to be impractical as it
362	introduces longer treatment period and also more often side effect. In this regard,
363	consideration of using another ACT such as Arthemeter+lumefantrine or
364	Artesunate+mefloquine at least for falciparum cases might be rational. The results from this
365	study are reassuring and suggest that in the absence of artemisinin resistance, the ACT
366	regimen may delay de novo emergence of resistance to the partner drug. DHA-PPQ has been
367	used in Indonesia as the first line antimalarial drug since 2008 [24] and it took almost 10
368	years to first detect the early sign of resistance to the partner drug, piperaquine. In
369	Cambodia, amplification of the <i>plasmepsin</i> 2–3 gene cluster has been identified as an
370	important molecular determinant of piperaquine resistance in <i>P. falciparum</i> [21 - 23] and
371	resistance to piperaquine in fact increase the sensitivity of the mefloquine [19]. This
372	phenomenon may complement for the replacement of piperaquine as partner drug of
373	artemisinin in the area if the resistance is spread. In Indonesia, DHA-PPQ procurement is
374	highly regulated by the Indonesian Ministry of Health, and the drug is only available at
375	government health facilities and selected private-sector facilities, which are able to confirm
376	that the prescription should be based on malaria positivity by microscopy or rapid diagnostic
377	test. With this tight regulation it is anticipated that DHA-PPQ will continue to play a role in

the treatment of uncomplicated malaria in Indonesia until malaria is successfully eliminated
in the country. On another aspect, implementation of evidence-based vector control may also
contribute to mitigate transmission and delay the emergence of antimalarial drug resistance.

381

382 Conclusions

383 The therapeutic efficacy study conducted in two sentinel sites in Papua and Jambi, 384 Indonesia during 2017-2018 revealed that DHA-PPQ is still highly effective in both 385 The appearance of recurrent falciparum infection in small number of cases in sites. 386 Papua alert to the possible emergence of piperaquine resistance in the area and deserve 387 further investigation to contain its spread and anticipate for the rational option of a 388 second line ACT. Further study is required in different regencies in Papua, particularly 389 those in border area with Papua New Guinea to determine the spread of resistance to 390 DHA-PPQ.

391

392 Acknowledgments

393 The authors are grateful to participants in this study. The authors are deeply grateful to 394 Chairman of the Eijkman Institute for Molecular Biology (EIMB), Professor Amin 395 Soebandrio MD., Ph.D., Clin. Microbiol and Coordinator Director Office Global Malaria 396 Programme WHO, Dr. Pascal Ringwald for their support and encouragement in this activity. 397 The authors wish to thank Ahmad N Azhari from WHO, staffs from Papua and Jambi 398 Provincial Health Departments, Keerom and Merangin District Health Departments and 399 Primary Health Centers at study sites for the support, encouragement and helping for samples 400 collection. We thank Nadha Rizky Pratama, Sylvia Sance Marantina, Jenifer Kiem Aviani, 401 and Annisa Rizkia for their assistance in the EIMB laboratory.

402

403 **Data availability statement**

404 All relevant data are within the manuscript

405

406 Author Contribution

- 407 Conceptualization: Maria Dorina G Bustos, Din Syafruddin
- 408 Data curation: Puji BS Asih, Ismail E Rozi, Farahana K Dewayanti, Suradi Wangsamuda,
- 409 Syarifah Zulfah, Marthen Robaha, Jonny Hutahaean, Nancy D Anggraeni, Marti
- 410 Kusumaningsih, Pranti S Mulyani, Elvieda Sariwati, Herdiana H Basri,
- 411 Formal analysis: Puji BS Asih, Ismail E Rozi, Farahana K Dewayanti, Suradi Wangsamuda,
- 412 Maria Dorina G Bustos, Din Syafruddin
- 413 Funding acquisitions: Maria Dorina G Bustos, Din Syafruddin
- 414 Investigation: Puji BS Asih, Ismail E Rozi, Farahana K Dewayanti, Suradi Wangsamuda,
- 415 Maria Dorina G Bustos, Din Syafruddin
- 416 Methodology: Puji BS Asih, Ismail E Rozi, Farahana K Dewayanti, Maria Dorina G Bustos,
- 417 Din Syafruddin
- 418 Project administration: Puji BS Asih, Syarifah Zulfah, Marthen Robaha, Din Syafruddin
- 419 Supervision: Marti Kusumaningsih, Pranti S Mulyani, Syarifah Zulfah, Marthen Robaha,
- 420 Maria Dorina G Bustos, Din Syafruddin
- 421 Writing original draft: Puji BS Asih, Din Syafruddin
- 422 Writing review & editing: Puji BS Asih, Ismail E Rozi, Farahana K Dewayanti, Suradi
- 423 Wangsamuda, Syarifah Zulfah, Marthen Robaha, Jonny Hutahaean, Nancy D Anggraeni,
- 424 Marti Kusumaningsih, Pranti S Mulyani, Elvieda Sariwati, Herdiana H Basri, Maria Dorina G
- 425 Bustos, Din Syafruddin
- 426

427 **References**

429	1.	Asih PBS, RM Dewi, S Tuti, M Sadikin, W Sumarto, B Sinaga, et al. Efficacy of
430		Artemisinin-Based Combination Therapy for Treatment of Persons with
431		Uncomplicated Plasmodium falciparum Malaria in West Sumba District, East Nusa
432		Tenggara Province, Indonesia, and Genotypic Profiles of the Parasite. Am J Trop Med
433		Hyg. 2009;80:16:914 - 18. https://doi.org/10.4269/ajtmh.2009.80.914
434	2.	WHO. Methods for Surveillance of Antimalarial Drug Efficacy. 2009. Available at:
435		http://apps.who.int/iris/bitstream/10665/44048/1/9789241597531_eng.pdf
436	3.	Ministry of Health, Republic of Indonesia. Buku saku pedoman pengobatan malaria di
437		Indonesia. 2017. Available at
438		https://drive.google.com/file/d/0BxNNPzsAPw_gbVpuX2NPY3g5eVE/view_
439	4.	WHO. Global Technical Strategy For Malaria 2016–2030. 2015. Available at
440		https://apps.who.int/iris/bitstream/handle/10665/176712/9789241564991_eng.pdf;jses
441		sionid=6A0E113E5A0C1AC4C850D6239E467005?sequence=1
442	5.	Ministry of Health, Republic of Indonesia. Buku saku pedoman pengobatan malaria di
443		Indonesia. 2010.
444	6.	WHO. Methods And Techniques For Clinical Trials On Antimalarial Drug Efficacy:
445		genotyping to identify parasite populations. 2007. Available at
446		https://apps.who.int/iris/bitstream/handle/10665/43824/9789241596305_eng.pdf?sequ
447		ence=1&isAllowed=y
448	7.	Flegg JA, Guerin PJ, White NJ, Stepniewska K, 2011. Standardizing the measurement
449		of parasite clearance in falciparum malaria: the parasite clearance estimator. Malar J.
450		2011;10: 339. Malar J. 2011;10:10:339. doi: 10.1186/1475-2875-10-339.
451	8.	Ministry of Health, Republic of Indonesia. The National Guideline for Malaria
452		Treatment in Indonesia. 2013.

- 453 9. WHO. Monitoring antimalarial drug resistance, Report of a WHO consultation.
- 454 Geneva, Switzerland. 2002. Available at
- 455 https://apps.who.int/iris/bitstream/handle/10665/67590/WHO_CDS_CSR_EPH_2002.
- 456 17.pdf?sequence=1&isAllowed=y
- 457 10. Wooden J, Kyes S, Sibley CH. PCR and strain identification in *Plasmodium*
- 458 *falciparum*. Parasitol Today, 1993;9:303-5. doi:10.1016/0169-4758(93)90131-x.
- 459 PMID: 15463789
- 460 11. Singh B, Bobogare A, Cox-Singh J, Snounou G, Abdullah MS, Rahman HA, 1999. A
- 461 genus- and species-specific nested polymerase chain reaction malaria detection assay
- 462 for epidemiologic studies. Am J Trop Med Hyg 60: 687–92. doi:
- 463 10.4269/ajtmh.1999.60.687. PMID: 10348249
- 464 12. Methods in Malaria Research: Genotyping of *Plasmodium falciparum* parasites by
- 465 PCR: msp1, msp2, and glurp, by Georges Snounou and Anna Färnert. ed. Inger
- 466 Ljungström, Hedvig Perlmann, Martha Schlichtherle, Artur Scherf, Mats Wahlgren. 4.
- 467 ed. Malaria Research and Reference Reagent Resource Center (MR4), 2008;p.221-25.
- 468 13. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin
- resistance in *Plasmodium falciparum* malaria. N Engl J Med. 2009;361: 455–67. doi:
- 470 10.1056/NEJMoa0808859.
- 471 14. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of
 472 artemisinin resistance in *Plasmodium falciparum* malaria. N Engl J Med. 2014;371:
- 473 411–23. DOI: 10.1056/NEJMoa1314981. PMID: 25075834.
- 474 15. Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, et al.
- 475 Emergence of artemisinin-resistant malaria on the western border of Thailand: a
- 476 longitudinal study. Lancet. 2012;379:1960–66. doi: 10.1016/S0140-6736(12)60484-
- 477 X. PMID: 22484134.

- 478 16. Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, et al. Spread of
- 479 artemisinin-resistant *Plasmodium falciparum* in Myanmar: a cross-sectional survey of
- 480 the K13 molecular marker. Lancet Infect Dis 2015;15: 415–21. doi: 10.1016/S1473-
- 481 3099(15)70032-0_ PMID: 25704894
- 482 17. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. Evidence of
- 483 artemisinin-resistant malaria in western Cambodia. N Engl J Med. 2008;359: 2619–

484 20. doi: 10.1056/NEJMc0805011. PMID: 19064625.

- 485 18. Popovici J, Kao S, Eal L, Bin S, Kim S, Ménard D. Reduced Polymorphism in the
- 486 Kelch Propeller Domain in *Plasmodium vivax* Isolates from Cambodia. Antimicrob
- 487 Agents Chemother. 2015;59(1): 730–3. doi: 10.1128/AAC.03908-14. PMID:
- 488 25385109.
- Witkowski B, Duru V, Khim N, Ross LS, Saintpierre B, Beghain J, et.al. A surrogate
 marker of piperaquine-resistant *Plasmodium falciparum* malaria: a phenotype-
- 491 genotype association study. Lancet Infect Dis. 2017;17: 174–83. doi: <u>10.1016/S1473-</u>
- 492 <u>3099(16)30415-7</u>. PMID: <u>27818097</u>
- 493 20. Davis TM, Hung TY, Sim IK, Karunajeewa HA, Ilett KF. Piperaquine: a resurgent
 494 antimalarial drug. Drugs 2005;65: 75–87. doi: 10.2165/00003495-200565010-00004 .
 495 PMID: 15610051
- 496 21. Leang R, Barrette A, Bouth DM, Menard D, Abdur R, Duong S, et al. Efficacy of
 dihydroartemisinin-piperaquine for treatment of uncomplicated *Plasmodium*
- 498 *falciparum* and *Plasmodium vivax* in Cambodia, 2008 to 2010. Antimicrob Agents
- 499 Chemother. 2013;57: 818–826. doi: 10.1128/AAC.00686-12. PMID: 23208711.
- Leang R, Taylor WRJ, Bouth DM, Song L, Tarning J, Char MC, et al. Evidence of
 Plasmodium falciparum malaria multidrug resistance to artemisinin and piperaquine
 in western Cambodia: dihydroartemisinin-piperaquine open-label multicenter clinical

503		assessment. Antimicrob Agents Chemother 59: 4719-26. doi: 10.1128/AAC.00835-
504		15 . PMID: 26014949
505	23.	Amaratunga C, Lim P, Suon S, Sreng S, Mao S, Sopha C, et al. Dihydroartemisinin-
506		piperaquine resistance in <i>Plasmodium falciparum</i> malaria in Cambodia: a multisite
507		prospective cohort study. Lancet Infect Dis. 2016;16: 357-65. DOI: 10.1016/S1473-
508		3099(15)00487-9 . PMID: 26774243.
509	24.	Hasugian AR, Purba HLE, Kenangalem E, Wuwung RM, Ebsworth EP, Maristela R,
510		et al. Dihydroartemisinin-piperaquine versus artesunate-amodiaquine: superior
511		efficacy and posttreatment prophylaxis against multidrug-resistant Plasmodium
512		falciparum and Plasmodium vivax malaria. Clin Infect Dis 2007;15:44(8):1067-74.
513		doi: 10.1086/512677. PMID: 17366451
514		

515 **Figure Legends**:

- 516
- **Figure 1.** Figure 1. Study Sites in Papua and Jambi Provinces. Map from Natural Earth.
- 518 <u>https://www.naturalearthdata.com/</u>
- 519 Figure 2. Flow chart sample collection for falciparum cases in Keerom, Papua
- 520 **Figure 3**. Flow chart sample collection for vivax cases in Keerom, Papua
- 521 **Figure 4.** Flow chart sample collection for vivax cases in Merangin, Jambi

Table 1. Baseline characteristics of study participants

522

523

Variable	Overall cases				
	Paj	Jambi			
	Falciparum	Vivax	Vivax		
Number of patients enrolled (n)	114	83	41		
Age (years)					
-Mean (SD)	22 (16.8)	15.1 (11.9)	16.6 (14)		
-Range	1-65	2-45	2-58		
Gender					
-Male [n (%)]	56 (49.1%)	42 (50.6%)	19 (46.3%)		
-Female [n (%)]	58 (50.9%)	41 (49.4%)	22 (53.7%)		
Body temperature $[\Box C, mean (SD)]$	37.6 (1.2)	37.4 (1.4)	36.8 (1.0)		
-Range	35-39.9	35-40.3	36-41		
Parasite density (/µl)	10777	3918	1512		
[mean geometric parasitemia]					
-Range	600-213000	40-31800	40-9320		

Table 2. Falciparum phenotyping result from Keerom, Papua

526 during the 42 days of follow up

527

525

Study	Total	Diagnosis			Outcom	e (Number of patients)		
Site	Subject	by	ETF	LCF	LPF	ACPR	LTU	WTH
	114	Microscopy	0	1	6	95	11	1
				(1%)	(5.9%)	(93.1%)		
						(95%CI:86.4-97.2) *		
Papua								
	114	PCR	0	1	1	95	11	6
		corrected		(1%)	(1%)	(97.9%)		
						(95%CI:92.7-99.7)		

528 ETF = Early treatment failure; LCP = Late clinical failure;

529 LPF = Late parasitological failure; LTU = Lost to follow up; WTH = Withdrawn

530 ACPR = Adequate clinical and parasitological response; (*) = Kaplan-Meier Analysis

Table 3. Vivax phenotyping result from Keerom, Papua and Merangin, Jambi Provinces

533 during the 42 days of follow up

534

Study	Total	Diagnosis	Outcome (Number of patients)					
Site	Subject	by	ETF	LCF	LPF	ACPR	LTU	WTH
	83	Microscopy	0	1	8	73	1	0
Papua				(1.2%)	(9.8%)	(89%) (95%CI:80.2-94.9) *		
i apua	79	PCR corrected	0	0	0	73 (100%) (95%CI:95.1-100)	1	5
	41	Microscopy	0	0	1	37	2	1
Jambi					(2.6%)	(97.4%) (95%CI:86.2-99.9)		
	40	PCR corrected	0	0	0	37 (100%) (95%CI:90.5-100)	2	1

535 ETF = Early treatment failure; LCP = Late clinical failure;

536 LPF = Late parasitological failure; LTU = Lost to follow up; WTH = Withdrawn

537 ACPR = Adequate clinical and parasitological response; (*) = Kaplan-Meier Analysis

Study	Total	l Days of follow-up									
Site	Sample	D0	D1	D2	D3	D7	D14	D21	D28	D35	D42
	-										
Papua	114	5	-	2	2	3	2	1	1	0	0
		(4.4%)		(1.7%)	(1.7%)	(2.6%)	(1.7%)	(0.9%)	(0.9%)		

Table 4. Gametocyte of *P. falciparum* appearance during the 42 days of follow up

(-) = No blood sample

Study	Total	Days of follow-up									
Site	Sample	D0	D1	D2	D3	D7	D14	D21	D28	D35	D42
Papua	83	15	-	1	1	0	0	0	0	0	1
		(18.1%)		(1.2%)	(1.2%)						(1.2%)
Jambi	41	18 (43.9%)	-	0	0	0	0	0	0	1 (2.4%)	0

Table 5.	Gametocyte of <i>P</i> .	<i>vivax</i> appearance	during the 42 da	avs of follow up

(-) = no blood sample

Table 6. Genotyping results of the parasites

at day 0 and day recurrence in P. falciparum cases

Isolate	D0 Strain	DR Strain	Day of	Recrudescent/Reinfection
Code	MSP1/MSP2/GLURP	MSP1/MSP2/GLURP	Recurrence	
PAF 01	K1/FC27/Code1*	K1/FC27/Code1	D21	Recrudescent/Reinfection
PAF 08	K1/FC27/Code2	K1-RO33/FC27/Code3	D42	Reinfection
1111 00	111/1 027/00002		12	
PAF 19	K1/FC27/Code1	K1/FC27/Code1	D35	Recrudescent/Reinfection
PAF 37	K1/FC27/Code2	K1-RO33/FC27/Code3	D42	Reinfection
PAF 112	K1/FC27/Code3	MAD20/3D7/Code3	D42	Reinfection
PAF 133	K1/MAD20/FC27Code2	RO33/3D7/Code3	D35	Reinfection

(*, amplicon in GLURP): Code1= 501 – 600 base pairs (bp); Code2= 601 – 700 bp; and Code3 = 701 – 800 bp

Table 7. PfPM2 Gene Copy Number of the parasites

at day 0 and day recurrences in P. falciparum cases

Isolate Number	PfPM2	Copy Number	Day of Recurrence
	D0	DR Strain	-
PAF 01	1	1	D21
PAF 08	1	1	D42
PAF 19	1	1	D35
PAF 37	1	2	D42
PAF 112	1	2	D42
PAF 133	1	3	D35

