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Abstract

The current COVID-19 pandemic has caused several damages to the world, especially

in public health sector. This study considered a simple deterministic SIR (Susceptible-

Infectious-Recovered) model to characterize and predict future course of the pandemic

in the West African countries. We estimated specific characteristics of the disease’s

dynamics such as its initial conditions, reproduction numbers, true peak, reported peak

with their corresponding times, final epidemic size and time-varying attack ratio. Our

findings revealed a relatively low proportion of susceptible individuals in the region

and in the different countries (1.2% across West Africa). The detection rate of the

disease was also relatively low (0.9% for West Africa as a whole) and < 2% for most

countries, except for Cape-Verde (9.5%), Mauritania (5.9%) and Ghana (4.4%). The

reproduction number varied between 1.15 (Burkina-Faso) and 4.45 (Niger) and the peak

time of the pandemic was between June and July for most countries. Most generally,

the reported peak time came a week (7-8 days) after the true peak time. The model

predicted 222,100 actual active cases in the region at peak time while the final epidemic

size accounted for 0.6% of the West African population (2,526,700 individuals). Results

obtained showed that the COVID-19 pandemic has not severely affected West Africa

as noticed in other regions of the world, but current control measures and standard
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operating procedures should be maintained over time to ensure trends observed and

even accelerate the declining trend of the pandemic.

Keywords: COVID-19, detection rate, peak time and size, final epidemic size, attack 1

ratio, Africa
2

Introduction 3

The COVID-19 pandemic is a severe acute respiratory syndrome caused by the new 4

coronavirus, SARS-CoV-2, which has emerged from Wuhan, Hubei Province (China) in 5

the last days of 2019 [25,39]. It is currently the most important threat to global public 6

health . By August 15th, 2020, about 21,026,758 total confirmed cases and 755,786 7

deaths were recorded worldwide [44]. The disease was rapidly spread around the world 8

(about 212 countries) [27] including the 54 African countries. By mid August 2020, The 9

World Health Organisation (WHO) reported 936,062 and 152,483 confirmed cases and 10

18,286 and 2,351 deaths across Africa and the West-African region, respectively [44]. 11

Healthcare services in the region have particularly faced critical time sensitive decisions 12

regarding patients and their treatment [28]. It is clear that the COVID-19 pandemic 13

has severely affected people’s life, health and economy. Actually, it led to an important 14

increase in the demand of hospital beds and artificial respirators (mechanic and non- 15

invasive). According to the WHO global health observatory data, most countries in 16

West Africa have less than 5 hospital beds and 2 medical doctors per 10,000 of the 17

population, while 50% of the countries have health expenditures lower than US$50 18

per capita [46]. In contrast, European countries such as Italy and Spain, 34 and 35 19

hospital beds, respectively, per 10,000 of the population are noted, 41 medical doctors 20

per 10,000 of the population, and US$2,840 and US$2,506 per capita expenditure [34]. 21

Moreover, medical staff in the World were directly exposed to infections [26]. Since 22

vaccines are still under development, and antiviral drugs are not available for effective 23

curative treatment of COVID-19 infections, the actual cure practice is hospitalization 24

and intensive care unit management [32]. Prevention measures used are essentially non- 25

pharmaceutical interventions such as regular hand washing with soap, mask wearing 26

and social distancing. To be efficient, these non-pharmaceutical measures required a 27

good understanding of the dynamic of the spread of the disease. 28
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Mathematical and statistical models can be extremely helpful tools to make decisions 29

in public health. They are also important to ensure optimal use of resources to reduce 30

the morbidity and mortality associated with epidemics, through estimation and predic- 31

tion [27–30,33]. The prediction of essential epidemiological parameters such as the peak 32

time, the duration and the final size of the outbreak is crucial and important for pol- 33

icy makers and public health authorities to make appropriate decisions for the control 34

of the pandemic [32]. Therefore, modelling and forecasting the numbers of confirmed 35

and recovered COVID-19 cases play an important role in designing better strategies for 36

the control of the COVID-19’s spread in the world [27, 29]. Since the appearance of 37

the first COVID-19 case in the world, several studies have been conducted to model 38

the dynamics of the disease. The main methods used were: deterministic modelling 39

techniques (SIR, eSIR, SEIR, SEIRD, etc. compartmental models) [24,29,30,33,41–43], 40

autoregressive time series models based on two-piece scale mixture normal distribu- 41

tions [27], stochastic modelling methods [49, 50], machine learning techniques [47, 48], 42

growth models [43,52,53] and bayesian method [48]. 43

Among these modeling techniques, deterministic models are the most considered 44

because of their simplicity. However, they fail to provide accurate results due to non- 45

identifiability problem when the number of compartments and the number of parameters 46

are high [39]. Actually, complex deterministic models have been showed to be less 47

reliable than simpler model such as SIR model framework [39], which performs better in 48

describing trends in epidemiological data. This under-performance may be worse when 49

meta-population confirmed-cases data are considered. However, only few studies related 50

to COVID-19 in Africa used mathematical models and prevalence data to study the 51

dynamics, analyze the causes and key factors of the outbreak [24,25,51]. Recently, [24] 52

assessed the current pattern of COVID-19 spread in West Africa using a deterministic 53

compartmental SEIR-type model. 54

In this study, we used a simple deterministic SIR model to characterize and predict 55

future trend of the spread of the pandemic in West Africa. Specifically, we aimed 56

to estimate specific characteristics of COVID-19 dynamics (initial conditions of the 57

pandemic, reproduction numbers, true peak, reported peak and their times and dates, 58

final epidemic size and time-varying attack ratio). The originality of this work is that it 59

focuses on the sixteen West African countries and the whole region as well. It is the first 60
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study dealing with the dynamic of the pandemic in each of the West African countries. 61

Methods 62

Model description 63

Problems of non-identifiability in parameters estimation in deterministic compartment 64

models (especially complex models) are common in epidemiological modelling studies, 65

which often imply biased estimations of parameters. [39] recommended the use of simpler 66

models which overperformed complex models in estimating reliable parameters. Hence, 67

in this study, the simple SIR model [31] was considered with the particularity of two 68

removal rates and illustrated in the system below [17]: 69



dS
dt

=−βSI
N

; N = S + I + R,

dI
dt

=
βSI
N
− (ν1 + ν2)I,

dR
dt

= (ν1 + ν2)I,

(1)

with initial conditions, 

S(0) = S0 > 0

I(0) = I0 > 0

R(0) = R0 ≥ 0

N(0) = N = S0 + I0 + R0.

In (1), S = S(t), I = I(t) and R = R(t) represent the number of susceptible, infected and 70

removed individuals at time t, respectively while N is defined as the total population size 71

for the disease transmission. The parameters β ,ν1 and ν2 are the transmission rate, the 72

removal rate of reported infected individuals (detected) and the removal rate of infected 73

individuals due to all other unreported causes (mortality, recovery or other reasons), 74

respectively. We considered the removal rate ν2 as constant with value ν2 = 1/10 [54]. 75

From the second differential equation of (1), one can notice that ν1I0 represents the 76

daily confirmed cases (Ir0) at time 0 of the outbreak. Thus, the relationship between 77

the initial number of infected individuals and the detection rate, ν1 is as follow and used 78

in the estimation process: 79
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I0=Ir0/ν1. 80

Data consideration and parameter estimation procedure 81

For each country, the data considered for the modeling spans the period from the date 82

of detection of the first case of COVID-19 in the country and August, 12, 2020. Data 83

considered were the daily numbers of reported cases that have been assimilated to ν1I. 84

These data were downloaded from the Global Rise of Education website [55]. Table 1 85

presents the demographic patterns [11], initial dates of the pandemic [55] and testing 86

efforts (identification of new cases) of the countries [11]. We fitted the model (1) to the 87

observed daily cases to study the dynamics of COVID-19 pandemic in the sixteen West 88

African countries. 89

To improve the prediction power of (1), we used a cross-validation procedure of 90

parameter estimation, where 90% of the observations were considered to estimate values 91

of the six unknown model parameters (S0, I0,R0,β ,ν1,ν2) and the remaining observations 92

were used to validate the model. The Root Mean Square Error (RMSE) statistics was 93

used as the measure of estimation precision: 94

RMSE =

√
∑

k
r=1(θ̂ −θ)2

k
, (2)

where θ̂ and θ are the predicted and observed number of daily cases respectively; k 95

is the number of observations considered. We considered as RMSE1, the Root Mean 96

Square Error computed on the 90% of the observations and RMSE2, computed on the 97

remaining observations (10%) 98

The solutions of (1) were obtained using the built-in function ODE45 of Matlab [56]. 99

Then, the non linear least square estimate technique was performed to estimate the 100

six parameters in (1) given starting values, using the built-in function fminsearchbnd of 101

Matlab [56]. 102

Afterwards, we simulated 2,000 different starting values of the six parameters using 103

a resampling method (function resample of Matlab) for S0, I0 and R0 and the uniform 104

distribution (function rand of Matlab) for β and ν1. Then, we estimated for each of the 105

starting points, values of the six parameters using the non-linear least square technique 106

described above. The final values considered for the these parameters are those related 107
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to both smallest values of RMSE2 and RMSE1 to guarantee a good fit of the model and 108

a good predictive power. At the end of this process, we obtained reliable estimates 109

of the model parameters with 95 % confidence intervals. Curves were plotted to show 110

evolution trends of predicted daily new COVID-19, daily reported cases and the attack 111

ratio for the 16 countries. With the estimated values of the six parameters from (1), 112

the COVID-19 dynamic in each country was characterized computing the following 113

parameters with their 95% confidence intervals. Table 1 presents demographic patterns 114

and testing efforts in the West African region. 115

Table 1. Demographic patterns and testing efforts of the 16 West African countries

Countries Population size Density First case Tests/1M Pop Cases/1000 tests

Benin 12,123,200 108 03/16/2020 9,711 18

Burkina-Faso 20,946,992 76 03/10/2020 - -

Cape-verde 556,498 138 03/21/2020 137,485 50

Côte d’Ivoire 26,428,999 83 03/12/2020 4,779 142

Gambia 2,421,823 239 03/17/2020 5,502 222

Ghana 31,072,945 137 03/12/2020 14,183 100

Guinea 13,160,021 53 03/14/2020 1,860 382

Guinea-Bissau 1,971,640 70 03/25/2020 - -

Liberia 5,066,990 53 03/16/2020 - -

Mali 20,294,900 17 03/26/2020 1,852 74

Mauritania 4,659,052 5 03/15/2020 14,980 100

Niger 24,269,389 19 03/22/2020 372 130

Nigeria 206,522,290 226 02/28/2020 1,943 134

Senegal 16,776,618 87 03/02/2020 8,632 93

Sierra-Leone 7,989,949 111 04/01/2020 - -

Togo 8,293,924 152 03/07/2020 7,784 22

West Africa 402,555,230 66 02/28/2020 - -

Date: 08/31/2020; Source: [11] and [55]; Tests/1M Pop: number of tests per 1 million individuals; Cases/1000 tests:
number of positive cases per 1000 tests; - : no data.

- Reproduction number, R0 [1, 16]: It is the average number of new cases of infec- 116
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tion, caused by an average infected individual (during his infectious period), in a fully 117

constituted population: 118

R0 =
β

ν1 + ν2
. (3)

- Running reproductive number, Re [1]: measures the number of secondary infections 119

caused by a single infected individual in the population at time t. 120

Re =
S(t)
N

β

ν1 + ν2
. (4)

- True peak size, npp and True peak time, Tpp. The true peak size indicates the largest 121

daily number of new infectious cases in the population: 122

npp = max(β
SI
N

), 123

while the true peak time, Tpp represents the time at which the largest daily new infected 124

cases is obtained. These two parameters were determined numerically. 125

- Reported peak size, nrp and Reported peak time, Trp. The reported peak size indicates 126

the largest number of daily reported cases: 127

nrp = max(ν1I), 128

while the reported peak time is the associated time to nrp. They were determined 129

numerically. 130

- Maximum number of active cases, Imax: since I0,R0 << S0, we assumed the number 131

of initial susceptible individuals to be approximately equal to N (S0 ≈ N). Thus, Imax 132

can be approximated as follow [16]: 133

Imax ≈ N
[

1− 1
R0

(1 + log(R0))

]
. (5)

- Final epidemic size, Itotal [16]: it is the total number of cases over the course of the 134

epidemic wave. 135

Itotal = S0−S∞; S∞ = limt→∞S(t). (6)

S∞ can be approximated considering the entire population as initially susceptible (S0 ≈ 136

N); hence, following [16]: 137

log
(

S∞

N

)
= R0

(
S∞

N
−1
)
. (7)
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For each country, the equation (7) was solved numerically to determine S∞ through an 138

iterative process. 139

- Attack ratio, Ar [17]: is the fraction of susceptible population that becomes infected. 140

It is calculated along the epidemic wave as follow: 141

Ar(t) =
S0 + I0 + R0−S(t)

S0 + I0 + R0

=
N−S(t)

N
.

(8)

For the West Africa as a whole, S0, I0 and R0 were first computed by summing the 142

corresponding estimated values of the 16 countries. Afterwards, the model (1) was 143

fitted to daily reported cases of the region using initial conditions computed. This 144

allowed the estimation of β and ν1 and computation of the characteristics of COVID-19 145

dynamics across the region. 146

Results 147

Current patterns of COVID-19 transmission in West Africa 148

Table 1 reveals a great heterogeneity in the region in terms of population density and 149

testing efforts. Countries like Cape-Verde, Mauritania and Ghana have put relatively 150

more effort into identifying infected individuals while Niger, Nigeria and Guinea are 151

countries with the lowest number of tests per 1 million people. Combining both the 152

testing effort and the mean number of reported cases per test indicate a relatively less 153

testing effort to identify many infected individuals (Guinea and Gambia). On the other 154

hand, countries like Cape-Verde, Benin and Togo put much effort to find few COVID-19 155

cases (Table 1). 156

Results obtained from the estimation of initial conditions of COVID-19 pandemic 157

in West Africa revealed the relatively low proportion of the susceptible individuals 158

in most countries (about 1% of their total populations). However, countries such as 159

Guinea-Bissau, Gambia and Cape-Verde showed relatively large proportion of suscep- 160

tible individuals to COVID-19 with 17.5%, 6.0% and 2.4% of their total populations, 161

respectively. The proportion of the susceptible individuals across West Africa was also 162
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relatively low (1.2%) (Tables 1 and 2). Moreover, before the detection of the first cases, 163

infected individuals were present in the population of all the countries with some already 164

recovered individuals. The detection rate of infected individuals was relatively low (less 165

than 1%) for Benin, Burkina, Mali, Niger, Nigeria, Sierra-Leone and West Africa as a 166

whole. However, some countries like Cape-Verde (9.5%) Mauritania (5.9%) and Ghana 167

(4.4%) recorded the highest detection rates, respectively. (Table 3). 168

In most countries, the model estimated an average of 1 new case of infection caused by 169

an infected individual during his infectious period (R0) except for Sierra-Leone, Nigeria, 170

and Côte d’Ivoire with R0 ≈ 2 and Niger, which recorded the highest reproduction 171

number (R0 ≈ 4) (Table 3). 172

Long term dynamics of COVID-19 in West Africa 173

We analyzed the long term dynamic of COVID-19 in West Africa by first focusing on the 174

true peak of the pandemic. In general, the estimated reported peak time came a week 175

(7-8 days) after the true peak time in all the countries while their estimated reported 176

peak sizes accounted in average for 21% of the estimated true peak size (Table 3). Most 177

countries have already experienced the peak of the epidemic wave. The true peak time 178

was estimated in June for Sierra-Leone (14th), Mauritania (19th), Benin (27th), Côte 179

d’Ivoire (24th) and Ghana (13th), while it was estimated in July for Liberia (4th) and 180

Nigeria (5th), Senegal (18th), Guinea (23th) and Cape-Verde (22th) and October 4th 181

for Togo. Niger recorded the earliest true peak time (April 8th) while the latest true 182

peak time was on December 10th, 2020 for Gambia (Figure 1 and Table 3). The true 183

peak time across the region was July 1st with 25,267 new cases (Table 3 and Figure 4a 184

and 4b). Margin error of the estimated true peak time varies from 1 day to 16 days with 185

average value of 5 days in the region. Half of the countries (8 out of 16) recorded true 186

peak size less than 1000 new cases cases at peak time. The highest numbers of new cases 187

at peak time were estimated at 19,021 and 17,703 for Niger and Nigeria respectively 188

(Table 3 and Figure 1). The estimates of the reported peak size was 1,891 daily cases 189

across the region (Table 3 and Figures 4a-b). 190
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The final epidemic size would account for 0.6% of the population of West Africa. 191

This estimate is generally low (< 1% of the population size) for more than half of the 192

countries though Gambia, Guinea-Bissau and Cape-Verde would record the highest final 193

epidemic sizes (> 9% of their populations). The estimates of the maximum number of 194

actual daily active cases at peak time are for most countries greater than 1,000 cases, 195

though, it is 107,200 and 195,000 for Niger and Nigeria respectively (Table 3). 196
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Fig 1. Evolution trend of the COVID-19 daily cases per country.
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The running reproduction number helped assess the evolution trend of the disease. 199

It decreased over time in all countries from the beginning of the outbreak (1.2−4.5) to a 200

stability point, which varied according to countries (0.50−0.82, Figure 2). As expected, 201

the fraction of susceptible individuals being infected (attack ratio) increased over time 202

from 0% to 40%−70%, depending on countries. These evolving trends in reproduction 203

number and attack ratio are similar to those noted for West Africa as a whole (Figure 204

4b-c). 205
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Fig 2. Running reproduction number per country in West Africa.
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Fig 3. Evolution trend of the attack ratio per country in West Africa.
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Fig 4. Trend in COVID-19 dynamics across West Africa. (a) Prediction of true peak and
reported peak date and size of COVID-19. (b). Evolution trend of the reproduction number. (c)
Evolution trend of the attack ratio.
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Discussion 211

In epidemiology, understanding the dynamics of an epidemic outbreak and predicting 212

its future course is a major research question, which is often studied using modelling 213

techniques [2, 18–23]. Estimation and prediction rely on mathematical and statistical 214

models, which inform public health decisions and ensure optimal use of resources to re- 215

duce the morbidity and mortality associated with epidemics [14,27–30,33]. For instance, 216

estimation of epidemiological parameters and prediction on the Influenza outbreak dy- 217

namics in Canada was done using the Richard’s model [14], while a three-parameter 218

logistic growth model was used to study and forecast the final epidemic size in real-time 219

of the Zika virus outbreaks in Brazil from 2015 to 2016 [2]. 220

In this study, we used deterministic SIR model to understand COVID-19 dynamics 221

in West African countries and estimated the overall number of susceptible individuals 222

that accounted for 1.2% of West African population and 1% for most countries, except 223

Guinea-Bissau, and Gambia where the susceptible individuals account for more than 224

9%. In general, small countries with relatively high population density are those with 225

high proportion of susceptible individuals, indicating how high population density with 226

small area can affect epidemics dynamics [57, 58]. Our findings however, revealed a 227

great disparity between countries in terms of testing rate of COVID-19. Countries like 228

Guinea and Gambia and in less extent, Côte d’Ivoire and Nigeria, showed a relatively 229

less testing effort to identify many infected individuals. This suggests that there may 230

not be enough tests being carried out to properly monitor the outbreak [55]. In contrast, 231

countries like Cape-Verde, Benin and Togo, which have recorded less than or equal to 50 232

positive cases per 1,000 tests, seem to be effectively controlling the pandemic according 233

to the WHO criteria [45]. Compared to relatively wealthier countries like Australia, 234

South Korea and Uruguay, it takes hundreds of tests to find one case [55]. 235

The detection rate considered in model (1) is a better indicator of testing effort since 236

it represents the proportion of active cases in the population that are identified daily. 237

Our results revealed a relatively low detection rate of COVID-19 in West Africa with less 238

than 2% in most countries except Cape-Verde, Mauritania and Ghana (> 5%). These 239

three countries are also the ones with the highest testing rates (see table 1) confirming 240

the link between detection rate and testing effort [5]. Thus, fairly low detection rates 241
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in most West African countries demonstrate low testing effort and may be explained by 242

a number of factors, including the availability of testing kits and qualified healthcare 243

workers and low ability to control the disease due to their low GDP. For instance the 244

average detection rate of COVID-19 in the world in April 2020 was estimated at 6% [59]. 245

It is also useful to note that the estimated average detection rate hides a great variability 246

in the testing effort over time. Indeed, it is generally accepted that the testing rate is 247

relatively low at the very beginning of an epidemic outbreak but can increase rapidly 248

over time when a better response mechanisms are put in place [60]. 249

The dynamics of the COVID-19 pandemic in West Africa shows a reproduction 250

number greater than 1 in all countries (from 1.2 in Burkina-Faso to 4.4 in Niger) while 251

it was 1.4 for the whole region. This value is relatively low compared to that estimated 252

by [24] (1.6) for the same region in June in a recent study using a modified SEIR model 253

and thus reveals either a declining trend in the pandemic over time or the result of 254

using a different modeling approach to estimate the reproduction number. The COVID- 255

19 pandemic appears more serious than the Ebola outbreak in Africa given the basic 256

reproduction number. Indeed, [8] estimated the basic reproduction number at 1.1, 1.2 257

and 1.2 for Guinea, Liberia and Sierra-Leone, respectively against 1.4, 1,3 and 1.6 for 258

the same countries as far as COVID-19 is concerned. These comparisons indicate that 259

COVID-19 is on average 1.29 times more reproducible than Ebola in these countries. 260

The trend in the running reproduction number reveals a rapid declining in all coun- 261

tries except Burkina-Faso and reveals some efficiency of the control measures put in 262

place and being implemented in the different countries. Most countries have already 263

experienced the peak in the new COVID-19 cases in June and July. In general, the 264

reported peak was very low compared with the true peak. 265

However, current control measures should be maintained overtime to avoid possible 266

second wave as observed in other parts of the world. 267

Conclusion 268

Our study shows that the novel COVID-19 pandemic, although highly contagious has 269

not seriously impacted West Africa in terms of prevalence, compared to other parts of the 270

world, in particular the Europe and the USA. Actually, the total number of susceptible 271
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individuals and final epidemic size account for 1.2% and 0.6% of the total population 272

size of West Africa, respectively. But the relatively low reported cases are related to very 273

low testing effort in the West African countries. The study also indicates a relatively 274

low detection rate and for most countries in the region, the dates of the true peak 275

of infection have passed (June-July 2020). Nevertheless, the pandemic is still ongoing 276

in the region and it is important that the non-pharmaceutical measures currently in 277

place continue over time to help reduce its spread dynamics, pending adequate effective 278

treatment. 279
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