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ABSTRACT 

Research Context. Can educational institutions open up safely amid COVID-19? We build an epidemiological model 
to investigate the strategies necessary for institutions to safely reopen. The four measures that are most relevant 
for in-person opening are: (i) wide-spread rapid testing, possibly saliva-based, (ii) enforcement of mask-wearing, 
(iii) social distancing, and (iv) contact tracing.  

Research Design. Using an analytical setup, we theoretically demonstrate that institutions need to test at a 
relatively high level (e.g., at least once every week for all individuals) in the initial phases of reopening. Guided 
by the analytical setup, we derive insights from an agent-based simulation. Contact tracing is relatively more 
important when the positivity rate from random testing is relatively low, which is likely during the initial phases. 
An adaptive testing strategy based on positivity rates can help institutions optimally manage the costs and risks 
of reopening. Finally, to demonstrate the strategies in practice, we provide empirical estimates of some of the 
educational institutions opening up experience and comment on mitigation strategies. Empirically, we 
characterize the role of testing using data from the SHIELD program at the University of Illinois at Urbana 
Champaign (UIUC).  

Results. We show that increasing the testing levels from 0.2 per capita per day to 0.3 per capita per day can 
reduce the infectivity from 0.25 to 0.01, with an average slope of the infectivity to the testing curve being 0.35 
in this range. We also cross-validate the results with data from a large number of universities in the United 
States, and show that institutions with higher levels of testing are associated with lower infections.  The 
estimated marginal effect of increasing testing levels by 1% per capita per day across universities can reduce the 
positivity by an average of 0.0228% with a 99% confidence interval of [0.0209%-0.0253%]. We also provide an 
estimate of the locational effects of institutions on mitigation strategies. We estimate from data on 228 different 
universities across the United States that an increase of infection rate at the county where a university is located 
by 1% has the potential to increase the institutional infection rate by an average of 0.14% with a 99% confidence 
interval of [0.032% – 0.248%] across all universities. This indicates that universities are not closed systems, 
rather they are open systems subject to external influence, and the extent of external influence potential is an 
important consideration for opening up of universities.  

Contributions. This paper contributes to the nascent literature on combating the COVID-19 pandemic and is 
especially relevant for large organizations. This work is motivated and guided by the SHIELD program of 
UIUC. We provide important policy pointers for the reopening of universities.  

Short Title. Reopening Strategies Amid COVID-19. 
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INTRODUCTION 

The COVID-19 pandemic has closed several organizations nation-wide, including educational institutions, with 
severe economic and social consequences1. While the importance of reopening is well acknowledged, there is 
less of a consensus on the strategies necessary for the safe opening of educational institutions in the United 
States and around the globe2-9. The Center for Disease Control (CDC) has issued reopening guidelines10 that 
include extensive hand hygiene, cloth face coverings, disinfections, physical barriers and spacing of individuals 
inside enclosed surroundings, and frequent testing. The early experience of reopening has met with relatively 
unfavorable outcomes, such as the Cherokee County School District in the state of Georgia, USA, that had to 
send 250 of its staff and students to quarantine after reopening in August, 202011-12. The University of North 
Carolina, Chapel Hill, USA, reversed its plans for in-person classes after more than 130 confirmed infections 
in the first week of reopening17. Motivated by these observations, we explore these questions: (i) Can schools and 
educational institutions and other organizations open safely amid COVID-19? (ii) If so, what are the measures required to open 
educational institutions and other organizations to commence in-person operations while maintaining public-health safety from the 
spread of COVID-19? We use a combination of a stylized analytical model and an agent-based simulation analysis 
to provide policy guidance toward answering these questions. We evaluate the following strategies: (i) widespread 
rapid testing of individuals, (ii) mask-wearing and other safety measures such as handwashing and disinfecting, (iii) social 
distancing, and (iv) contact tracing of detected individuals. The questions are motivated and guided by the SHIELD 
program of the University of Illinois at Urbana-Champaign, in which the university is testing 10,000 students 
and staff every day (testing per individual per week is 0.2) in order to hold in-person classes. We use data from 
the UIUC SHIELD program and similar data from other institutions to comment on the success of proposed 
strategies, and how institutions can adapt to emerging epidemics within institutions to ensure the health and 
safety of their members.  

This work offers interesting insights into re-opening strategies that we delineate below. 
Methodologically, the compartmental diffusion models, without modification, are not suitable for the analysis 
of small populations required to evaluate re-opening strategies for institutions. Therefore, we propose an 
epidemic model that takes into account small population dynamics, suitable to model institutional settings. The 
large size of universities creates complexities of efforts and escalation of costs in ensuring that testing can be 
performed at numbers that are sufficient to dampen rates of infection. While doing less of one action can be 
compensated by adequately increasing the extent of the other, not all subsets of actions are feasible from a 
practical standpoint. For example, only testing without proper mask enforcement and social distancing will 
require testing almost every individual every day for safe reopening. Our analysis demonstrates that optimally 
allocating testing capacity between random testing and contact tracing is important. Interestingly, and somewhat 
counterintuitively, the value of contact tracing is higher when the positivity rate from random testing is relatively 
low. Positivity rates from random testing is an indicator of current and future infections. Low positivity rates 
imply that the probability of discovering infected individuals from random testing is low. Therefore, during the 
initial stages of reopening when the infection load is likely to be low, focusing greater efforts toward contact 
tracing is crucial. However, contact tracing needs to be optimally combined with random testing. We 
demonstrate that given a probability of infection transmission of 5% and a contact rate of 10 individuals per 
day, that describes a somewhat typical scenario, every individual need to be tested once every 5 days or more 
frequently for dampening infections in large educational institutions. Rather than adopting a fixed testing 
capacity, a flexible adaptive system based on Bayesian updating of estimated positivity rates of testing can be 
more cost-efficient. During the initial stages of reopening, it is important to test more. The testing levels can 
be reduced adaptively as the infection load (positivity rate) decays. Such an adaptive testing strategy is inherently 
forward-looking and considers the risk of ongoing and future transmission of the virus. We empirically 
demonstrate that the location of a university is an important consideration because of the possible external 
influx of infections from the environment. Specifically, we demonstrate with data that the higher the infection 
rate of the county where a university is located, the higher is the infection rate within the university. We also 
provide evidence that the relationship is, in fact, dyadic in that large universities with a significant influx of 
students from outside, contribute significantly towards the growth of infection in the surrounding region. 
Specifically, we show, for the two large universities we analyze, reopening significantly increases the infection 
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load of the county where the universities are located. Our final contribution is the synthesis of information 
from the opening experience of large universities (UIUC, ISU, and others) and the estimation of infection 
transmission parameters from the data collected in the process. Our research will likely permit other large 
institutions to gauge the risk of various re-opening strategies that will, in turn, shape policies they adopt. 

THE SARS-CoV-2 INFECTION AND MITIGATION STRATEGIES  

The SARS-CoV-2 is a novel strain of coronavirus that currently does not have an approved cure. For mitigation, 
countries implemented strategies that varied from complete lockdown of large geographical areas to partial 
restrictions on mobility and mask enforcements in public places. A particular challenge associated with this 
virus is its asymptomatic transmission in which many infected individuals remain asymptomatic from a few 
days to several weeks13 and yet transmit the disease to susceptible people. An estimation of the COVID-19 
infection in Italy14 suggests that the infected population in Italy as of May 4, 2020, may have ranged between 
2.2 and 3.5 million, where detected infections were approximately 200,000. Therefore, a strategy of random 
testing is required to detect and arrest the spread of further infections through systematic isolation and 
quarantining of those who test positive for infection. A study15 indicates that mask-wearing reduces infection 
transmission by 51% from normal transmission rates. The FDA has recently approved saliva-based rapid testing 
based on the loop amplified isothermal amplification (LAMP), which costs significantly less than the usual PCR 
test16. This provides the opportunity to amplify testing rapid testing within institutions.  

THE INFECTION PROCESS  

We develop an analytical framework for the infection and testing process, ideally suited for institutions with a 
relatively smaller number of individuals as compared to the population of counties and cities. In the institutional 
setting, large sample-based compartmental epidemic models, which assume populations to be significantly 
larger than the number of infections, are not adequate and will likely provide erroneous estimates and wrong 
policy recommendations. Therefore, we consider small sample dynamics that, despite being stylized, reflect 
more accurately the realities within educational institutions, e.g., overlaps among contacts of infected individuals 
and external inflow of infections and the inherent randomness in the dynamics of the infection. The analytical 
model we develop guides our numerical experiments. 

Consider an institution with 𝑁 individuals. Let 𝑥𝑡 denote the number of undetected infections, 𝑛𝑡 
denote the number of uninfected individuals, and 𝑟𝑡 = 𝑁 − 𝑛𝑡 − 𝑥𝑡 equals the number of detected and isolated 
individuals at time 𝑡 = 1, … , 𝑇. Therefore, the number of infectious individuals is given by 𝑥𝑡 + 𝑛𝑡. We calculate 
the expected number of individuals who newly get infected at time 𝑡. To that end, we calculate the probability 
that an uninfected individual 𝑖 contracts the infection from an infected individual 𝑗 at time 𝑡. This probability is 
the product of the probabilities that 𝑗 is infected, 𝑖 is not already infected, 𝑗 comes in contact with 𝑖, and 
successful infection transmission occurs, assuming independence among these events. With a contact rate of 
ℳ to denote the number of unique individuals that one person meets on average, this probability is 

ℙ(𝑖 ← 𝑗 at 𝑡) =
𝑥𝑡

𝑥𝑡+𝑛𝑡
 ×  

𝑛𝑡

𝑥𝑡+𝑛𝑡
 ×

ℳ

𝑥𝑡+𝑛𝑡
× 𝜋𝑚, where 𝜋𝑚 is the probability of infection transmission with subscript 𝑚 

denoting the extent of mask enforcement, measured by the fraction of the organization that generally wear 
masks. The infection transmission probability is a non-increasing function of 𝑚. With this model, the expected 
number of new infections becomes Δ𝑥𝑡 =  𝜋𝑚ℳ

𝑥𝑡𝑛𝑡

𝑥𝑡+𝑛𝑡
. No institution is a closed isolated system. Interaction with 

the outside world is inevitable. We incorporate interactions with external populations through a multiplicative 
factor 𝑟 > 1 in the number of new infections. As an example to illustrate our model, a population of 5,000 with 
100 infections will lead to 98 new infections on average in the next period given an infectivity rate of 𝜋𝑚 = 0.1, 
contact rate of ℳ = 10, and external interaction of 1% captured via 𝑟 = 1.01.  

THE TESTING PROCESS 

Testing offers the means to both estimates the prevalence of the disease and to control it through the 
quarantining of confirmed cases. In this work, we consider two kinds of testing—random testing and contact 
tracing. We now count the number of infected individuals identified as being positive through these two 
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channels of testing. Assume throughout that the testing process is rapid and the results are available the same 
day. Let the total testing capacity be 𝑇𝑡. The number of new detections and isolations via random testing 𝑇𝑟𝑡 

people alone is Δ𝑅𝑟𝑡 =
𝑥𝑡

𝑥𝑡+𝑛_𝑡
𝑇𝑟𝑡. The total number of expected contacts of the these randomly tested individuals 

is ℳΔ𝑅𝑟𝑡. In a small population, many of these individuals may belong to more than one list of contacts from 

all who test positive. The likelihood that a contact is in some such individual’s list is 
ℳ

𝑥𝑡+𝑛𝑡
, yielding 

1 − (1 −
ℳ

𝑥𝑡+𝑛𝑡
)

Δ𝑅𝑟𝑡

≈
ℳΔ𝑅𝑟𝑡

𝑥𝑡+𝑛𝑡
  as the probability of landing in at least one among such lists. Therefore, the expected 

number of unique contacts of Δ𝑅𝑟𝑡 positive individuals become (𝑥𝑡 + 𝑛𝑡 − Δ𝑅𝑟𝑡)
ℳΔ𝑅𝑟𝑡

𝑥𝑡+𝑛𝑡
= ℳΔ𝑅𝑟𝑡 (1 −

Δ𝑅𝑟𝑡

𝑥𝑡+𝑛𝑡
). Assume that contact tracing is not fully efficient, and we are only able to identify 𝜂𝐼 ∈ (0,1) the fraction of 

the contacts for testing. Then, one must test 𝐶𝑡 ≔ 𝜂𝐼ℳΔ𝑅𝑟𝑡 (1 −
Δ𝑅𝑟𝑡

𝑥𝑡+𝑛𝑡
) individuals via contact tracing, as long as 

this number does not exceed the total number of tests 𝜂𝑎𝑇𝑡 allotted to contact tracing, where 𝜂𝑎 ∈ (0,1). In the 
event that it does, the number of tests through contact tracing becomes  𝜂𝑎𝑇𝑡. Therefore, the total number of 
contacts who are traced and tested is min{𝜂𝑎𝑇𝑡, 𝐶𝑡}.  We assume that unused allocation of contact tracing is used 
for random testing. The number of random tests administered is given by 𝑇𝑟𝑡 = (1 − 𝜂𝑎)𝑇𝑡 + [𝜂𝑎𝑇𝑡 − 𝐶𝑡 ]+, where 
[𝐴]+ the positive part of A. The likelihood of detection among the contact-traced individuals is the probability 
of infection transmission, given that one has come in contact with an infected individual. In our model, this 
probability is 

𝜋𝑚𝑛𝑡

𝑥𝑡+𝑛𝑡
+

𝑥𝑡

𝑥𝑡+𝑛𝑡
 . Therefore, the total number of detections of the disease in period 𝑡 can be written 

as Δ𝑅𝑡 =
𝑥𝑡𝑇𝑟𝑡

𝑥𝑡+𝑛𝑡
+ min{𝜂𝑎𝑇𝑡, 𝐶𝑡} ×

𝜋𝑚 𝑛𝑡+𝑥𝑡

𝑥𝑡+𝑛𝑡
.  

THE POSITIVITY RATE: AN INDICATOR FOR RATE OF SPREAD 

Absent capabilities to test the whole population in a single day, allocation decisions must be made based on the 
observable positivity rate among the population, that we define as the ratio of positive test outcomes and the 
number of tests. Mathematically, this ratio is 𝑝̂𝑡 = 𝑃𝑡/𝑇𝑡, where 𝑇𝑡 tests yield 𝑃𝑡 positive outcomes. The positivity 
rate is a leading indicator for infection prevalence and future expected infections and serves as a proxy for the 
fraction 

𝑥𝑡

𝑥𝑡+𝑛𝑡
 of the total size of the population that is infected. Recall that the expected number of new 

infections at time t is given by, 

Δ𝑥𝑡 =  𝜋𝑚ℳ(𝑥𝑡 + 𝑛𝑡)
𝑥𝑡

𝑥𝑡 + 𝑛𝑡
(1 −

𝑥𝑡

𝑥𝑡 + 𝑛𝑡
) ≈ 𝜋𝑚ℳ(𝑥𝑡 + 𝑛𝑡)𝑝̂𝑡(1 − 𝑝̂𝑡). 

When the organization is sufficiently large, we expect this approximation to be largely accurate. For small 𝑝̂𝑡 ~ 
1-2%, the slope of the new estimated infections with respect to the positivity rate is given by 𝑟 𝜋𝑚ℳ(𝑥𝑡 + 𝑛𝑡), that 
provides an estimate of the infection transmission rate (infectivity). This number provides a glimpse into the 
efficacy of preventative measures such as mask-wearing and social distancing in containing the disease. For 𝑝̂𝑡 
up to 50%, this slope is also positive, meaning that it grows with the positivity rate, as expected. Proceeding 

very similarly, the expression for the new expected number of positive results Δ𝑅𝑡 yields 
∂Δ𝑅𝑡

𝜕𝜂𝑎
=  𝜋𝑚𝑇𝑡(1 − 𝑝̂𝑡) for 

small 𝜂𝑎, which is positive but decreasing in the positivity rate. Therefore, in the initial stages of the epidemic 
spread when the positivity rates are typically low, it is important to conduct contact tracing, preferably using a 
combination of electronic and manual approaches. A contact tracing strategy is more focused on individuals 
who had already been in contact with infected individuals. However, the marginal return from contact tracing 
reduces as the positivity rate grows. Our numerical results from an agent-based simulation capture a similar 
sentiment. As an illustrative example, for a positivity rate of 2% with an infection transmission probability of 
5%, the yield in contact tracing is likely to be at least 3% higher than random testing. When the positivity rate 
is 8%, this advantage of contact tracing over random testing disappears. Similarly, when the positivity rate is 
close to 40%, only random testing is largely sufficient. When the positivity rate is low, contact tracing is 
significantly more important than when it is high.  
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FIXED TESTING CAPACITY 

Decision-makers estimate the likely range of the infection that they expect in an institutional setting by 
observing other similar institutions, the state of infection in the social environment in which an institution is 
situated, and the extent of external interaction; these factors determine the baseline risk of COVID-19. If the 
estimated positivity rate from prior testing is 𝑝𝑚, one can set the testing capacity to 𝑇𝑚 such that 
𝑟𝜋𝑚ℳ𝑝𝑚(1 − 𝑝𝑚)𝑁 ≤ (𝑝𝑚 + 𝜂𝑎(1 − 𝑝𝑚))𝑇𝑚, where the right-hand-side of the inequality is approximately the 
number of positive tests expected from a combination of contact tracing and random testing. In deriving this 
expression, we have assumed that the contact rate is at least as high as the contact testing capacity, i.e., 𝜂𝑎𝑇𝑡 ≤

𝐶𝑡.  In so doing, we ensure that 𝑇𝑚 satisfying this inequality will always lead to the infection dying out. We 
specifically seek the minimum testing capacity for which the yield of positive tests exceeds the new number of 
infections. In other words, this policy seeks to tackle new infections every period by testing enough at the same 
period to bring the reproduction ratio of the disease to less than unity—a condition that ensures eventual decay 

of the epidemic. Rearranging, we get  
𝑇𝑚

𝑁
≥

𝑟 𝜋𝑚ℳ 𝑝𝑚(1−𝑝𝑚)

𝑝𝑚+𝜂𝑎(1−𝑝𝑚)
. Maximizing the ratio on the right-hand-side over 

𝑝𝑚 ∈ [0,1],  we infer that a fixed testing capacity of 𝑟 𝜋𝑚ℳ/(1 + √𝜂𝑎)
2
 ensures safe reopening. We assume in this 

analysis that preventative measures such as mask-wearing and social distancing are held constant, i.e., 𝑚(𝑡) = 𝑚 
throughout. Therefore, for a transmission rate of 𝜋𝑚 = 0.05, mobility of ℳ = 10, and 𝑟 = 1.1, and a 30% 
allocation for contact testing, approximately 20% of the organization needs to be tested every day, indicating 
that every individual need to get tested at least once a week.  

ADAPTIVE TESTING CAPACITY 

The fixed testing strategy is rather restrictive and conservative in that it plans for the maximum capacity that 
may be needed over the course of the disease and does not allow altering that capacity with observed positivity 
rate. Here, we alter that paradigm and adopt an adaptive testing strategy that allocates a capacity with one day 
look ahead to ensure dampening of the infection. The adaptive testing can be enacted by observing the positivity 
in testing from day 𝑡 and incorporating the estimated positivity in deciding the testing level for day (𝑡 + 1) so as 
to dampen the positivity rate.  However, such a mechanism does not account for uncertainty, and any 
discrepancy that may exist between the observed positivity and the real positivity. To account for the risk of 
uncertainty in estimating the real positivity from observed positivity, we add a risk buffer and consider that the 

decision maker ascertains the required number of tests with some level of confidence 𝜂
𝑏
, i.e., a decision risk 

of (1 − 𝜂
𝑏
). Such an allocation policy again seeks to test enough to tackle new infections every period with an 

adequate amount of testing in that period. We consider a small sample parametric setup for the institutional 
reopening strategy. The testing dynamics in a parametric small sample setup is assumed to follow the 
hypergeometric process where the random testing is analogous to the sampling without replacement, as 
opposed to with replacement, which would follow a binomial process. While in most cases, particularly when 
the sampling size is small compared to the population size, the Binomial process is a good approximation of 
the Hypergeometric process. However, in the institutional testing scenario, the sampling size can be as high as 
20% to 30% of the population per day. Particularly, in the institutional testing scenario, the hypergeometric 
parameters are {(𝑥𝑡 + 𝑛𝑡), 𝑝𝑡(𝑥𝑡 + 𝑛𝑡) and the number of draws is the daily number of tests. Therefore, if the 
estimated positivity is 𝑝̂(𝑡) from random testing in day 𝑡, then the decision-maker allocates an adaptive testing 
capacity 𝑇𝑡+1 for day 𝑡 + 1. With 𝑇𝑡+1 tests the expected number of positive results for the Hypergeometric 

testing process is 𝑇𝑡+1 𝑝̂𝑡. For a confidence level of 𝜂𝑏, the administrator considers the (1 − 𝜂𝑏) quantile of the 
Hypergeometric process which indicates that the testing process detects the necessary number of positive cases 

to dampen the disease with a probability of 𝜂𝑏. The number of positive cases Δ𝑅𝑡+1 that the administration 
hopes to detect in the next period is then given by a Hypergeometric distribution such that ℙ(Δ𝑅𝑡+1 ≤ 𝔼(Δ𝑋𝑡)) =

1 − 𝜂𝑏, where the expected increase in new infections from 𝑡 to 𝑡 + 1 is   𝔼(Δ𝑋𝑡) =  𝑟 𝜋𝑚ℳ 𝑝̂𝑡(1 − 𝑝̂𝑡) (𝑥𝑡 + 𝑛𝑡 −

Δ𝑅𝑡). The probability 1 − 𝜂𝑏 acts as a risk buffer which ensures that the risk of decisions in testing capacity is 
accounted for safety.  
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AGENT-BASED SIMULATION OF INSTITUTIONAL REOPENING 

As indicated earlier, general analytical solutions of the standard epidemiological processes are insufficient for 
relatively smaller populations, such as those in various institutions and universities. We use an agent-based 
simulation to evaluate the possible combination of strategies that can enable the safe reopening of large 
institutions. In particular, we test the relative efficacy of random and adaptive testing under different scenarios 
of transmission of COVID-19. The infection transmission and the detection dynamics follow the analytical 
setup that we described earlier. Agent-based simulations have been extensively used in the context of epidemic 
spreads and transmissions18. In agent-based simulations, a collection of independent agents is allowed to 
interact with each other following probabilistic but simple rules. The Agent-Based Simulation is an alternative 
to the compartment-based modeling (e.g., SIR) and offers several advantages19. The complex interaction of a 
large number of agents over a time horizon (modeled as cycles of interaction) makes the agent-based simulation 
rich enough to generate complex dynamic behavior. These simulation models can account for randomization 
at the individual level and generate a distribution over possible scenarios, as shown in Figure 1a, where we show 
an illustrative example of the output of the agent-based simulation. We highlight that the parameters of our 
experiments remain unchanged within each simulation lasting 50 rounds. We have run the simulation 1,000 
times for each set of parameters, and have plotted the median, the 95-th quantile, and the 5-th quantile of the 
distribution of the areas under the susceptible curves for each set of parameters from the 1000 runs. The area 
below the susceptible curve for a fixed population provides an estimate of the performance of the preventative 
strategies and testing. As an illustration, a sharp drop in the number of non-infected individuals will lead to a 
lower area below the susceptible curve, which indicates a high rate of infection. We summarize the strategies in 
terms of the normalized area under the susceptible curve. 

Figure. 1. Agent-Based Simulation Output for Combinations of Strategies. 
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In the agent-based simulation, we create a collection of 5,000 agents, distributed over a space. Each 
agent moves independently in a random manner. The mobility is controlled by ℳ, which determines the average 
number of contacts per agent per day with other agents. We operationalize the contact rate for each individual 
in the simulation by randomly drawing  ℳ other individuals from the population who come in contact with the 
focal individual. Some of these ℳ individuals may or may not be infected based on the infection diffusion that 
occurs across rounds for each experiment. We incorporate the impact of mask enforcement on the infectivity 
parameter 𝑝. Recent studies15 have characterized the effect of mask-wearing on infection transmission in 
COVID-19. They have estimated the transmission rate to be 0.2 between two individuals who come in contact 
when neither of the individuals wear a mask. Masks reduce the infectivity by somewhere between 25% and 
50%, with a minimum lower infectivity of 0.05. Furthermore, some studies18 on mask wearing indicate that 
partial mask wearing is not effective. In our simulation, we consider that no mask wearing leads to an infectivity 
of 0.2 and vary it as 𝑝(1 − 𝑚2), where 𝑚 measures the percentage of the population wearing mask. The decrease 
is assumed proportional to 𝑚2to reflect the importance of mask wearing of both parties in an interaction, where 
the probability of each wearing a mask is 𝑚. For example, when mask enforcement is 75%, the infectivity is 
modeled as 0.2 × (1 − 0.752) ≈ 0.1. We introduce 5 infected individuals at the beginning of the simulation. 
Further, we introduce a low probability of random external infection (0.005%) in every period. Since the initial 
infection and the external infections are not controllable strategies, we have kept these two parameters constant 
over cycles of simulation. As agents come in contact with other agents, they can transmit infection if one of 
the agents is already infected. The infection transmission occurs with a probability that is dependent on mask-
wearing behavior. Finally, the testing is incorporated at two levels. A part of the testing is dedicated to random 
testing, where random individuals are tested. If random individuals are already infected, they are detected and 
quarantined. The second part of the testing is contact tracing. The detected individuals reveal their contacts 
with a probability equal to the informational efficiency of contact tracing. While in reality, the informational 
efficiency can be modified with institutional efforts, the informational efficiency is inelastic given a certain state 
of technology for contact tracing. We modify the allocation efficiency and the allocation of test capacity for 
contact tracing. The outcome measure is the number of infected individuals during the first 50 days. The 
summary outcomes from the agent-based simulation study are provided in Figure 1. Below, we summarize 
observations from the agent-based simulation. 

Effect of Social Distancing and Institutional Restrictions on Mobility 

In Figure 1b, N is maintained at 5000, T at 250, CT at 0.1, and p at 0.05, which is equivalent to 95% of the 
population wearing masks. In Figure 1b, the red curve represents ℳ = 20, indicating that each individual has a 
high contact rate (20 per day on average) with other individuals. In this scenario, the whole organization gets 
infected within 2 weeks of reopening. The scaled (max area set to 1) median area under the susceptible curve 
is 0.225. The maximum positivity rate in the organization is 60%, which is achieved on the 15th day. Also, 
Figure 1a is an illustrative outcome from the simulation that shows the median case in solid lines and the 
upper/lower 90th confidence intervals in dotted lines. The red line indicates the number of infected individuals 
in the system who are infected but not yet detected or removed. The black line indicates the number of 
individuals who are infected but detected and removed from the system by quarantining or through other 
mobility restrictions. Finally, the blue line indicates the number of individuals who are not yet infected. 
Furthermore, from Figure 1b we observe that when the mobility reduces to ℳ = 10 corresponding to the green 
curve, then the number of days to full infection increases to 3 weeks instead of 2 weeks. The area under the 

susceptible curve is 0.377. It is to be noted that these figures are for a low level of testing (
𝑇

𝑁
= 0.05), where 

every individual is tested only once a month. For ℳ = 5, we find that in the 5th quantile of the distribution of 
the area under the simulated susceptible curves, while the whole organization gets infected in 2 months 
(approximately 50 days), more than 50% of the organization remains uninfected for the 95th quantile of the 
area under the susceptible curves. The median of the distribution of the area on the susceptible curves is 0.763. 
Finally, for ℳ = 1, i.e., each individual only meets one other individual, then the organization largely remains 
uninfected even at a low level of testing. The area under the susceptible curve is 0.998. However, at ℳ = 1 the 
idea of in-person operations is severely restrictive, and a combination of other measures may be required. 
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Effect of Mask Wearing and Sanitization Strategy 

Mask wearing determines the probability of transmission 𝜋𝑚 denoted as 𝑝. Mask enforcement has been 
implemented as an interpolated proportion of the percentage of the population that adheres to mask-wearing. 
As indicated in recent studies, In Figure 1c, for (𝑝 = 0.20), the whole organization gets infected within 15 days 
with a median area under the susceptible curve of 0.224; in Figure 1c (𝑝 = 0.15), the whole organization gets 
infected within 20 days and the median area under the susceptible curve is 0.281; in Figure 1c (𝑝 = 0.1), the 
whole organization gets infected within 30 days with a median area under the susceptible curve equal to 0.355; 
and finally, for (𝑝 = 0.05), the infection rate is reduced significantly and the majority of the organization remains 
uninfected, with a median area under the susceptible curve of 0.735. These figures demonstrate that mask 
enforcement is an essential part of the reopening of institutions. In Figure 1c, the level of testing is still low 
when each individual gets tested only once a week. The figures demonstrate that just by mask enforcement, 
organizations cannot ensure a safe reopening. Even when the probability of transmission is only 5%, a 
significant section of the organization still gets infected.  

Effect of Testing Capacity 

Figures 1d and 1e, respectively, indicate the simulation outcome for different levels of testing for fixed values 
of infectivity, and the different levels of testing that the organization would need to institute at different levels 
of infectivity for the organization to reopen safely. Figure 1d reveals that when testing levels are low, then, even 
with high levels of mask enforcement and restrictions on contact rates, significant transmission risk remains. 
In Figure 1d, we vary the level of testing from 250 tests per period (red curve) for a population of 5000 
individuals, 500 tests per period (green curve), 1000 tests (magenta curve), 2000 tests (blue curve), and 2500 
tests (pink curve). Maintaining all other parameters invariant, the testing levels have a significant impact on the 

expected spread of the disease after reopening. For testing levels of 
𝑇

𝑁
= 0.05, 0.1, 0.2, 0.4  and 0.5, the simulated 

areas under the susceptible curves are 0.248, 0.252, 0.281, 0.521 and 0.989, respectively. Only when 
𝑇

𝑁
≥ 0.4 we 

observe favorable outcomes with moderate levels of mask enforcement given by 𝑝 = 0.1, which corresponds to 

75% mask enforcement and contact rate of ℳ = 10. A 75% mask enforcement indicates that around 75% of 
the population is wearing masks throughout the simulation. The mask enforcement level remains constant 
across cycles (representing time) within a simulation. Therefore, at these levels of mask-wearing and mobility-
related measures, every individual needs to get tested twice a week to have a safe opening. Indeed, the theoretical 
minimum number of tests per day for the parameters in Figure 1d is 0.32.  

Figure 1e demonstrates the level of testing required for a safe opening for varying levels of mask 
enforcement when mobility and contact frequency are kept fixed at ℳ = 5. Corresponding to 𝑝 = 0.05, 0.1 and 
0.15 testing levels required to dampen the disease and maintain the area under the susceptible curve close to 1 

are 1000 (
𝑇

𝑁
= 0.2) , 1500 (

𝑇

𝑁
= 0.3) and 2500 (

𝑇

𝑁
= 0.5) per day. A similar pattern can be observed for the other 

three scenarios, where 𝑝 = 0.05 for all three scenarios, but the mobility and contact rate changes from 1 to 15, 
and the level of testing required changes from 250 to 2500. Recall that the minimum level of testing required 

for safe opening is 
𝑇𝑚

𝑁
≥

𝑟 𝜋𝑚ℳ 𝑝𝑚(1−𝑝𝑚)

𝑝𝑚+𝜂𝑎(1−𝑝𝑚)
, where 𝑝𝑚 is the positivity rate. Therefore, for the above parameters (𝑝 =

0.05, 𝑟 = 1.1, 𝑀 = 5), the minimum level of testing required is 
𝑇𝑚

𝑁
≥ 0.2295, which amounts to testing about 1150 

individuals per day for a 5,000-member organization. Therefore, our numerical experiment corroborates our 
estimates from theory.  

Contact Tracing and Focused Testing 

We already concluded from Figure 1e that large-scale random testing is important. Figure 1f illustrates the 
complementary role that contact tracing and random testing play in mitigating the infection spread. We denote 
the level of contact tracing by 𝐶𝑇. With 𝐶𝑇 = 0.3, the 95th quantile of the curve of the number of susceptible 
(higher the better) indicates a much-reduced rate of infection as compared to the case with 𝐶𝑇 = 0.1. This 
observation continues to hold even for a contact tracing rate of 0.5. The impact of contact tracing, however, 

reduces when 𝐶𝑇 is driven north of 0.7. For such high values of 𝐶𝑇,  random testing is significantly reduced. 
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The influx of infections in an open system precludes the possibility of catching an adequate number of 
infections through contact tracing alone. Thus, arbitrarily increasing contact tracing at the expense of random 
testing becomes counterproductive. One needs to optimally select the mix.  

Adaptive Testing Strategy 

The discussion so far has been focused on fixed strategies, where the testing levels remain fixed at every period. 
Due to the variable nature of the infection, a fixed capacity may lead to unnecessary testing and expenses. In 
adaptive testing, we consider the case where the decision-maker estimates the positivity rate and decides the 
number of tests based on that estimate. We assume that she does so in a way that seeks to dampen the infection 
in the next time period with a given confidence (called uncertainty risk-based buffer). We show the infection 
dynamics for a population of 50,000 individuals with an initial infection load of 500 individuals, and an 
infectivity of 0.05. Figure 2 shows three levels of confidence (risk buffer), e.g., 0.5 (median), 0.6, and 0.7. At all 
levels of risk buffer, the disease significantly dampens. For higher-risk buffer, the disease dampens relatively 
more sharply. The maximum testing capacity however increases as the risk buffer increases. At 0.5, the initial 
testing capacity required is 10,000, whereas for 0.7 the maximum testing capacity required is 12,000. The 
adaptive testing capacity required reduces with the reduction in infection levels.  

Figure 2. Fixed versus Adaptive Testing (N=50,000, p=0.05, M=5, Max T=10000, Starting positivity = 0.001) 

 

CASE ANALYSIS: REOPENING EXPERIENCE OF UNIVERSITY OF ILLINOIS AT URBANA-
CHAMPAIGN AND ILLINOIS STATE UNIVERSITY 

We have so far described a theoretical model and an agent-based simulation that can provide policy pointers 
for reopening strategies. We tune these models with data on the reopening experience of two large public 
universities in the state of Illinois: (i) the University of Illinois at Urbana-Champaign, Champaign County, IL, 
and (ii) Illinois State University, Normal, McLean County, IL. Both universities closed down for in-person 
classes mid-March 2020 in the wake of the rising cases of COVID-19 infection in the United States and the 
State of Illinois. However, both universities decided to reopen for in-person classes in the Fall of 2020. In-
person classes commenced on August 21, 2020, after closing the campuses for more than 5 months prior to 
the reopening. Both universities rolled out extensive plans for student awareness, mandating mask-wearing in 
university buildings, and extensive testing of students under the SHIELD program with rapid saliva-based tests. 
The University of Illinois at Urbana-Champaign planned to test all its 50,000 students, faculty, and staff twice 
a week using an electronic mobile application for managing the testing process and contact testing24. As 
expressed by an article in New York Times24 these were the most extensive reopening plans that were put in 
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place. Despite the extensive plans, the spread of COVID-19 infection after re-opening within and from outside 
the campus was far from expectation. In UIUC, despite the extensive rapid testing of 20% of the population 
every day, the number of infected individuals sharply rose to around 1000 within 2 weeks of reopening. 
Similarly, the Illinois State University had 9000 students on campus in the fall, however, soon after opening up 
the positive rate of the COVID-19 infection increased significantly.  

We obtained data on the number of tests conducted per day at both universities and the number of 
positive cases that were identified at both campuses from the public COVID-19 dashboards for both 
universities. Using the data, we estimated the real positivity rate in the population from the observed positivity 
rate as follows. In a population of size 𝑁, let the real positivity rate of the population on day 𝑡 be 𝑝𝑡. Suppose  
𝑇 ≤ 𝑁 tests are conducted on that day. For the estimation of the real positivity of the population, we assume 
parametric distributions that can model the number of detected individuals given the number of tests 𝑇. If the 
real positivity of the population is 𝑝𝑡, then for a population of 𝑁 individuals, the number of COVID-19 positive 
individuals is 𝑁𝑝𝑡. Since we assume that a detected individual is removed from the population, the probability 
distribution of obtaining 𝐾 detections from random testing follows a random sampling distribution without 
replacement. We assume that 𝐾. the number of confirmed COVID-19 cases follows a Hypergeometric(𝑁, 𝑁𝑝𝑡, 𝑇) 
distribution where the ambiguity in the true prevalence of the infection 𝑁𝑝𝑡 is represented through the Beta −

Binomial (𝑁, 𝛼, 𝛽) distribution. These parametric distributions are ideally suited to estimation from measured 
positivity rates. We performed an MCMC estimation of the actual positivity rate in the population of each 
university as follows. We use the data from a week to estimate the positivity rate of the population in 
consideration for the week. Then, we slide the time window by a day and re-estimate the average positivity rates 
for that week. Such a technique provides a moving weekly-average of the daily positivity rates of the population. 
We further approximate the infection transmission factor (infectivity) using the estimated positivity rate and a 
compound factor 𝛽𝐼 = 𝑟 𝜋𝑚ℳ that accounts for the base infectivity, the mask-wearing behavior, and the degree 
of socialization within the population. In the university setting, the slope of the real positivity rates provides us 
with a good estimation of the infectivity within the population of the universities. In Figure 3, we provide the 
data and the estimation of the positivity rates for the University of Illinois at Urbana-Champaign. In Figure 4, 
we provide the estimates for Illinois State University. The data for UIUC comes from the public dashboard of 
the UIUC SHIELD program (one of the co-authors is a director of the program) at the website: 
https://covid19.illinois.edu/on-campus-covid-19-testing-data-dashboard/ (last accessed September 30, 2020). 
The data for ISU comes from the public dashboard of ISU at https://coronavirus.illinoisstate.edu/dashboard/ 
(last accessed September 30, 2020).   

Upon re-opening, the number of tests per day was increased significantly at UIUC, as Figure 3a 
illustrates. Figure 3b shows that confirmed positives also increased significantly around the same time. A part 
of the increased confirmed cases is due to the increased tests, which led to higher rates of quarantine and 
isolation of the positive cases. While higher rates of detection with rapid saliva-based testing at high volumes 
help reduce future infections, the number of positive cases kept increasing, which indicates that social distancing 
and mask-wearing were not adequate for a safe reopening24. Figure 3c presents the scatterplot of the observed 
positivity rates from the tests directly with the estimated real positivity rates using a seven-day sliding window. 
Initially, the positivity rates exhibited a dip from 0.5% (opening up) to 0.4% after the first week. However, after 
classes resumed and the campus resumed in-person classes (note that all students were not on campus, some were remotely 
located) the positivity rate increased significantly to a median estimate of 1.23% with a 95% confidence interval 
of [0.82%-1.67%]. Figure 3d presents the estimates of the infection transmission rate (infectivity). The 
infectivity estimates in Figure 3d are the daily infectivity estimates from the raw data without considering time-
series effects and the effect of testing, which we present subsequently. The estimated infectivity steadily 
increased after opening up, demonstrating that the strategies were not sufficient to dampen the disease. The 
infectivity escalated to a mean level of 0.11 with a 95% confidence interval of [0.079-0.155]. Based on the 
estimates presented in Figure 1 on the likely strategies of opening up, for infectivity of 0.15 (considering the 
worst case), every student needs to get tested every second day for the disease to decay over time. We believe 
this is a key insight that can help the focal university UIUC and provide an estimate for other universities on 
the likely infectivity with similar-sized campuses and student body sizes. Another complementary strategy is 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.09.04.20188680doi: medRxiv preprint 

https://covid19.illinois.edu/on-campus-covid-19-testing-data-dashboard/
https://coronavirus.illinoisstate.edu/dashboard/
https://doi.org/10.1101/2020.09.04.20188680


Reopening Strategies Amid COVID-19 

 

Page 11 of 19 

 

one of stricter enforcement of preventative measures including social distancing and mask-wearing. We 
acknowledge that implementing such a strategy in a public university setting is a daunting task, especially given 
that a significant student population lives in off-campus private residence halls. For Illinois State University, 
with a relatively smaller campus and a relatively smaller student body compared to UIUC, the infectivity rates 
as shown in Figure 3d initially increased, but later stabilized and even reduced. However, the positivity estimates 
are significantly more than that of UIUC. One of the contributing factors for the high positivity is the relatively 
lower number of tests done per day; while, the aggregate 𝑇/𝑁 = 0.15 for UIUC, the same number is 0.07 for 
ISU. We believe that the relatively, lower levels of tests at ISU led to a significant rise in the positivity rates 
rapidly to more than 0.3 at the peak, which reduced only after the campus initiated stricter control on social 
distancing and mask-wearing.  

Figure 3. COVID-19 Infection of University of Illinois at Urbana-Champaign, IL 

Fig. 3a. Daily Tests at UIUC Fig. 3b. Total Confirmed Positive Cases 

  
Fig. 3c. The Observed and Estimated Positivity 

Rates 
Fig. 3d. The Estimated Infectivity Rates 

 
 

Note. Days indicate days from the start of campus move-in, which is August 10, 2020 

Figure 4. Estimates for Illinois State University, Normal, IL 

Fig. 4a. Daily Tests at ISU Fig. 4b. Total Confirmed Positive Cases 
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Fig. 4c. The Observed and Estimated Positivity 
Rates 

Fig. 4d. The Estimated Infectivity Rates 

 
 

To estimate the relationship of infectivity at UIUC and ISU with respect to testing per capita, we consider the 
continuous-time version of the infection model that was developed for the simulation study. A linear regression 
setup for estimating the effect of infectivity and positivity within universities is not consistent due to the non-
linear nature of the infection dynamics over time and the nature of the dependency of testing with positivity. 
This dependency is interesting in that lesser testing leads to growth in infections that in turn require amplifying 
testing needs later to mitigate the disease. Since the data is observational, and not experimental, the data 
generation process is non-random and involves the discretion of administrators and policymakers, such that 
the administrators chose the capacity of testing based on observed positivity rates. This is understood from 
Figure 3a that the testing per day increased in line with the increase in the number of positive cases shown in 
Figure 3b. While the positivity rate depends on the underlying epidemic process that we do not observe, assume 
that we take the observed positivity rate as a proxy for the true fraction of the infected population. This non-
random data generation process in the observed data series at both UIUC and ISU makes a straightforward 
linear regression-based analysis to become inconsistent. To estimate parameters from data, we make an 
additional simplification and assume 𝑥𝑡 + 𝑛𝑡 to roughly remain constant. Then, the positivity rate (with such 
simplifying assumptions) changes with time as 

𝑑𝑝𝑡

𝑑𝑡
= 𝜋𝑚𝑝𝑡(1 − 𝑝𝑡) − 𝑝𝑡 (

𝑇𝑡

𝑁
)    ⟹    𝑝𝑡 = −

(𝜋𝑚 − (
𝑇𝑡

𝑁
)) exp {𝜋𝑚𝑡 + 𝑏0 (

𝑇𝑡

𝑁
)}

exp {𝜋𝑚𝑏0 + (
𝑇𝑡

𝑁
) 𝑡} − 𝑏0 exp {𝜋𝑚 + 𝑏0 (

𝑇𝑡

𝑁
)}

. 

The parameters 𝜋𝑚, 𝑏0 are unknown. We estimate them using non-linear curve fitting. We estimate the 
parameters for both UIUC and ISU as shown in Table 1a. From Table 1a we find that the effect of testing on 
infections within universities is significant and the effects are considerably different for the two universities. 
While for these two universities we have daily data, we have collected weekly testing and infection data for a 
total of 228 other universities. The data is collected from publicly available dashboards of individual universities 
regularly by the research team and collated into a web-tool for visualization of the data. We combine this data 
with data from the New York Times tracking dashboard for universities and schools 
(https://www.nytimes.com/interactive/2020/us/covid-college-cases-tracker.html). The research team has 
developed the following website (www.covidedutrends.com) to accompany the paper to enable visualization of the 
data across universities in the United States. Since the weekly data is a small panel, the non-linear curve fitting 
approach is not possible. Therefore, in Table 1b we show the Poisson regression estimates for the effect of 
testing on positivity for all major universities in the Universities in the United States. As expected, we find that 
increased testing significantly reduced positivity for all universities taken together. Finally, in Figure 5 we show 
the marginal curves of positivity with respect to testing intensities for (i) UIUC in Figure 5a, and (ii) ISU in 
Figure 5b.  
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Table 1. Parameter Estimates for the Infectivity Estimates with respect to Testing Intensity 

Table 1a. Non-linear Curve Estimates for UIUC and ISU Table 1b. Beta-reg. for all Universities 

Parameter UIUC ISU 

Est. (SE) p-Value Est. (SE) p-Value 

𝜋𝑚 0.06 (0.00) <0.01 0.14 (0.03) <0.001 

𝑏0 -5.03 (0.61) <0.001 2.62 (2.01) 0.21 

Error SE 0.001 0.031 
Sample N 74 48 

 

Parameter Est. (SE) p-Value 

(Intercept) -2.86 (0.06) <0.001 

𝑇/𝑁 -0.49 (0.16) <0.01 

𝑆𝑞(𝑇/𝑁) 0.06 (0.03) <0.05 

N 228 

Wald 𝜒2 602.5 (4) <0.001 
 

Figure 5. The Non-linear Curve Fitting Predictions for Infectivity with respect to the Testing Intensity 

Figure 5a. Predicted for UIUC Figure 5b. Predicted for ISU 

  

 

We observe from the figures that the higher intensity of testing at UIUC as part of the SHIELD 
program has led to a significant reduction in infections. Also, we observe from the data estimates that at a 
testing rate of 30%-40% of population daily at UIUC, the university can expect to control the COVID-19 
infection and effectively dampen it down to negligible levels at the current levels of population mobility and 
exposure. However, from Figure 5b we observe that the test to student levels is much lower as compared to 
UIUC (approximately 10 times lower) and the predicted infectivity is higher than that of UIUC. This indicates 
that the number of rapid testing to the student ratio is an important policy lever for the reopening strategies. 
In the context of UIUC (Table 1a), the average reduction in infectivity is estimated to be from 0.35 to 0.25, 
when the testing per capita changes from 0.0 to 0.1 (10%). However, interestingly between the testing capacity 
of 0.1 to 0.2 per capita per day testing the infectivity does not change significantly, and remains stable. However, 
beyond the threshold of 0.2 testings per capita the reduction is infectivity is significantly sharper, with an average 
slope of >0.3, i.e., between testing of 0.2 to 0.3 per capita per day (once a week to twice a week) the infectivity 
estimates reduce from 0.25 to 0.01. This indicates that at lower levels of testing, the marginal benefit is much 
lower than at relatively higher levels beyond a threshold. These results, although estimates from the UIUC 
shield program, are applicable generally to other similar universities, and it seems that testing of at least 0.2 per 
capita per day is required for safe reopening. With considerations of the uncertainty of the disease propagation, 
a safer risk-averse threshold from the data is 0.3 per capita, when the infectivity is reduced to negligible levels.  

Finally, in Table 1b, we present the results of estimation for 228 universities. The estimation results 
demonstrate that testing is essential for the safer reopening of universities. This is evident from the significantly 
negative slope parameter estimate (-0.49, p-value<0.01) of Table 1b, which indicates that universities that had 
relatively higher rates of testing to student ratio experienced lower levels of aggregate level infection within the 
universities. However, the squared term is positive and significant indicating a diminishing marginal return, 
however, the slope estimates of the linear and the squared term estimates of the testing per capita parameter 
indicate that the point of a turn-around for positive benefits of increasing testing is greater than 1, indicating 
that in the range of values for possible testing (0, 1) the marginal benefits in increasing testing at universities 
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remain significant and positive. To understand the effect of testing better we computed the marginal effect size 
of testing. Increasing testing per capita per day by 1% at the universities reduce the passivity rates by an average 
of 0.0228% with a 99% confidence interval of [0.0209%-0.0253%] when the average positivity across 
universities is 0.0493 [0.0451-0.0539]. From Figure 5, we reconfirm these findings. While for UIUC the 
positivity rates are predicted to be reduced with increased testing (refer Figure 3c showing infectivity range of 
0-0.015), for ISU the story has been significantly different (refer Figure 4c showing infectivity range of 0-0.3, 
which is significantly higher than UIUC). Also, it has to be noted that the required testing rate needs to be 
around 0.3-0.4 for the infections to reduce to a negligible level.  

LOCATION EFFECT ON REOPENING STRATEGY OF INSTITUTIONS 

We have included a parameter to account for the infections coming from outside an institution. In the analytical 
model, the effect of the parameter is included in the infection rate. The possible interactions of institutions with 
the outside environment has the potential to significantly increase the infection rate within institutions, 
particularly when the infection load in the surrounding region is high. Before we delve into the effect of 
environment infection on the same within universities, we provide an estimate of the effect of institutions 
opening up on the surrounding regions due to the high influx of students and employees from other regions. 
Many of the large universities act as a transmission platform if the infection rates inside these institutions are 
not well controlled. In Figure 6, we present the infection rates of Champaign County in IL where UIUC is 
located and McLean County in IL where ISU is located. In figure 6a (for UIUC) and 6b (for ISU), the blue 
curves show the infection curves for the counties (without the institution infections) and the red curve shows 
the corresponding infection curve for the institutions. As seen from Figure 6, the reopening of institutions has 
significantly increased the infection load in the environment, particularly when infections within universities 
increased. We believe that the environmental infections and within institution infections (particularly for large 
institutions such as universities) have a reverse causal relationship with one reinforcing the other.  

These graphs provide evidence that the location (environment) and the institutional infections are not 
independent but are rather intimately related to each other. One can profoundly impact the other. To investigate 
further, we collected data on infection rates within 228 large public and private universities after initial opening 
up (within 1-2 weeks) from university dashboards (collated at covidedutrends.com) and the New York Times 
database on tracking COVID-19 at Universities (https://www.nytimes.com/interactive/2020/us/covid-
college-cases-tracker.html, last accessed September 30, 2020). Figure 7 provides a graphical view of the location 
of universities and infections. From Figure 7a, we observe that the higher rates of infections in universities are 
concentrated around the regions with generally higher rates of infections in the population. From Figure 7b,  
we observe that there is a positive correlation between institutional infectivity and county infectivity where the 
institutions are located. 

To empirically characterize the effect of county infection load on institutional infections, we 
constructed the following variables: (i) University infection rate, which is the infection rate (%) after 2 weeks 
of reopening, (ii) Total infections, is the total number of detected COVID-19 infections in institutions, (iii) 
Enrollment, is the total fall enrollment from the US higher education news source, (iv) Cases is the total number 
of COVID-19 cases in the county of location, (v) County Infection Rate (%) is the infection rate at the county 
of location. In Table 2, we provide the descriptive statistic and correlation coefficients of the variables. In Table 
2, we present the regression estimates with two different dependent variables. In column 1 of Table 2, we 
present the beta GLM of the University infection rate and in column 2, we present the quasi-Poisson (variance-
inflated Poisson) GLM of the total number of infections. 

The regression estimates of Table 3 suggest that the county infection rates are significantly associated 
with the university infection rates (column 1, Par. Est. 1.40e-01, SE. 3.62e-02, p-value < 0.001) and the total 
number of infections (column 2, Par. Est. 5.12e-01, SE. 1.04e-01, p-value < 0.001). An increase in county 
infection rate by 1% has the potential to increase the institutional infection rate by an average of 0.14% with a 
99% confidence interval of [0.032% – 0.248%] across all universities. This is due to the fact that universities 
are not closed systems, rather they are open systems with significant environmental influence on the internal 
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infection rates. Furthermore, large institutions with higher enrollment have a higher risk of infections. This 
indicates that large institutions located in counties or zip codes with higher rates of population-level COVID-
19 infections face relatively higher levels of risk after reopening. This is an important consideration that 
institutions need to account for when they develop their reopening strategies. In some counties, where infection 
levels are very high such as Cook County in IL and New York City, institutions may choose to adopt purely 
online operations until an approved cure or vaccine for COVID-19 emerges. Only testing may not be sufficient 
unless commensurate measures are adopted for ensuring general mask-wearing behavior and social-distancing 
behavior. 

Figure 6. Infection Curves of Counties and Large Public Universities Located in those Counties 

Fig. 6a. Champaign County and UIUC Fig. 6b. McLean County and ISU 

  
Figure 7. COVID-19 Infection Tracking within Large Universities in the US after Reopening   

Fig. 7a. Infection Map of Universities after Reopening 

(𝑁 = 228) 

Fig. 7b. Infection Rate within Universities versus 
Infection Rate in the County of Location  

  
Table 2. Descriptive Statistics and Correlation Coefficients (Columns 1-5) of Variables 

 Sl Variables Mean Std.Dev (1) (2) (3) (4) (5) 

(1) University infection rate (%) 1.8 0.01 1.00     
(2) Total infections (Nos.) 235.2 4365.8 0.95 1.00    
(3) Enrollment (Nos.) 27,700.0 11,787.2 0.19 0.05 1.00   
(4) Cases (Nos.) 22.923 43,641.3 -0.08 -0.10 0.14 1.00  
(5) County Infection Rate (%) 1.98 1.03 0.21 0.21 0.07 0.40 1.00 
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Table 3. Regression Estimates of (1) University infection rates and (2) Total infections. 

Variables (1) Dependent Variable: 
University infection rate (%) 

(Beta GLM) 

(2) Dependent Variable: Total 
infections (Nos.) 

(Quasi-Poisson GLM) 

Enrollment (Nos.) 3.49e-06 (2.99e-06) 3.10e-05 (7.68e-06) *** 
Cases (Nos.) -3.19e-06 (1.00e-06) ** -1.48e-05 (4.34e-06) *** 
County Infection Rate (%) 1.40e-01 (3.62e-02) *** 5.12e-01 (1.04e-01) *** 
(Intercept) -4.30e00 (1.39e-01) *** 3.70e00 (3.74e-01) *** 

Phi Parameter / Dispersion 154.12 (14.89) *** 641.46 
Sample Size 228 228 
Log-likelihood 747.3 847.9 
F-Statistic 21.1 (df: 3, 3) * 14.9 (df: 3, 227) *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

CONCLUSIONS 

The reopening of institutions during the COVID-19 pandemic is challenging. Given reasonable levels of mask 
enforcement (5% chance of infection transmission given contact) and social distancing (5 contacts per person 

per day), for large institutions such as universities and colleges, a testing level of 
𝑇

𝑁
≥ 0.3 can be sufficient to 

dampen the spread of the disease. This level of testing translates into testing every individual twice a week. 
However, if this level of testing is not feasible, then the shortfall can be compensated by ensuring higher 

stringency in mask enforcement and social distancing. If the testing level is around  
𝑇

𝑁
≥ 0.1, then the average 

contact rates need to drop to at most 1 contact per day. These results are subject to the mathematical 
abstractions of simulation; however, these results provide a directional understanding of the combination of 
strategies that are important to consider while reopening institutions. We summarize the findings and the 
suggested strategy in Figure 8. Figure 8 provides a heat-map for safe reopening strategies and demonstrates the 
interaction of mask-wearing, which determines the infectivity upon contact with infected individuals, social 
distancing, which determines the contact rate of individuals, and the testing per person per day or the test 
capacity to population ratio under adaptive testing, subject to maximum capacity as shown. The metric of 
performance is the area under the susceptible curve, which is a function of the number of persons not infected 
at any point in time. The area under the susceptible curve is determined by the average basic reproduction 
number of an epidemic. While the basic reproduction number is an instantaneous measure, the area under the 
susceptible curve is a cumulative measure. From Figure 8, we observe that an institution needs to adapt to the 
estimates of infectivity and contact rates and adapt to changes in infectivity and contact rates. We have included 
several scenarios that provide a fairly comprehensive estimate of the rate of testing required. Many organizations 
are testing at a significantly high level; for instance, the University of Illinois at Urbana-Champaign has been 

testing at a rate of 10,000 (
𝑇

𝑁
= 0.2) individuals every day for a population of approximately 50,000 individuals 

on campus under the SHIELD program, using a saliva-based rapid testing methodology. Some of the initial 
reopening experience confirms the value of a combination of strategies. Indiana University suspended all in-
person activities in certain student housings after a rapid rise in COVID-19 cases after reopening21. Per a recent 
media report22, several universities have more than 500 cases, such as the University of Alabama at Birmingham 
(972 cases), the University of North Carolina at Chapel Hill (835 cases), University of Central Florida (727 
cases), Auburn University in Alabama (557 cases), Texas A&M University (500 cases), University of Notre 
Dame (473 cases), and the University of Illinois at Urbana-Champaign (448 cases), within days and weeks of 
reopening. Another study23 indicated that colleges and universities would need to test every student once every 
two days to reopen safely. These outcomes and studies support the insights from our paper. Finally, we 
summarize an indicative and suggested strategy profile based on the study conclusions in Figure 8. Figure 8 
shows the possible implications and strategy profiles for different levels of preventative adherence and contact 
rates. Figure 8 provides indicative direction for strategies for the reopening of universities. Generally, as 
discussed earlier, we observe that increases infectivity due to mobility and contact rates, and non-conformance 
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to mask-wearing, the testing intensity needs to increase non-linearly with respect to the contact rates. Therefore, 
a combination of strategies is warranted for the reopening of institutions.  

In closing, we submit that the investigation into reopening strategies is subject to some limitations. The 
simulations demonstrated here are hypothetical and do not represent the practical complexities of a real 
organization. Furthermore, the actual implementation will entail additional organizational, social, or political 
constraints that have not been considered in the paper. Nevertheless, we believe that the results presented here 
provide significant practical insights, at least in a conceptual and directional sense, that can effectively enable 
institutions to reopen while controlling the risk of COVID-19 spread within the organization. Finally, we 
believe that different universities and institutions would need to customize the right combination of strategies 
based on the realities of reopening and the practicality of social distancing and other preventative measure 
adoption. Therefore, one size does not fit all, and adaptive customization of strategies is essential for the safe 
reopening of institutions.  

Figure. 8. Summary of Strategies for Safe Reopening (Heat-Map of Scaled Area Under the Susceptible Curve 
– Higher the Better) 

 

Data and Source Codes. 
All data and source codes used in the paper are available at: https://github.com/Ujjal-Mukherjee/COVID-19-
Reopening 
A preprint link to the paper (earlier version) is available at: 
https://www.medrxiv.org/content/10.1101/2020.09.04.20188680v2 
The university tracking data dashboard created by the authors is available at: 
https://public.tableau.com/profile/anton.ivanov3554#!/vizhome/Covid_Dashboard_v2/Dashboardv2?pub
lish=yes (Owner. Anton Ivanov (co-author)) 
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