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Due to the complexity of linkage disequilibrium (LD) and gene regulation, understanding the 1

genetic basis of common complex traits remains a major challenge. We develop a Bayesian 2

model (BayesRR-RC) implemented in a hybrid-parallel algorithm that scales to whole-genome 3

sequence data on many hundreds of thousands of individuals, taking 22 seconds per iteration 4

to estimate the inclusion probabilities and effect sizes of 8.4 million markers and 78 SNP- 5

heritability parameters in the UK Biobank. Unlike naive penalized regression or mixed-linear 6

model approaches, BayesRR-RC accurately estimates annotation-specific genetic architecture, 7

determines the underlying joint effect size distribution and provides a probabilistic determi- 8

nation of association within marker groups in a single step. Of the genetic variation captured 9

for height, body mass index, cardiovascular disease, and type-2 diabetes in the UK Biobank, 10

only ≤ 10% is attributable to proximal regulatory regions within 10kb upstream of genes, 11

while 12-25% is attributed to coding regions, up to 40% to intronic regions, and 22-28% to 12

distal 10-500kb upstream regions. ≥60% of the variance contributed by these exonic, intronic 13

and distal 10-500kb regions is underlain by many thousands of common variants, each with 14

larger average effect sizes compared to the rest of the genome. We also find differences in 15

the relationship between effect size and heterozygosity across annotation groups and across 16

traits. Up to 24% of all cis and coding regions of each chromosome are associated with each 17

trait, with over 3,100 independent exonic and intronic regions and over 5,400 independent 18

regulatory regions having ≥95% probability of contributing ≥0.001% to the genetic variance 19

for just these four traits. In the Estonian Biobank, we show improved prediction accuracy 20

over other approaches and generate a posterior predictive distribution for each individual. 21

22

As whole-genomes are collected for hundreds of thousands of individuals, we require regression methods that 23

are not only computationally efficient, but which also provide improved inference. Methods should fully 24

utilize the data, rather than relying on subsets of the SNPs, exploiting computational power to facilitate 25

discovery of additional genomic regions, improve understanding the genomic architecture of common disease, 26

and provide more informative genomic prediction. 27

Recent studies [1–4] highlight the importance of accounting for minor allele frequency (MAF) and LD 28

structure of the genomic data when estimating the proportion of phenotypic variance attributable to different 29

categories of genetic markers (the SNP-heritability, h2
SNP ). Assessment of the relative contribution of different 30

genomic regions is currently made assuming that markers within a category all contribute to the variance, 31

with enrichment of the category defined as the estimated share of the variance explained divided by its 32

expected share [5,6]. However ideally, the estimated distribution of marker effects for each category would be 33

directly obtained, accounting for MAF and LD structure and allowing for some of the marker effects to be 34
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zero, to improve our understanding of the genetic architecture underlying the relative contributions of different 35

genomic regions. Furthermore, if approaches could enable a probabilistic understanding of the number of 36

associated genes and genomic regions, than it would yield a better understanding of the polygenicity of 37

genomic effects. 38

Current mixed-linear association models such as those implemented in the software fastGWA [7], boltLMM 39

[8], and REGENIE [9], use a two-step approach, first estimating the variance contributed by the SNP 40

markers generally without the use MAF-LD-annotation information, and then using the point estimates when 41

estimating the marker effect sizes in a second step, essentially assuming effects in the model come from a 42

single distribution [7, 8, 10]. Summary statistic approaches such as LDSC [11] and SumHer [6], then use these 43

baseline estimated effects coupled with independent LD reference panels to then alter the weightings of the 44

marker effects allowing for annotation differences, showing improved genomic prediction. However, currently 45

no model directly provides joint estimates of the marker effects, testing for association accounting for effect 46

size differences across MAF, LD, or annotation groups. 47

Here, we outline the fastest Bayesian penalised regression model to date, with a hybrid-parallel algorithm 48

for analysing large-scale genomic data that: (i) provides unbiased MAF-LD annotation-specific genetic effect 49

size estimates and h2
SNP of different annotations in a single step, allowing for a contrasting of the genetic 50

architectures of complex traits under a flexible prior formulation, (ii) yields the probability that each marker, 51

genomic region, annotation, or gene-coding region, is associated with a phenotype, alongside the proportion 52

of phenotypic variation contributed by each describing the gene architecture of complex traits, (iii) conducts 53

fine-mapping automatically, and (iv) gives a posterior predictive distribution for each individual at each 54

genomic region. 55

A Bayesian model for large-scale genomic data 56

The model we derive is based on grouped effects with mixture priors, improving on the formulations of [12,13] 57

and [14]. Like these former methods, we consider a spike probability at zero (Dirac delta function), and a scale 58

mixture of Gaussian distributions as a slab probability density; unlike these models, we have genetic markers 59

grouped into MAF-LD-annotation specific sets, with independent hyper-parameters for the phenotypic 60

variance attributable to each group. Assuming N individuals and p genetic markers, our model of an observed 61

phenotype vector y is: 62

y = 1µ+
Φ∑
ϕ=1

Xϕβϕ + ε (1)

where there is a single intercept term 1µ and a single error term, a vector (N × 1) of residuals ε, with 63

ε|σ2
ε ∼ N

(
0, Iσ2

ε

)
. An N by p matrix of single nucleotide polymorphism (SNP) genetic markers, centered 64

and scaled to unit variance, which we denote as Xϕ. The effects are allocated into groups (1, . . . ,Φ). Each 65

group has a set of model parameters Θϕ =
{

βϕ, πϕ, σ
2
Gϕ

}
, with βϕ as a pϕ × 1 vector of partial regression 66

coefficients, where βϕj is the effect of a 1 SD change in the jth covariate within the ϕth group. The spike 67

and slab prior, contains what is called a Dirac spike [15, 16] for βϕ, which induces sparsity in the model 68

through a Dirac-delta at zero, excluding variables from the model by setting their coefficients to zero. A 69

finite scale mixture of normal distributions centered at zero constitute the slab component. The slab shrinks 70

the non-zero coefficients towards zero according to the slab’s width, by having a scale mixture of Gaussians, 71

the distribution has heavier tails and can accommodate big and small effects [17]. Therefore, each βϕj is 72

distributed according to: 73

βϕj ∼ π0ϕδ0 + π1ϕN
(
0, σ2

1ϕ
)

+ π2ϕN
(
0, σ2

2ϕ
)

+ . . .+ πLϕϕN
(

0, σ2
Lϕϕ

)
(2)

where for each SNP marker group
{
π0ϕ, π1ϕ, . . . , πLϕϕ

}
are the mixture proportions and

{
σ2

1ϕ, σ
2
2ϕ, . . . , σ

2
Lϕϕ

}
74

are the mixture-specific variances proportional to 75 σ2
1ϕ
...

σ2
Lϕϕ

 = σ2
Gϕ

 C1ϕ
...

CLϕϕ


with σ2

Gϕ the phenotypic variance associated with the SNPs in group ϕ, which, like all the other parameters, 76

is estimated directly from the data. Thus, related approaches of BayesRC and BayesRS that are heavily 77
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utilized in animal and plant breeding [18,19] are extended as the mixture proportions, the variance explained 78

by the SNP markers, and the mixture constants are all unique and independent across SNP marker groups. 79

This enables estimation of the amount of phenotypic variance attributable to the group-specific effects, and 80

differences in the underlying distribution of the βϕ effects among MAF-LD-annotation groups, with different 81

degrees of sparsity. 82

Inference from our grouped effects mixture priors model with LD 83

While comparisons of different approaches have been made under different simulation scenarios, we have 84

limited understanding of why approaches differ. We show in theory (see Methods Eq.23) and in simulation 85

(see Methods, Figure 1, Figure S1) the importance of our model formulation for accurate estimation of 86

h2
SNP and the SNP regression coefficients. We find that when highly correlated common variants (under 87

multicollinearity, Figure 1, Figure S1, and Methods Eq.23) contribute more to the phenotypic variance than 88

low-LD markers, penalized regression or mixed linear model approaches will inaccurately estimate their effects. 89

This occurs due to the assumption made by these models that effects come from a single Gaussian distribution, 90

and thus that there is a single regularisation parameter appropriate to all markers. To demonstrate this 91

in simulation study, we used real genomic data where 50 replicate phenotypes were generated by either (i) 92

allocating 5000 LD independent causal variants to high LD SNPs (Figure 1a y-axis panel: high LD), or (ii) 93

randomly allocating SNPs as causal variants (Figure 1a y-axis panel: random). Within (i) and (ii) we then 94

either randomly allocated effect sizes to those SNPs (Figure 1a x-axis: random), or allocated effect sizes 95

proportional to their LD and inversely proportional to the MAF (Figure 1a x-axis: MAF-LD, see Methods). 96

In these simulation settings, overestimation of the SNP heritability occurs for mixed-linear model association 97

methods (MLMA) [7] and Bayesian dirac spike and slab models with a single global hyperparamter (BayesR), 98

when high-LD SNPs are allocated as causal variants, replicating previous results [1–4]. 99

Our theory in Eq.23 gives the expectation that this overestimation should occur specifically at common, 100

high LD variants, and we show this empirically using the scenario where causal variants are allocated to 101

high-LD SNPs. While the 5000 causal variants are LD-independent, they are each correlated with other 102

SNPs of simulated effect size 0. So, for each of the 5000 independent high-LD causal variants, we calculated 103

the sum of the squared estimated regression coefficients for the causal variant and all markers in LD ≥ 0.05. 104

From this, we subtract the true simulated value, which is simply the square of the effect size allocated to the 105

causal variant. We then divided by the SD of the simulated genetic effects, to give a z-score for each causal 106

variant, plotted in Figure 1b. MLMA and BayesR overestimate the effects of variants that are in LD with 107

a high-LD causal variant (Figure 1b), and with MLMA models this overestimation is severe. Both h2
SNP 108

and SNP marker regression coefficient estimation accuracy improves when using MAF-LD specific shrinkage 109

(Figure 1a BayesRR), because estimated common variant effects in high LD are shrunk to a greater degree, 110

alleviating the influence of multicollinearity (Figure 1, Figure S1). 111

We then present a further empirical example, where 50 pairs of SNP markers with LD = 0.9 were simulated 112

for each of 50 simulation replicates, where only one marker of each pair has an effect (0,0.1 SD), giving the 113

sum of the squared regression coefficients as 0.5 for each simulation (Figure 1c: dotted red line). In order 114

to compare formulations of different statistical approaches, we define lambda as the shrinkage parameter, 115

which is the ratio of the residual (error) variance and the variance attributable to the SNP markers. This 116

hyperparameter is used for MLMA, ridge regression (Ridge) [21] and the BayesR model in the estimation 117

of the effects (see Methods). We show that under multicollinearity (Figure 1c: collinear), unless lambda 118

is large, meaning that the shrinkage of marker effect sizes is large, SNP marker effects are consistently 119

overestimated. This is of fundamental importance to accurate estimation of SNP marker effect sizes in 120

either penalized regression or mixed linear association models (Figure 1, Figure S1). We show that when 121

specifying enrichment using prior knowledge (Figure 1d: multiple group enrichment), the genetic architecture 122

is accurately inferred by BayesRR-RC. In comparison with other recent approaches providing annotation- 123

specific variance component estimates in individual-level data, BayesRR-RC performs as boltREML [22] and 124

RHEmc [4] when estimating the overall variance explained by each annotation group, with RHEmc estimates 125

showing higher variability (Figure 1d). We then additionally show how BayesRR-RC takes this a step further 126

to integrate prior biological knowledge to improve power to infer the genetic architecture of complex traits, 127

both in simulation (Figure S2) and empirically in our UK Biobank analysis described below. 128

A hybrid parallel Gibbs sampling scheme for large-scale genomic data 129

We then overcome a major-hurdle limiting the application of penalized regression approaches to large-scale 130

biobank data, by deriving a Bulk Synchronous hybrid-parallel (BSP) sampling scheme for Eq.(1) that allows 131
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Figure 1. Theory and simulation study for genetic penalized regression models under multi-
collinearity. (a) Simulation study using real genomic data where 50 replicate phenotypes were generated by either allocating
5000 LD-independent causal variants to high LD SNPs (y-axis panel: high LD), or randomly allocating 5000 SNPs as causal
variants (y-axis panel: random), and then either randomly allocating effect sizes to those SNPs (x-axis: random), or allocating
effect sizes proportional to their LD and MAF (x-axis: MAF-LD, see Methods). SNP heritability estimation error is plotted as
the difference of the estimate and the true simulated value across the 50 replicates. (b) We then investigated this further for the
scenario where causal variants are allocated to high-LD SNPs. While the 5000 causal variants are LD-independent, they are each
correlated with a large number of SNPs of simulated effect size 0. For each causal variant, we took all the markers in LD ≥ 0.05
and summed the squared estimated regression coefficients of these markers. The true simulated value is simply the square of the
effect size allocated to the causal variant, and we subtracted this from the sum of the squared regression coefficients divided by
the SD of the simulated genetic effects, to give a z-score for each causal variant and this is plotted on the y-axis for MLMA,
BayesRR, and BayesRR. (c) Our theory outlines how this overestimation is the result of the effect of multicollinearity (see
Methods) and an example is shown here, where 50 pairs of SNP markers with LD = 0.9 were simulated for each of 50 simulation
replicates, where only one marker of each pair has an effect (0,0.1 SD), giving the sum of the squared regression coefficients as
0.5 for each simulation (dotted red line). lambda is the shrinkage parameter, the ratio of the error variance and the variance
attributable to the SNP markers, used for MLMA, ridge regression (Ridge) and the BayesR model to estimate the effects. (d)
Simulation of a genetic architecture (dotted red line) using real annotations from the Epigenome Roadmap Project [20] (active
states, inactive states, other snps). We compared BayesRR to other recent approaches providing annotation-specific variance
component estimates in individual-level data when SNPs are randomly assigned to an annotation (labelled: misspecification of
groups), or when specifying enrichment using prior knowledge (labelled: multiple group enrichment)

both the data and the compute tasks to be split within and across compute nodes in a series of message-passing 132

interface (MPI) tasks. This BSP Gibbs sampling scheme, implemented based on a hybrid MPI + OpenMP 133

model with residual updating and message interfacing, allows the MCMC Gibbs sampling simulations to 134

retain accuracy of the estimation of the partial regression coefficients of each SNP marker βϕ (the joint effect 135
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of each marker, conditional on all other markers), whilst allowing the marker effects to be updated in parallel 136

(see Methods and simulation study of Figure S3). 137

Our Gibbs sampling algorithm enables all sampling steps to utilize genetic data stored in mixed 138

binary/sparse-index representation, reducing computational complexity of a single Gibbs step from O(n) to 139

O(nz), with nz the number of non-zero genotypes. This provides a highly vectorizable mixed representation 140

of genomic marker data as a series of indices (Figure S4) and this facilitates highly vectorized and highly 141

parallel SNP-phenotype covariance estimation (dot product calculation) in a series of look-up tables which 142

greatly extends previous sparse residual updating schemes. 143

We provide publicly available open source software (see Code Availability) with capacity to easily extend 144

to a wider range of models than that demonstrated here (see Methods). Our software requires as little as 22 145

seconds per MCMC sample to estimate 78 group-specific h2
SNP parameters, and the inclusion probabilities 146

and effect sizes of 8,433,421 markers in 382,466 individuals on standard Intel Xeon CPU processors (Figure 147

S4, see Code Availability for hardware specifications). 148

The genetic architecture of enrichment in the UK Biobank 149

This sampling scheme enabled us to apply the model to cardiovascular disease outcomes (CAD), type-2 150

diabetes (T2D), body mass index (BMI) and height measured for 382,466 unrelated individuals from the UK 151

Biobank data genotyped at 8,433,421 imputed SNP markers. These markers were selected as they overlap 152

with the Estonian Genome Centre data (see Methods) and have minor allele frequency >0.0002. Although 153

the model can account for relatedness and data structure automatically [14,23] (Figure S5), we wished to 154

contrast the genetic architecture of different phenotypes and estimate the phenotypic variance contributed by 155

MAF-LD-annotation groups from markers that enter the model only due to LD with underlying causal variants 156

(as closely as we can in a correlational study). Thus, we also adjust each phenotype for age, sex, year of birth, 157

genotype batch effects, UK Biobank assessment centre, and the leading 20 principal components of the SNP 158

data. We provide evidence through theory and in simulation that by better correcting for multicolinearity, the 159

BayesRR-RC model also better controls for underlying populations structure as compared to a mixed-linear 160

association model with the leading PCs of the genomic data included (Figure S5). 161

We partition SNP markers into 7 location annotations preferentially assigning SNPs to coding (exonic) 162

regions first, then in the remaining SNPs we preferentially assigned them to intronic regions, then to 1kb 163

upstream regions, then to 1-10kb regions, then to 10-500kb regions, then to 500-1Mb regions. Remaining SNPs 164

were grouped in a category labelled "others" and also included in the model so that variance is partitioned 165

relative to these also. Thus, we assigned SNPs to their closest upstream region, for example if a SNP is 166

1kb upstream of gene X, but also 10-500kb upstream of gene Y and 5kb downstream for gene Z, then it 167

was assigned to be a 1kb region SNP. This means that SNPs 10-500kb and 500kb-1Mb upstream are distal 168

from any known nearby genes. We further partition upstream regions to experimentally validated promoters, 169

transcription factor binding sites (tfbs) and enhancers (enh) using the HACER, snp2tfbs databases (see 170

Code Availability). All SNP markers assigned to 1kb regions map to promoters; 1-10kb SNPs, 10-500kb 171

SNPs, 500kb-1Mb SNPs are then split into enh, tfbs and others (unmapped SNPs) extending the model 172

to 13 annotation groups. Within each of these annotations, we have three minor allele frequency groups 173

(MAF<0.01, 0.01>MAF>0.05, and MAF>0.05), and then each MAF group is further split into 2 based on 174

median LD score. This gives 78 non-overlapping groups for which our BayesRR-RC model jointly estimates 175

the phenotypic variation attributable to, and the SNP marker effects within, each group. For each of the 176

78 groups, SNPs were modelled using five mixture groups with variance equal to the phenotypic variance 177

attributable to the group multiplied by constants (mixture 0 = 0, mixture 1 = 0.0001, 2 = 0.001, 3 = 0.01, 4 178

= 0.1). We conducted a series of convergence diagnostic analyses of the posterior distributions to ensure we 179

obtained estimates from a converged set of four Gibbs chains, each run for 6,000 iterations with a thin of 5 180

for each trait (Figure S6, S7, S8, S9). 181

We find that 32-44% of the h2
SNP is attributable to intronic regions, 12-25% is attributable to exonic 182

regions, 22-28% is attributable to markers 10-500kb upstream of genes, with proximal (within 10kb) promotors, 183

enhancers and transcription factor binding sites cumulatively contributing <10% (Figure 2b, Figure S10, with 184

estimates summed across MAF and LD groups Table 1, and full results in Table S1). The large contribution 185

of exonic and intronic annotations to variation is in-line with the fact that these annotations account for 186

∼ 40% of the total genome length. All four traits show the same pattern of group-specific variation, with 187

the exception of height, where the proportion of h2
SNP attributable to exons is almost twice as large as the 188

other phenotypes (Figure 2b, Figure S10, Table 1, and Table S1). For all annotation groups in exons, introns, 189

and within 500kb of genes across all traits, ≥ 60% of the h2
SNP attributable to these groups is contributed 190

by many thousands of common variants, each of small effect (Figure 2b, Figures S10 and S11. We find 191

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188433doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.04.20188433
http://creativecommons.org/licenses/by-nc-nd/4.0/


differences in the underlying effect size distribution across annotation groups. For each group, we modelled 192

the SNP effects as coming from a series of five Gaussian mixtures, and we find that at least 45% of the h2
SNP 193

attributable to both introns and 500kb upstream regions is underlain by many thousands of SNPs that on 194

average each contribute 0.001% (estimates summed across MAF and LD groups in Figure 2b, Figures S10 and 195

S11). In contrast, the variance is spread more evenly across the mixtures for the other groups, implying that 196

10-500kb upstream regions and introns are more polygenic than other groups. This is especially so for BMI 197

where 35% of the h2
SNP is attributable to many thousands of intronic variants (Figure 2 and Figure S10). 198

Therefore, the polygenicity of the genetic effects varies across different genomic regions, with remarkably 199

consistent patterns across traits in the partitioning of h2
SNP across the genome. 200
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Figure 2. Genetic architecture of enrichment for height (HT), body mass index (BMI), cardiovascular
disease (CAD) and type-2 diabetes (T2D) for 382,466 unrelated European ancestry UK Biobank
individuals genotyped at 8,430,446 SNP markers.(a) We partition SNP markers into 7 location annotations (coding
regions, intronic regions, and windows 1kb, 1-10kb, 10-500kb and 500kb-1Mb upstream of genes, with other SNPs grouped
in a category labelled "others"). Windows 1-10kb, 10-500kb and 500kb-1Mb upstream of genes are further split into SNPs
mapped to enhancers (enh), transcription factor binding sites (tfbs) and others. Within each of the 13 annotations, we have
three minor allele frequency groups (MAF<0.01, 0.01>MAF>0.05, and MAF>0.05), and then each MAF group is further split
into 2 based on median LD score. This gives 78 groups for which our BayesRR-RC model jointly estimates the phenotypic
variation attributable to, and the SNP marker effects within, each group. For each of the 78 groups, SNPs were modelled using
five mixture groups with variance equal to the phenotypic variance attributable to the group multiplied by constants (mixture 0
= 0, mixture 1 = 0.0001, 2 = 0.001, 3 = 0.01, 4 = 0.1). (b) Posterior distribution of the proportion of the total phenotypic
variance attributable to the SNP markers that is contributed by each of the four non-zero mixtures within each MAF-annotation
group for HT, BMI, CAD and T2D. Within these, are boxplots of the posterior mean and 95% credible intervals. Values are
summed over LD groups. (c) Bar plots with error bars giving the 95% credible intervals for the average effect size of markers in
the model for each MAF-annotation group, split by mixture.
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group trait mean % q(0.025) % q(0.975) %

variance attributable to SNP markers
genome-wide

HT 57.66 56.09 59.14
BMI 28.74 27.62 30.00
CAD 5.94 5.30 6.67
T2D 8.45 7.83 9.18

proportion of genetic variance
attributable to exonic regions of genes

HT 24.75 23.39 26.071
BMI 12.98 10.98 14.84
CAD 13.23 8.40 18.84
T2D 14.49 10.74 18.54

proportion of genetic variance
attributable to intronic regions of genes

HT 41.54 39.91 43.39
BMI 44.17 41.36 47.25
CAD 32.05 24.98 39.51
T2D 37.28 32.22 42.57

proportion of genetic variance
attributable to snps 500kb upstream of
genes

HT 22.13 21.00 23.40
BMI 28.58 26.41 31.01
CAD 28.02 21.24 35.04
T2D 27.42 22.68 32.36

proportion of genetic variance attributable
to exonic regions that is explained by
common variants

HT 72.09 69.77 74.14
BMI 69.41 62.60 76.42
CAD 64.97 43.08 83.16
T2D 68.57 56.00 79.82

proportion of genetic variance attributable
to intronic regions that is explained by
common variants

HT 81.19 79.30 83.02
BMI 85.05 78.28 91.49
CAD 84.68 65.64 65.64
T2D 65.64 65.64 65.64

proportion of genetic variance attributable
to snps 500kb upstream of genes that is
explained by common variants

HT 81.59 78.91 83.96
BMI 86.78 80.56 91.60
CAD 66.49 49.11 81.79
T2D 72.35 58.71 83.75

Table 1. Proportion of genotypic variance genome-wide and predominantly explained by common SNPs
located 10-500kb upstream of genes and coding regions for height (HT), body mass index (BMI), type-2
diabetes (T2D) and cardiovascular disease (CAD).

We then directly assessed the magnitude of the effect sizes within each group, calculating the average 201

effect size of markers in the model, for each mixture, within each group, at each iteration of the model. Across 202

traits, effect sizes scale to their differences in h2
SNP , and we find that exonic and intronic region effect sizes 203

were higher than the rest of the genome, across all mixture groups, followed by 10-500kb upstream regions 204

(Figure 2c). We find little evidence that SNPs located in proximal promotors, enhancers, and transcription 205

factor binding sites within 10kb of genes showed average effect sizes that were higher than SNPs located 206

1MB away from genes, or those that were not mapped to a specific category, with perhaps the exception of 207

high MAF variants (Figure 2c). Generally, all phenotypes simply appear to be predominantly underlain by 208

very many common variants, with SNPs within distal regulatory regions, coding and intronic regions each 209

contributing more to the phenotypic variance and having higher allele substitution effects. As these results 210

are for the effect sizes of standardized markers, it represents the square root of the average contribution 211

of a marker to the total variance. Thus, we also re-scaled the marker effects by the standard deviation 212

of each marker, to give effect sizes on the allele substitution effect size scale. Again, average effect sizes 213

scaled to the h2
SNP of the traits and we find that rare variants have higher average allele substitution effects 214

than common variants for exonic, intronic, promotors and enhancers (Figure S11b). An exception to these 215

patterns were BMI-associated intronic and 10-500kb group SNPs, where we find no evidence that the allele 216

substitution effect size differs across frequency groups (Figure S11b). We also did not find evidence that the 217

allele substitution effect size differed across frequency groups for transcription factor binding sites, distal SNPs 218

1MB upstream of genes, or those not mapping to an annotation group (Figure S11b). These results highlight 219

that assuming an equal contribution of each marker within each annotation group may give misleading results 220

when determining SNP enrichment. Evolutionary theory predicts that selection should result in higher effect 221

sizes for rare variants and our results imply that selection pressures vary both across traits, but also across 222

genomic regions with exons, promotors, and enhancers showing the strongest differentiation of effect sizes 223
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across frequency groups as compared to the rest of the genome. 224
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Figure 3. Contribution of genes and 50kb regions to height (HT), body-mass-index (BMI), cardiovas-
cular disease (CAD) and type-2-diabetes (T2D). (a) We grouped SNPs in 50kb-regions genome-wide and estimated
the sum of the squared regression coefficient estimates for each 50kb-region. We then select the number of 50kb regions that
explain at least 0.001 percent of the variance attributed to all SNP markers in 80%, 90% and 95% of the iterations. This gives a
measure called the posterior probability that the window variance (PPWV) [24] exceeds 1/10,000 of the phenotypic variation
attributed to SNP markers. (b) We mapped SNPs to the closest gene +/- 50kb from the SNP position and labelled them as
located in a coding region, an intron, 1kb upstream of a gene using our functional annotations (Figure ??). Remaining snps are
labelled as located in a cis-region (up to +/- 50kb from a gene). We then select the number of regions where PPWV is higher
than 95% and explains at least 0.001 percent of the phenotypic variance attributed to all SNP markers. We then calculate the
number of significant coding regions, introns, 1kb regions and cis regions as a proportion of the total number of genes for each
chromosome. Genic associations that explain at least 0.001% of the phenotypic variance attributed to all SNP markers are again
spread across chromosomes according to the chromosome length. (c) Shows the mean of the phenotypic variance attributed to
intron and cis regions (y-axis) and coding regions (x-axis) that explain at least 0.001 % of the phenotypic variance attributable
to SNP markers in ≥ 95% of the iterations (PPWV>0.95). These results provide joint estimates of the proportions of variance
contributed by different gene bodies and automatic fine-mapping of gene bodies and their cis-regulatory regions. For example,
introns and cis-regulatory regions of FTO respectively contribute 0.48% (95% CI 0.29, 1.12) and 0.01% (95% CI 0, 0.01) to the
phenotypic variance of BMI.

The gene architecture of enrichment for common complex traits 225

We then partitioned the variance attributed to SNP markers across 50kb regions of the genome, then across 226

SNPs annotated to genes, and then to SNPs themselves. We determined the posterior inclusion probability 227

that each region and each gene contributes at least 0.001% to the h2
SNP , providing a probabilistic approach 228

to assess the contribution of different genomic regions to trait variation (termed PPWV, see Methods and 229

simulation study of Figure S12). We first divide the genome into 50kb blocks and find 1660 50kb regions for 230

height with ≥ 95% posterior probability of explaining 0.001% of the h2
SNP , 520 regions for BMI, 70 regions 231

for CAD and 87 regions for T2D (Figure 3a). 232

We then map SNPs to their closest gene (+/- 50kb from SNP position) and we use our annotations 233

to label them (see Methods). We find 243 independent coding regions for height with ≥ 95% posterior 234

probability of explaining at least 0.001% of the h2
SNP , 29 independent coding regions for BMI, 5 for CAD 235

and 13 for T2D. We find many more associations in the cis region of genes with 1254 independent cis-regions 236

for height with ≥ 95% posterior probability of explaining 0.001% of the h2
SNP , 1765 independent cis-regions 237

for BMI, 1166 for CAD and 1221 for T2D. We additionally find 9 independent promoter regions and 1072 238
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independent introns for height with ≥ 95% posterior probability of explaining at least 0.001% of the h2
SNP , 239

1162 independent intronic gene regions for BMI, 307 for CAD and 347 for T2D. With many thousands of 240

SNP markers entering the model for each trait, summarising the posterior distribution obtained over gene 241

annotations provides an understanding of the gene architecture of common complex traits. 242

When we calculate the number of exons, introns, promotors and cis regions with ≥ 95% posterior 243

probability of explaining 0.001% of the h2
SNP , as a proportion of the total number within each chromosome, 244

we find that up to 24% of the genes on each chromosome are associated with each of the four traits (Figure 3b). 245

Generally, we find that only 1% or less of the available exons and promotor regions of genes per chromosome 246

show an association with each of the phenotypes, but up to 14% of the available intronic regions and up 247

to 10% of the cis-regions surrounding genes contribute to the phenotypic variance with ≥ 95% probability 248

(Figure 3b). The variance contributed by each exonic, intronic, promotor, or cis region is typically only a 249

small fraction of a percent, with largest effect sizes being the exonic region of GDF5 contributing 0.26% (95% 250

CI 0.21, 0.32) to the phenotypic variance of height, the intronic region of FTO contributing 0.48% (95% CI 251

0.29, 1.12) to BMI, both the exonic- and intronic-region of LPA contributing a combined 0.08% (95% CI 0.04, 252

0.13) to the risk of CAD, and the intronic region of TCF7L2 contributing 0.28% (95% CI 0.23, 0.35) to the 253

risk of T2D (Figure 3c, full results in Table S2 to S5). Taken together, these results support an infinitesimal 254

contribution of many thousands of genes to common complex trait variation and give joint estimates of the 255

proportions of variance contributed by each gene and their probability of association. 256

For each gene, we also calculated the phenotypic variance contributed by exonic, intronic, promotor 257

region, and cis SNPs and then calculated the correlation among the variances explained by the groups across 258

genes. Across traits, we find small positive correlations of the variance attributable to exonic and intronic 259

regions of 0.17 (0.09, 0.24 95% CI) for height, 0.02 (0.001, 0.05 95% CI) for BMI, 0.103 (-0.007, 0.71 95% 260

CI) for CAD, and 0.064 (0.01, 0.19 95% CI) for T2D. Similarly, we find small positive correlations between 261

introns and cis regions(Figure 3d). With the exception of height, the variance attributable to the following 262

groups were independent: (i) SNPs in the exons of each gene and SNPs +/- 50kb outside of the exon and 263

promotor regions; (ii) SNPs in the exons of each gene and SNPs in proximal promotors; and (iii) intronic 264

SNPs and SNPs in promotor regions (Figure 3d). This implies that trait associated SNPs in proximal and 265

distal regulatory regions are largely independent of the effects of SNPs in their closest exon, as they do not 266

align in terms of the variance they explain (Figure 3d). For height, small weakly positive correlations across 267

all gene regions in their contribution to variance, implies a degree of alignment across genes in regulatory 268

variants and the closest exon (Figure 3d). These results suggest a regulatory link between introns and distal 269

cis regions outside of the promotor, or that introns may be correlated with structural variation. They also 270

imply that the variance contributed by regulatory regions and those in the closest coding regions are not 271

strongly coupled for these common complex traits. 272

Finally, our approach provides automatic fine-mapping of SNP loci, and of these region- and gene-level 273

associations, 360 SNPs for height, 20 for BMI, 2 for CAD and 9 for T2D could be mapped to a single SNP 274

with greater than 95% inclusion probability across all 4 chains (Supplementary Table S6, Figure S13). Of 275

these fine-mapped SNPs, only 53.45% are top loci with a p-value < 5x10−8 from the fastGWAS UK Biobank 276

summary statistic data for standing height, BMI, angina / heart attack and type-2 diabetes (fastGWA, see 277

Code Availability). This indicates that selecting on the top SNP markers identified by standard association 278

studies would give a different set of variants than those obtained from a BayesRR-RC model. 279

Out-of-sample prediction into another European healthcare system 280

Finally, we then generated a full posterior predictive distribution for each trait in each of 32,500 individuals 281

from the Estonian Genome Centre data, which allows the transmission of uncertainty in the marker effect 282

estimates from the UK Biobank to the genomic predictors created in Estonia. First, despite this study having 283

almost half the sample size, we show improved genomic prediction as compared to recently proposed summary 284

statistic approaches [25], when taking the mean of the predictor across iterations and correlating this with 285

the phenotype with correlation of 0.62 for height, 0.34 for BMI, 0.16 for T2D, and 0.07 for CAD (Figure 4a). 286

The area under the receiver operator curve (AUC) for T2D was 0.67 and 0.57 for CAD. We then estimated 287

the distribution of the partial correlations between the trait and genomic predictors created from our different 288

annotation groups and find that exonic, intronic, and 10-500kb upstream regions contribute proportionally 289

more to the prediction accuracy than other genomic groups, replicating our results from the UK Biobank 290

(Figure 4b). 291

Our approach enables a posterior predictive distributions to be generated for each individual. As an 292

alternative measure of prediction accuracy, for height and BMI we determined the proportion of the posterior 293

predictive distribution for each individual that was within +/-1 SD of their true phenotypic value. On average 294
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Figure 4. Cross-cohort prediction accuracy and the posterior predictive distribution. (a) Corre-
lation of the posterior mean predictor and height (HT), body mass index (BMI), type-2 diabetes (T2D), and cardiovascular
disease (CAD). (b) the partial correlations of the phenotype and genomic predictors specific to different genomic annotations.
(c) For height and BMI, we calculate the probability that the distribution of genomic predictors obtained for each individual is
within 1 SD of the true phenotypic value. The density of these probabilities is shown. (d) Correlation of genetic predictors
obtained across annotation groups.

67.5% of an individuals posterior predictive distribution is within +/-1 SD of their true phenotype for BMI 295

and 75% for height, with similar prediction accuracy across individuals (Figure 4c). For T2D and CAD, we 296

extended the PCF metric, typically defined as the proportion of cases with larger estimated risk the then top 297

pth percentile of the distribution of genetic risk in the general population. For each individual, we calculated 298

the proportion of their posterior predictive distribution that falls above the top 25% of the distribution of 299

genetic risk in the general population. The distribution of these probabilities is shown for confirmed cases 300

and those without diagnosis in the Estonian Biobank (Figure 4d). We find 25 individuals for T2D and 15 301

individuals for CAD where ≥ 90% of their posterior predictive distribution is within the high risk group of 302

which 40% and 18% are currently defined as cases for T2D and CAD respectively based on recent medical 303

records. This is compared to 1% and 2% case rate for those with ≤ 10% probability of being in the high 304

risk group for T2D and CAD respectively, giving an odds ratio of 20 and 18 between the ≥ 90% and ≤ 10% 305

groups. However, our results clearly show that the individual-level sensitivity and specificity of genomic 306

prediction for these common complex diseases is very poor, as 75% of T2D cases and 92% of CAD cases have 307

≤ 50% of their distribution within the high-risk category. Thus, genomic prediction for personalized medicine 308

with patient-specific predictions will remain limited for these diseases without vastly increased study power. 309

We find evidence for zero/low correlations of genomic predictors created from different annotation groups, 310

which supports our results from the UK Biobank (Figure 4e). This suggests that individuals have a different 311

portfolio of risk variants, with different genomic regions contributing for different individuals to their overall 312

genetic value, as expected under a highly polygenic model . These results highlight the variation contained 313

within a posterior predictive distribution that is typically ignored in human genomic prediction. 314
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Discussion 315

Here, we have shown that a grouped Dirac spike-and-slab model (termed BayesRR-RC), explicitly quantifies 316

the uncertainty on estimation and prediction under minimal assumptions irrespective of the underlying genetic 317

architecture of the trait, or the structure of the genomic data. The posterior distributions obtained allow for 318

direct fine-mapping of individual SNP effects, give a probabilistic understanding of the relative contributions 319

of different genes and genomic regions, provide a distribution of polygenic risk scores for each individual that 320

are specific to different regions of the DNA, and facilitate comparisons across traits of the underlying genetic 321

architecture of different genomic groups. We develop a range of computational and statistical approaches 322

which allow this, or any similar Gibbs sampling algorithm, to scale to whole genome sequence data on many 323

hundreds of thousands of individuals. 324

There has been debate on how to best estimate SNP heritability [1, 3,4] and here we validate the need 325

to split SNP markers by LD to obtain unbiased genetic effect size estimates, demonstrating through theory 326

and simulation why penalized regression models inaccurately estimate effects under multicollinearity and 327

how differential shrinking of SNPs corrects this bias. Our results show the same pattern of total variance 328

partitioning for height, BMI, CAD and T2D in-line with recent results from SumHer [6]. However, we observe 329

that all phenotypes simply appear to be predominantly underlain by very many common variants, with 330

SNPs within distal regulatory regions, coding and intronic regions each contributing more to the phenotypic 331

variance and having higher allele substitution effects. 332

Recent studies have also attempted to quantify the gene architecture of complex traits, in terms of the 333

number and contribution to phenotypic variance of markers either in coding regions, or directly involved in 334

the expression of genes [26, 27]. Our results suggest that the proportion of genomic variation attributable to 335

mutations in regulatory regions and mutations in the closest genic regions are largely independent. Additionally 336

our model tests association within groups in a probabilistic way and we find 290 independent coding, 2,888 337

independent intronic, and 5,406 independent cis regions with ≥ 95% probability of of contributing at least 338

0.001% of the SNP heritability. A challenge is to now better understand how these coding, intronic and 339

proximal and distal regulatory regions combine to contribute to phenotypic variance and our results suggest 340

a predominant role for introns and for distal, and thus likely more global enhancers, rather than locally 341

dominant proximal expression QTL. The recent “omnigenic” model [28], suggests that trait-associated variants 342

in regulatory regions influence a local gene which is not directly causal to the disease, and also co-regulate 343

other disease causal genes (or “core” gene). Our findings of little correlation of exonic and proximal regulatory 344

variance and a large number of trait-associated intronic and cis regions do not rule this out, but suggest a more 345

complex infinitesimal picture with differences occurring among traits, potentially due to their evolutionary 346

history. 347

There are important caveats and limitations to consider. In this work, we do not extend past a limited 348

number of functional annotations and thus we do not provide a model capable of further partitioning the 349

variation into specific regulatory functions (eQTL, mQTL, pQTL etc.) or directly modelling the relationships 350

among components. Doing this requires the use of more information in the prior, allowing more groups, 351

potentially allowing markers to swap groups with a prior probability of function, and allowing for correlations 352

in marker effects across groups. While our future work is in this direction, a first requirement is an improvement 353

in annotations as MAF-LD multicollinearity biases have to be removed from studies of eQTL, mQTL, pQTL 354

etc. before these annotations can be reliably used, as otherwise marker function will likely be biased by 355

the data structure (e.g. common, high LD variants may be more likely to be allocated as eQTL). LDSC 356

functional methods take the approach that SNPs can be assigned to different categories (e.g. both coding and 357

conserved), with the categories competing against each other to explain the signal, with the downside that 358

enrichment is relative and that the total variance is not partitioned. Here, the total variance is partitioned but 359

this is based on preferential allocation of SNPs to coding regions, introns, and then to their nearest upstream 360

gene position. Coding regions, introns and 10-500kb distal regions could contribute the most variance as 361

these SNPs are most likely to be allocated accurately, with 1kb and 1-10kb groups being more ambiguous in 362

high gene density regions and likely mislabelled. However, if this was the case then variance would still be 363

partitioned to these mislabelled groups and it would just be evenly split across them, with experimentally 364

validated promotor, enhancer and tfbs regions assisting to some degree in alleviating this. This was not the 365

case, and here we see a clear pattern of increasing variance contributed, increasing average effect size, and 366

an increasing pattern of higher rare allele substitution effects by individual markers as distance from the 367

nearest gene increases. 10-500kb distal regions may contribute more variance as marker density and marker 368

coverage is higher in these regions, with missing variation within 10kb upstream as causal variants are poorly 369

correlated with SNPs. The posterior distributions for the variance explained by 1kb, 1-10kb regions, and 370

10-500kb regions are negatively correlated (Figure S9, meaning that these groups are competing with each 371
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other, as if variance goes to one then it is being taken away from the other (as they are in LD), and thus 372

there is the risk that the model cannot separate these effectively. However, this is true of any enrichment 373

analysis conducted to date and we can only make inference in the data that we have currently available. 374

Resolving this requires the application of this model to whole genome sequence data where the total variance 375

can be partitioned across upstream regions without marker coverage concerns. Irrespective of exactly which 376

upstream region variance is allocated to, our inference that genic regions are uncorrelated in their contribution 377

to variance with the promotor and upstream regions still holds as does our probabilistic inference on the 378

associations of each gene and their contribution to the phenotypic variation. 379

Other approaches may also provide continuous SNP shrinkage, regularising each SNP differently, such 380

as a Finnish horseshoe model [29], and we are working to place a grouped version of this model within our 381

computational framework to explore this possibility. Recent work has shown that tree sequence algorithms 382

can also be used to massively increase the scalability of methods for genomic data, making it possible to infer 383

trees for millions of samples [30] and to conduct regression models using tools such as TreeLD [31] or inferred 384

ancestral recombination graphs [32]. We expect that our current algorithm combining sparse dot products 385

and highly vectorized look-up tables to outperform these methods in terms of performance as there are costs 386

to tree-traversal and tree-calculation. However, a tree-approach would provide benefits in terms of memory 387

usage and future work to computationally engineer the tree-structure data may be beneficial. Finally, our 388

focus is limited to two common complex diseases with case proportions 11.6% for CAD and 7.2% for T2D 389

within the UK Biobank. Less prevalent complex diseases, likely require additional model extensions to the 390

prevent effect size bias as reported elsewhere [10] and this will also be a focus of future work. 391

Summary 392

Our results provide evidence for an infinitesimal contribution of many thousands of common genomic regions 393

to common complex trait variation and for a predominant role of intronic, exonic, and distal regulatory regions. 394

This highlights the immense challenge of understanding the molecular underpinning of each association and 395

the difficulties in improving the estimation of many tens of thousands of small-effect associations that are 396

required to improve genomic prediction. This work represents a first step toward maximising the probabilistic 397

inference that can be obtained from large-scale Biobank studies. 398

Methods 399

Model Specification 400

We begin by outlining the basic model bayesR, before then presenting our extensions. Consider p single 401

nucleotide polymorphism (SNP) markers. If we gather samples for i = 1, ...N subjects in an N × p matrix, 402

G, in which the elements are coded as 0 for homozygous individuals at the major allele, 1 for heterozygous 403

individuals and 2 for minor allele homozygotes. Now, we wish to model their linear association with the 404

phenotype y = (yi) of subjects i = 1, . . . , N in a standard linear regression model: 405

y = 1µ+ Xβ + ε (3)

We assume that the genotypes are standardized so that Xj = (Gj−µj1)
σj

is the vector of genotypes for the 406

jth marker (j = 1, p) with zero mean and unit variance, i.e. the centered and scaled jth column of G. The 407

column’s mean µj ≈ 2fj and the column’s standard deviation σj ≈
√

2fj (1− fj) being fj the minor allele 408

frequency(MAF) of the SNP. We define β as a p× 1 vector of partial regression coefficients with βj the effect 409

of a 1 SD change in the jth covariate, and ε is a vector (N x 1) of residuals. 410

We estimate the model’s parameters using Bayesian inference, assuming that the error term ε|σ2
ε ∼ 411

N
(
0, Iσ2

ε

)
. The log-likelihood of this model can be written as 412

l
(
µ,β, σ2

ε

)
= −N2 log

(
2πσ2

ε

)
− 1

2σ2
ε

(
N (ŷ − µ)2 + (yc −Xβ)T (yc −Xβ)

)
(4)

with yc = (y−1µ)
σy

a vector of centred and scaled responses(SD 1). 413

As we adopt a Bayesian approach, we place priors over the model parameters. For the covariate effects, β, 414

we use a mixture prior with Dirac spike and slab components, which have been extensively used for variable 415

selection [15,16]. The prior induces sparsity in the model through a Dirac-delta at zero, excluding variables 416

from the model by setting their coefficients to zero. A slab component is centered at zero and shrinks the 417
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non-zero coefficients towards zero according to the slab’s width. In our approach, the slab component is a 418

scale mixtures of normals and thus each βj ∈ β is distributed according to: 419

βj ∼ π0δ0 + π1N
(
0, σ2

1
)

+ . . .+ πLN
(
0, σ2

L

)
where πβ = (π0, π1, . . . , πL) are the mixture proportions,

{
σ2

1 , . . . , σ
2
L

}
are the mixture-specific variances, 420

and δ0 is a discrete probability mass at zero. We further constrain the prior by assuming a single parameter 421

representing the total variance explained by the effects σ2
G, with the component-specific variances proportional 422

to σ2
G multiplied by a constant {C1, . . . , CL} so that 423 σ2

1
...
σ2
L

 = σ2
G

 C1
...
CL


The remaining prior structure for the model is then 424

π ∼ Dirichlet (1)
σ2
G ∼ Inv− Scaledχ2 (v0, s2

0
)

σ2
ε ∼ Inv− Scaledχ2 (v0, s2

0
) (5)

with weakly informative parameters for hyperparameters v0 = s2
0 = 0.001. 425

For notational convenience, we will refer to the mixture membership labels as (l0, l1, . . . , lL) and we define 426

a latent indicator of each SNP, j, γ = (γj , . . . , γp)T with γj,l = 0 or 1, indicating whether or not the effect of 427

SNP j falls into the zeroth mixture γj,l = 0, or follows a normal distribution with variance σ2
l . We define the 428

"active set of coefficients" as those βj such that βj 6= 0 denoted as βγ 6=0 with cardinality ||γϕ||0. Thus the 429

objective of our inference scheme is to compute an estimate of the posterior distribution f
(
βγ 6=0, σ

2
ε , σ

2
G, µ|yc

)
. 430

This model has been termed BayesR [12,13] and an effective proposed Gibbs sampling scheme [13] follows 431

the following steps: 432

(i) sample µ from N
(∑N

i=1
(yci−Xjβγ 6=0)

N ,
σ2
ε

N

)
433

(ii) sample βγ 6=0 from its conditional as described below 434

(iii) sample σ2
G from Inv− Scaledχ2

(
||γϕ||0 + v0,

||γϕ||0‖βγ 6=0‖2+v0S
2
0

v0+||γϕ||0

)
435

(iv) sample σ2
ε from Inv− Scaledχ2

(
v0 +N,

‖yc−µ−Xβγ 6=0‖2+v0S
2
0

v0+N

)
436

From the former algorithm, steps (i), and (iv) are straight-forward applications of conjugacy and are 437

common to many Gibbs sampling algorithms for linear regression. Step (iii) follows from conjugacy and the 438

assumption that the individual mixtures represent fractions of the total variance explained by the coefficients. 439

Step (ii) is the biggest bottleneck in any linear regression problem, and in the next section we will proceed to 440

detail the derivations of the sampling scheme for this step. 441

While it is not uncommon to use non-proper priors for the residual’s variance σ2
ε , in our case we chose to 442

keep a proper prior for algorithmic and modeling reasons as: a) conjugacy is amenable to Gibbs sampling b) 443

we assume σ2
ε and σ2

G are not nuisance parameters, and in some cases we possess prior information on its 444

distribution. It is also common to specify the distribution of βj having a variance depending on the residual’s 445

variance σ2
ε , which would make the estimates transformation-invariant. Recent results suggest the estimates 446

for σ2
ε in this latter transformation-invariant formulation are biased [33]. Another concern may be that the 447

prior’s hyperparameters induce biased estimates for small variances [34], we acknowledge that may be an 448

issue, and allow parameters v0, s
2
0 to be adjusted if deemed necessary. The scale mixture of Gaussians, allows 449

the prior distribution to have heavier tails than a single Gaussian, which allows big effects to be shrunk to a 450

lesser degree than small effects [17]. Finally, the original formulation of [12, 13] assumes σ2
G = r2σy which 451

for centered and scaled phenotypes and genotypes, with heritability h2 equal to reliability r2 = Var[Xβγ 6=0]
Var[y] , 452

would mean σ2
G = h2 = r2 = Var [Xβγ 6=0] =

∑
γ 6=0 β2

γ 6=0, but there is no constraint in the model ensuring 453

σ2
G + σ2

ε = σ2
y. As we will see, further assumptions are necessary for having unbiased estimates of σ2

G and h2
454
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under varying LD and MAF. These estimates will achieve the equivalence σ2
G = r2 = h2 without relying in 455

either using a point estimate of r2 [12], informative priors on σ2
G, or normalising the posterior variances by 456

h2 = σ2
G

σ2
G

+σ2
ε
[14]. 457

Sampling the effects 458

For sampling β, the challenge is two-fold: (a) determining if the effect βj is part of βγ 6=0, and if so, to 459

which component it belongs; and then (b) sampling the vector βγ 6=0 from a multivariate Gaussian with 460

covariance matrix Σ = XT
l 6=0Xl 6=0 + Λ where Λ is the diagonal matrix with entries λl,j = σ2

ε

σ2
j,l

, with σ2
j,l the 461

variance of the mixture component to which marker βj was assigned. For (a), marginalization of each effect 462

individually is required to compute the membership probability, which requires solving a determinant of the 463

size of ||γϕ||0 − 1 [16]. For (b), either a system of size ||γϕ||0 must be solved through LU decomposition, or 464

Cholesky decomposition of size ||γϕ||0, and both operations are resource intensive when the size of ||γϕ||0 is 465

large. Instead, we determine the inclusion of a marker in the active set, along with its mixture membership 466

and its partial regression coefficient βj , in single-site updates. Single-site Gibbs sampling is also known as 467

stochastic relaxation [35] has a long history given its equivalence to iterative Gauss Siedel methods to solve 468

matrix equations [36]. Although we choose to use the BayesR model, many alternative models can easily be 469

placed within the iterative solving and computational framework we outline here. 470

In this scheme, we sample each element, j, of β from the full conditional posterior f
(
βj |β\j ,y

)
∝ 471

f
(
βj ,β\j ,y

)
which can be written as f

(
βj ,β\j ,y

)
= f (y|β) f (βj) f

(
β\j
)
where f (y|β) is the density 472

function of the conditional distribution of y|β and f (βj) and f
(
β\j
)
are the densities of the prior distributions 473

of βj and β\j respectively, with notation \j representing all other covariates except j. The kernel of the full 474

conditional posterior for βj is proportional to the product of the likelihood, the prior distribution for βj and 475

the prior distributions of the variances, and thus ignoring factors that are constant with respect to βj gives 476

f
(
βj | lj ,θ\j ,y

)
∝ exp

[
− (yc −Xβ)T (yc −Xβ)

2σ2
ε

]
exp

[
−

β2
j

2σ2
j,l

]
(6)

where lj represents the mixture βj is assigned, θ\j = {β\j , σ2
ε , σ

2
G, πβ , µ} and σ2

j,l the corresponding mixture 477

variance. We can reduce the expanded form and drop terms that are free from βj as 478

f
(
βj | lj ,θ\j ,y

)
∝ exp

[
− 1

2σ2
ε

(
yc −Xjβj −X\jβ\j

)T (yc −Xjβj −X\jβ\j
)

+
β2
jσ

2
ε

2σ2
j,l

]

∝ exp
[
− 1

2σ2
ε

(
ỹT ỹ− 2XT

j ỹβj + XT
j Xjβ

2
j +

β2
jσ

2
ε

2σ2
j,l

)]

∝ exp
[
− 1

2σ2
ε

(
ỹT ỹ− 2XT

j ỹβj + β2
jΣj,l

)]
∝ exp

[
− 1

2σ2
ε

(
ỹT ỹ− 2β̂jΣj,lβj + β2

jΣj,l + β̂2
jΣj,l − β̂2

jΣj,l
)]

∝ exp

−1
2

(βj − β̂j)2

σ2
ε

Σj,l

 (7)

with ỹ = yc −X\jβ\j , Σj,l = XT
j Xj + λj,l and β̂j,l = XT

j ỹ
Σj,l . This gives the Gibbs sampling update for βj 479

as 480

βj ∼ N (Σ−1
j,l XT

j ỹ, σ2
εΣ−1

j,l ) (8)

To avoid reducibility of the Markov chain, prior to drawing the effect βj , we first need to select the 481

mixture K for each covariate j, and as above we can condition on the individual coordinates and to obtain 482

the probability that a coefficient j belongs to a given mixture. 483

P
(
lj = K | θ\j ,y

)
= f (ỹ | lj = K,θ,y)P (lj = K)∑L

k=1 f (ỹ | lj = k,θ,y)P (lj = k)
(9)
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We integrate out the βj coordinate following the equations above with 484

f (ỹ | lj ,θ,y) =
∫
f
(
ỹ | βj , σ2

ε

)
f
(
βj | lj , σ2

j,l

)
dβj

=
∫

(2πσ2
ε )−n/2 exp

[
− (ỹ−Xjβj)T (ỹ−Xjβj)

2σ2
ε

]
(2πσ2

j,l)−q/2 exp
[
−

β2
j

2σ2
j,l

]
dβj

where q = 2. We then expand this equation using the relationship Σj,lβ̂j = XT
j ỹ from Eq. 8 and complete 485

the squares 486

f (ỹ | lj ,θ,y) =
∫

(2πσ2
j,l)−q/2(2πσ2

ε )−n/2 exp
[
− 1

2σ2
ε

(
ỹT ỹ− 2β̂j,lΣj,lβj + β2

jΣj,l + β̂2
j,lΣj,l − β̂2

j,lΣj,l
)]
dβj

= (2π|σ2
εΣ−1

j,l |)
1/2(2πσ2

j,l)−q/2(2πσ2
ε ) exp

[
− 1

2σ2
ε

(
ỹT ỹ− β̂2

j,lΣj,l
)]
×∫

(2π|σ2
εΣ−1

j,l |)
−1/2 exp

[
− 1

2σ2
ε

(
βj − β̂j,l)2Σj,l

)]
dβj

=
(
|λl,jΣ−1

j,l |
) 1

2 (2πσ2
ε

)−n2 exp
[
− 1

2σ2
ε

(
ỹT ỹ− β̂2

j,lΣj,l
)]

(10)

where the final reduction in Eq. 10 occurs as the integral component is now a normal distribution that 487

integrates to 1 and then terms are removed that do not contain, nor depend upon Σj,l nor β̂j,l. The probability 488

for inclusion in the model in the first mixture, as compared to the spike, then depends upon the ratio 489

f (ỹ | lj = 0,θ,y)
f (ỹ | lj = 1,θ,y) =

(2πσ2
ε )−n2 exp

[
− 1

2σ2
ε
(ỹT ỹ)

]
(
|λl,jΣ−1

j,2 |
) 1

2 (2πσ2
ε )−

n
2 exp

[
− 1

2σ2
ε

(
ỹT ỹ− β̂2

j,lΣj,2
)]

=
(
|λl,jΣ−1

j,2 |
)− 1

2 exp
[
− 1

2σ2
ε

(ỹT ỹ) + 1
2σ2

ε

(ỹT ỹ)− 1
2σ2

ε

(β̂2
j,lΣj,2)

]
=
(
|λl,jΣ−1

j,2 |
)− 1

2 exp
[
− 1

2σ2
ε

(β̂2
j,lΣj,2)

]
(11)

Analogous to equation 11, any comparison between mixtures has the same form and allows us to omit the 490

ỹT ỹ term. Thus placing Eq.11 into Eq.9 and re-arranging to a numerically more stable version [12] gives 491

P
(
lj = K|θ\j ,y

)
= 1

1 +
∑L
k=0 exp [log(LKK)− log(LKk)]

(12)

with log(LK0) = log(π0) and log(LKl) = − 1
2

[
− log

(
|λl,jΣ−1

j,l |
)
−
(
β̂2
j,lΣj,l
σ2
ε

)]
+ log(πl) for l in (1...L). 492

Having derived the regression coefficients and their inclusion probabilities, fully specifying the BayesR 493

model, we now proceed in the following sections to: (1) derive the properties of the model parameters when 494

applied to highly correlated genomic data (under multicollinearity) and compare these to estimates made 495

by other approaches in the field; (2) extend the model to account for genomic annotations, minor allele 496

frequency (MAF) and linkage disequilibrium (LD) among markers; and finally (3) derive a computational 497

implementation that facilitate the application of the model to biobank sized data. 498

Comparison to other approaches under collinearity 499

Genome-wide association studies have predominantly been conducted using single marker regression via 500

ordinary least squares (OLS). Recently, it has been proposed that if aggregation due to familial or molecular 501

similarity (e.g. population stratification) exists in the data, a better estimation approach is generalized least 502

squares (GLS), as it poses a more general covariance structure than OLS. GLS estimates can be obtained 503

within mixed-linear association models, which first declare all marker effects as random variables, for example, 504

assuming that uj ∼ N(0, σ2
u), or from a mixture of distributions, with all markers in the set taken as 505
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independently and identically distributed random variables. Second, when the markers are evaluated for 506

association, they are then treated as a fixed effect. The resulting model can be written as 507

y = X1β1 + X1u1 + X\1u\1 + ε (13)

where a focal genetic marker, here X1 is fitted twice, first as a fixed effect to estimate the regression 508

coefficient β1, and also as part of all of the other markers with their effects, u, estimated as random (note 509

here \1 indicates all markers other than marker 1). Under this model the phenotypic covariance structure is 510

V = X1XT
1 σ

2
G + X\1XT

\1σ
2
G + Iσ2

ε (14)

With orthogonal covariates, the estimated variance components that compose V can remain constant 511

when testing each marker in turn. However, with collinearity among markers the situation becomes more 512

complex. Below, we first describe the impact of multicollinearity on ridge regression estimates. We then 513

outline the equivalence of a ridge regression and a mixed linear model, before then demonstrating increased 514

variance of the estimates obtained from Eq. (13) under multicollinearity. Finally, we then go on to show that 515

estimates from BayesR are less subject to inflated variance, except under extensive multicollinearity, before 516

then describing how extending the model to provide minor allele frequency and LD specific hyperparameters 517

provides estimates with improved properties across a range of underlying generative data models. 518

In Eq. (13) if markers were all simply estimated as random, following a single distribution, then a ridge 519

regression estimator of Hoerl and Kennard 1970 [21] would be obtained, which was proposed to replace XTX 520

in the OLS solutions by XTX + λI, with λ ∈ [0,∞] a tuning or penalty parameter. This gives the ridge 521

regression estimator 522

β̂(λ) = [XTX + λI]−1XTY (15)

where λ is strictly positive and the solution or regularization path of the ridge estimate β̂(λ) : λ ∈ [0,∞] 523

is the set of ridge estimates across the values of λ. The expectation of the ridge estimator 524

E[β̂(λ)] = E[(XTX + λI)−1XTY]
= (XTX + λI)−1XTE(Y)
= (XTX + λI)−1(XTX)β

(16)

with β̂ the maximum likelihood OLS estimator. If we consider an orthonormal design matrix X, with 525

XTX = I = (XTX)−1 then we can express the relationship between β̂, and the ridge estimator, β̂(λ), as 526

β̂(λ) = (XTX + λI)−1XTY
= (I + λI)−1XTY
= (1 + λI)−1IXTY
= (1 + λI)−1(XTX)−1XTY

= (1 + λI)−1β̂

(17)

If we define Wλ = (XTX + λI)−1(XTX) then the ridge estimator β̂(λ) can be expressed as Wλβ̂ for 527

Wλβ̂ = Wλ(XTX)−1XTY
= [(XTX)−1(XTX + λI)]−1(XTX)−1XTY
= (XTX + λI)−1XTY

= β̂(λ)

(18)

The variance of the ridge estimator is then 528

Var[β̂(λ)] = Var[Wλβ̂]
= WλVar[β̂]WT

λ

= σ2
εWλ(XTX)−1WT

λ

= σ2
ε (XTX + λI)−1XTX[(XTX + λI)−1]T

(19)

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188433doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.04.20188433
http://creativecommons.org/licenses/by-nc-nd/4.0/


and the mean square error of β̂(λ) is 529

MSE[β̂(λ)] = E[(Wλβ̂)T (Wλβ̂)]
= E(β̂TWT

λWλβ̂)− E(βTWλβ̂)− E(β̂TWT
λβ) + E(βTβ)

= E(β̂TWT
λWλβ̂)− E(βTWT

λWλβ̂)− E(β̂TWT
λWλβ) + E(βTWT

λWλβ)
− E(βTWT

λWλβ) + E(βTWT
λWλβ̂) + E(β̂TWT

λWλβ)
− E(βTWλβ)− E(β̂TWT

λβ)− E(βTβ)
= E[(β̂ − β)TWT

λWλ(β̂ − β)]
− βTWT

λWλβ + βTWT
λWλβ + βTWT

λWλβ − βTWλβ − βTWλβ + βTβ

= E[(β̂ − β)TWT
λWλ(β̂ − β)] + βT (Wλ − I)T (Wλ − I)β

= σ2
ε tr[Wλ(XTX)−1WT

λ ] + βT (Wλ − I)T (Wλ − I)β

(20)

The first summand is the sum of the variances of the ridge estimator, while the second summand is the 530

squared bias of the ridge estimator. With an orthonormal design matrix, X, Theorem 2 of Theobald 1974 [37] 531

shows: 532

MSE[β̂(λ)] = pσ2
ε

(1 + λ)2 + λ2

(1 + λ)2 βTβ (21)

which achieves a minimum at λ = pσ2
ε /β

Tβ = σ2
ε /σ

2
β , with σ2

β the variance of the β coefficients. This has 533

been stated in the genetics literature as the optimal shrinkage parameter [38] for a ridge regression. However, 534

this is derived under the assumption of uncorrelated covariates within the design matrix X. 535

To explore the effects of correlated covariates we use the ridge loss function, defined as 536

Lridge(β;λ) = ||Y−Xβ||22 + λ||β||22 =
n∑
i=1

(Yi −Xiβ)2 + λ

p∑
j=1

β2
j (22)

which is the sums-of-squares with a penalty, λ
∑p
j=1 β

2
j , referred to as the ridge penalty, which shrinks 537

the regression coefficients towards zero. The radius of the ridge constraint, the squared Euclidean norm of β, 538

||β||22, depends upon λ, X and Y, and taking its expectation 539

E[||β̂(λ)||22] = E
[
[(XTX + λI)−1(XTX)β̂]T (XTX + λI)−1(XTX)β̂

]
= E[YTX(XTX + λI)−2XTY]
= σ2

ε tr[X(XTX + λI)−2XT ] + βXTX(XTX + λI)−2XTXβ

(23)

provides a measure that can be evaluated given different properties of the design matrix X. With the same 540

λ and the same β, Eq. (23) shows that the degree of collinearity among the covariates alters the variance 541

of the estimated effects. Thus, in a ridge regression penalization does not remove collinearity but simply 542

reduces it’s effects on the variance of the ridge estimator provided that the λ value is sufficiently large (and 543

thus the σ2
β is small). We explore Eq. (23) in a simulation study described below and presented in Figure 1. 544

This theory is an extension of previous work [39] which showed that the inflation of the SNP heritability 545

is proportional to a ratio of the average LD among causal variants and the markers and the average LD 546

among all the markers, with inflation expected when causal variants are in higher LD with the markers 547

than on average. Eq. (23) is a function of X’X, with the LD values the off-diagonal elements in X’X, but it 548

suggests that inflation would be irrespective of the average LD across the genome, simply being expected if 549

high-LD markers had strong effects and showing that inflation would occur only for the estimates of markers 550

that are in LD with those causal variants. Thus, if SNP heritability is allocated across SNPs at random 551

then estimation will on average be correct, irrespective of the LD among SNPs. If the effects of SNPs vary 552

according to the MAF or LD of the SNP, and assumptions are made that all SNP effects are sampled from 553

the same distribution, then this will lead to bias as the estimates at high-LD markers in strong LD with 554

underlying causal variants will be inflated and this inflation will be sufficiently large and occur at a sufficient 555

number of genomic locations so as to impact upon the global estimate of SNP heritability. 556

This issue has been detected, and demonstrated in simulation, in a number of recent papers [1–4]. However, 557

to date it has remained little understood from a theoretical perspective. The LD-MAF corrections proposed 558

in the literature all serve to alter the lambda value for SNPs, or sets of SNPs, so that it becomes proportional 559

to the LD and MAF of the marker, in essence reducing the σ2
G, or making it more specific to the markers 560
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in question, and increasing the λ value for common, highly correlated covariates. The equivalence of ridge 561

regression and mixed-linear models has been shown many times, using well-established results from prediction 562

of random variables dating back to Henderson [40]. The model Y = g + ε, with g the genetic value of 563

the individuals, and the model Y = Xβ + ε, with g = Xβ, g ∼ N(0,XXTσ2
G) with marker effects thus 564

β = XT (XXT )−1g, are equivalent. Following Henderson [40], assuming σ2
ε and σ2

G are known, with no fixed 565

effect component, the log-likelihood can be shown to be proportional to: 566

σ−2
ε ‖Y− g‖22 + gT Iσ2

Gg (24)

equating the partial derivatives of this mixed model loss function with respect to g to zero, yields the 567

estimating equations known as Henderson’s mixed model equations. Returning to the mixed linear association 568

model described in Eq.(13), using u to denote the marker effects estimated as random, β for the focal marker 569

effect estimated as fixed, and assuming independent marker effects, Henderson’s mixed model equations 570

(MME) take the form: 571XT
1 X1 XT

1 X1 XT
1 X\1

XT
1 X1 XT

1 X1 + Iλ XT
1 X\1

XT
\1X1 XT

\1X1 XT
\1X\1 + Iλ

 β1
u1
u\1

 =

XT
1 y

XT
1 y

XT
\1y

 (25)

where λ = σ2
ε

σ2
β

. Subtracting the u1 from the β equations gives u1 = 0 and thus the MME reduce to: 572[
XT

1 X1 XT
1 X\1

XT
1 X\1 XT

\1X\1 + Iλ

] [
β1
u\1

]
=
[

XT
1 y

XT
\1y

]
(26)

This has been derived previously [41], however there is an explicit assumption that the any estimation 573

error of the random marker effect estimates go into the residual and does not influence the fixed estimate 574

of the marker. For the random effect component, the equivalence with the ridge regression estimator of 575

Eq.(15) is evident, as is the equivalence of Eq. (24) with Eq. (22) above. Thus an MLMi model returns 576

“ridge regression” estimate of the marker effects, and as we show above ridge regression estimates are inflated 577

when effect sizes are higher for high LD markers. It then follows that mixed model effect size estimates could 578

be biased when effect sizes are higher for high LD markers. 579

Seen in this light, we can now explore the influence of multicollinearity on the BayesR dirac spike and 580

slab model described above and compare it to that of a ridge regression. If we denote a measure of fit, such 581

as the ridge loss function described above, being composed of l(β) and a penalty function penλ(β), then 582

from a Bayesian perspective these correspond to the negative logarithms of the likelihood and the prior 583

distribution, respectively. We can parameterize the BayesR dirac spike and slab model described above using 584

the latent indicator of each SNP, j, γ = (γj , . . . , γp)T with γj,l = 0 or 1, indicating whether or not the effect 585

of SNP j follows a normal distribution with variance σ2
l (l = 1, 2, 3, 4). Then p(γj,l = 1|πl) = πl and the prior 586

distribution of each SNP effect βj conditional on the indicator γj,l is 587

f (βj |γj,l) =
{

1√
2πσ2

l

exp(− β2
j

2σ2
l

), ifγj,l = 1 (l = 2, 3, 4)
δ0(βj), ifγj,l = 0

(27)

The joint distribution p(βj , γj) conditional on πβ is 588

f
(
βj , γj |πβ , σ2

β

)
=
∏4
l=1 f (βj |γj,l) f (γj,l = 1|πl)

= (δ0(βj)π1)γj,1
∏4
l=2

(
1√

2πσ2
l

exp(− β2
j

2σ2
l

)πl
)γj,l (28)

to simplify the following, we assume only a single normal distribution with π1 + π2 = 1 and we redefine 589

the regression coefficient as βj = γjαj with αj |σ2
β ∼ N(0, σ2

β). then: 590

f
(
αj , γj |πβ , σ2

β

)
= (δ0(αj)π1)γj,1

(
1√
2πσ2

β

exp(− α2
j

2σ2
β

)πl
)γj,2

= π
γj,1
1 (1− π1)γj,2 1√

2πσ2
β

exp(− α2
j

2σ2
β

)
(29)

18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188433doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.04.20188433
http://creativecommons.org/licenses/by-nc-nd/4.0/


Now as above, if we define an active set of markers, Xγ 6=0, as those columns of X where βγ 6=0, with an 591

active set of γ, and ||γ||0 =
∑p
j=1 γj be its cardinality. The joint prior on the vector γ, α then factorizes 592

across all the markers as 593

f
(
α, γ|πβ , σ2

β

)
=
∏p
j=1 f

(
αj , γj |πβ , σ2

β

)
= π

||γ||0
1 (1− π1)p−||γ||0(2πσ2

β)−
p
2 exp

{
− 1

2σ2
β

∑p
j=1 α

2
j

} (30)

as above we can express the likelihood in terms of γ, α as 594

f (y|γ, α, πβ , σε) = (2πσ2
ε )−n2 exp

{
− 1

2σ2
ε

||y −Xγ 6=0αγ 6=0||22
}

(31)

and then under this reparamterisation the posterior is given as 595

f
(
α, γ|πβ , σ2

β , σ
2
ε , y
)
∝ f

(
α, γ|πβ , σ2

β

)
f (y|γ, α, πβ , σε)

∝ exp
{

1
2σ2

ε

||y −Xγ 6=0αγ 6=0||22 −
1

2σ2
β

||α||22 − log
(

1− π1

π1

)
||γ||0

}
(32)

The regularized maximum a posterior estimator is equivalent to minimising over γ, α the least squares 596

objective function as 597

minγ,α‖y −Xγ 6=0αγ 6=0‖22 + λ‖α‖22 + 2σ2
ε log

(
1− π1

π1

)
‖γ‖0 (33)

In comparison to the ridge loss function described above, the first two terms are very similar and the 598

third term imposes a sparsity constraint on the model. The term λ‖α‖22 has the same expectation as in Eq. 599

(23) but with X replaced with Xγ 6=0. To give some insight into the influence of collinearity on E[‖γ‖]0 and 600

on the active set, we explore a two SNP scenario. 601

In a single site updating scheme, the probability that the first marker enters the model is given by Eq. 12. 602

We seek to derive the probability that the second marker enters the model conditional on the first marker 603

being in the model. We consider a scenario where we observe our standardised outcome ỹc and two correlated 604

predictors X1 and X2. We assume that ỹc, X1 and X2 are scaled with zero mean and unit variance. We 605

can then derive the partial least squares regression for ỹc regressed on X2, adjusting for X1. If βx1,ỹ = XT
1 ỹ

Σ1,1
, 606

with Σ1,1 = XT
1 X1 + λ1I, then a residual vector εyc,X1 = yc − βx1,ỹcX1 is the vector left after backfitting 607

βx1,ỹc and we define εX1,X2 = X2 − ρX1,X2X1 as the additional information in X2 left to fit βx2,εyc,X1
, with 608

ρX1,X2 the correlation of X1 and X2. The correlation between the two residuals εyc,X1 and εX1,X2 can be 609

used to estimate βx2,εyc,X1
, since βx2,εyc = N

Σ1,l
ρεyc,X2

. The correlation is a ratio between a covariance and a 610

variance as 611

Covεyc,X1 ,εX1,X2
= 1
N

∑
(yc − βx1,ỹcX1) (X2 − ρX1,X2X1)

= 1
N

∑
(ycX2 − ρx1,x2X1ỹc − βx1,ỹcX1X2 +Nβx1,ỹcρX1,X2)

= ρεyc,X2
− ρX1,X2βx1,ỹc

Σ1,l

N
− βx1,ỹcρX1,X2 + βx1,ỹcρX1,X2

= ρεyc,X2
− ρX1,X2βx1,ỹc

Σ1,l

N

= ρεyc,X2
− ρX1,X2

1
N
X1ỹc (34)

The variance in the correlation denominator is S2
εX1,X2

= 1− ρ2
X1,X2

which gives 612

βyc,X2|X1 = N

Σ2,l
×
ρεyc,X2

− ρX1,X2
1
NX1ỹc

1− ρ2
X1,X2

(35)

Eq. 35 can then be used in Eq. 11 and Eq. 12 to determine the posterior inclusion probability of the 613

second covariate conditional on the first covariate being in the model. From this, the expectation, E[‖γ‖0] for 614
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a two SNP scenario is then 615

E[‖γ‖0] = p(l1 = 1|θ,y) + p(l2 = 1|θ,y)

= 1

1 + exp
[
log(π0)− (− 1

2 [−log(|λΣ−1
1,1|)− (

β2
yc,X1

Σ1,1

σ2
β

)])
]

+ 1
1 + exp

[
log(π0)− (− 1

2 [−log(|λΣ−1
2,1|)− (βyc,X2|X1 Σ2,1

σ2
β

)])
]

(36)

With the dirac spike and slab and ridge regression estimators minimizing the same sum-of-squares, the 616

key difference with the constrained estimation formulation of ridge regression is not in the explicit form of 617

λ but in what is bounded the domain of acceptable values for α. For the BayesR estimator the domain is 618

specified by a bound on the `0norm of the regression parameter, while for its ridge counterpart the bound 619

is applied to the squared `2norm of β. Multicollinearity will reduce the likelihood of the second covariate 620

entering the model as it’s inclusion is dependent upon ρX1,X2 the correlation among covariates and ρεyc,X2
621

the correlation of the second marker and the residual vector after backfitting the first marker. This will limit 622

the range of possible estimates to be lower than those obtained from ridge regression, reducing inflation of 623

λ‖α‖22 under high collinearity, but not entirely removing it. Due to the sampling of markers from a series of 624

normal distributions collinearity will still inflate λ‖α‖22, however, the degree to which this occurs will depend 625

upon the number of correlated markers, the degree of correlation among them and the strength of the effects. 626

Therefore, our aim here is not to derive a general solution predictive of all situations, merely it is to highlight 627

that in order to make some inference as to the underlying distribution of genetic effects, it is required to 628

extend the model as outlined in the following section. 629

Extending the model to account for collinearity and genomic annotation 630

We extend the BayesR model to a BayesRR-RC model as follows 631

y = 1µ+
Φ∑
ϕ=1

Xϕβϕ + ε (37)

where there is a single intercept term 1µ and a single error term ε but now SNPs are allocated into groups 632

(ϕ1, . . . , ϕΦ), each of which having it’s own set of model parameters Θϕ =
{
βϕ, πβϕ , σ

2
Gϕ

}
. As such, each 633

βϕj is distributed according to: 634

βϕj ∼ π0ϕδ0 + π1ϕN
(

0, σ2
1ϕ

)
+ π2ϕN

(
0, σ2

2ϕ

)
+ . . .+ πLϕN

(
0, σ2

Lϕ

)
(38)

where for each SNP marker group
{
π0ϕ , π1ϕ , . . . , πLϕ

}
are the mixture proportions and

{
σ2

1ϕ , σ
2ϕ
2 , . . . , σ2

Lϕ

}
635

are the mixture-specific variances proportional to 636 σ2
1ϕ
...

σ2
Lϕ

 = σ2
βϕ

 C1ϕ
...

CLϕ


Thus the mixture proportions, variance explained by the SNP markers, and mixture constants are all 637

unique and independent across SNP marker groups. This extends previous models (known as BayesRC [18] 638

and BayesRS [19]), which have used additional mixtures for different SNP groups, but kept a single global 639

variance component. Importantly, a single variance component with more mixtures serves only to change 640

the amount of mass allocated at different sizes of the distribution, but does not alter the sizes of the effects 641

themselves as there is still a single distribution. In contrast, the formulation presented here of having an 642

independent variance parameter σ2
βϕ

per group of markers, and independent mixture variance components, 643

enables estimation of the amount of phenotypic variance attributable to the group-specific effects and enables 644

differences in the distribution of effects among groups. 645

We can sketch the difference in the models by looking at the respective conditional posteriors, again, 646

assuming a single component for simplification purposes. We have a BayesRC or BayesRS estimator by 647
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assuming different groups of effects in eq. 32, which yields: 648

f
(
α, γ|πβϕ , σ2

β , σ
2
ε , y
)
∝ exp

{
1

2σ2
ε

||y −Xγ 6=0αγ 6=0||22 −
1

2σ2
β

||α||22 − log
(1− π1ϕ

π1ϕ

)
||γϕ||0

}
(39)

where πβϕ are the group-specific mixture proportions and ||γϕ||0 is the cardinality of the group. The 649

corresponding MAP estimate would amount to adding extra penalisation on sparsity through the πϕ terms, 650

while keeping the same level of shrinkage as the baseline BayesR. 651

In our model the conditional posterior is: 652

f
(
α, γ|πβϕ , σ2

βϕ , σ
2
ε , y
)
∝ exp

{
1

2σ2
ε

||y −Xγ 6=0αγ 6=0||22 −
1

2σ2
βϕ

||α||22 − log
(1− π1ϕ

π1ϕ

)
||γϕ||0

}
(40)

now each marker has a group-specific shrinkage σ2
βϕ

, which translates to a specific λϕ per group in the MAP 653

estimate. This amounts to markers being shrunk according to the scale of the effects of their group, instead 654

of the scale of all other markers. So instead of solving a single model selection and regularisation problem we 655

are solving Φ model selection and regularisation problems, with shared information only through the residuals. 656

If we subset by MAF and LD bins, the resulting groups of columns will have a correlation pattern similar to 657

an exponential decay (LD decays with distance). If we take the whole genotype matrix, the pattern would be 658

closer to a block diagonal matrix of correlations, in [17, 42] it is showed that the former case requires weaker 659

conditions in order to recover the true vector β consistently than the latter. Although the sampling scheme 660

was different, we have shown that a similar model with only two groups: genetic markers and epigenetic 661

markers, is successful in identifying BMI and smoking epigenetic signatures [14]. 662

A Gibbs sampling scheme for biobank size data 663

For "p >> n" regimes, such as in genomics, where the number of covariates is greater than the number of 664

individuals, hierarchical models controlling assumptions over the sparsity of the model are typically proposed, 665

with examples of sparsity-inducing priors like the "spike and slab" prior [15,23], the Bayesian LASSO [43] and 666

the Horseshoe [44] prior. There are efficient tools to perform Bayesian regression analysis "out-of-the-box" 667

using MCMC and variational inference [45–47], but these methods are limited to problems with explanatory 668

variables in the low thousands of observations. Recent results show that Gibbs samplers for the Horseshoe 669

prior [29], or for the Bayesian LASSO [48], offer a competitive advantage when combined with approximation 670

schemes for problems of high dimensionality (over 100,000 covariates). These latter methods exchange the 671

inversion of the coefficient matrix, for a matrix multiplication, thus reducing complexity from cubic to almost 672

quadratic on the number of variables. However, despite these good properties, scaling these approaches up to 673

a factor of millions of variables remains prohibitive. 674

We now describe an effective algorithmic implementation of our BayesRR model that scales to millions 675

of individuals, each genotyped at millions of genetic markers. We outline a Gibbs sampling algorithm that 676

enables all sampling steps to utilize genetic data stored in mixed binary/sparse-index representation, reducing 677

computational complexity of a single Gibbs step from O(n) to O(nz), with nz the number of non-zero 678

genotypes. We then outline a Bulk Synchronous Parallel Gibbs sampling scheme implemented based on a 679

hybrid MPI + OpenMP model, distributing data across MPI tasks over as many compute nodes as required 680

to hold all the data in memory. Uniquely, this enables large-scale genomic data to be split up into smaller 681

manageable segments, whilst still conducting the analysis in the same way, estimated the marker effects 682

jointly. 683

Algorithm 1 provides a full overview of the sampling scheme of the model as it has been previously 684

implemented. For each marker j, we must compute β̂j,l to determine which mixture a marker belongs to, 685

before then sampling β̂j,l given the mixture group assigned. This quantity depends on the dot product XT
j yc, 686

with yc the centred phenotype. If we keep in memory the vector of residuals ε = yc −Xβγ 6=0, then we 687

can compute efficiently yc −X\jβγ 6=0\j by the update yc −X\jβγ 6=0\j = ε̃+ Xjβj, thus sampling from the 688

joint distribution with a complexity O (p). The most expensive operation in Algorithm 1 is computing the 689

numerator in step 9: XT
j

(
ε̃+ Xjβ

old
j

)
. As the column vector Xj contains the centered and scaled genotypes, 690

step 9 involves one sum of two dense vectors and a dot product of two dense vectors. However, if we store in 691

memory the mean, µj , and standard deviation σj of each column of the genotype matrix, we can express the 692

numerator in step 9 with these quantities and the j-th column of the original genotype matrix G as (with 693
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Algorithm 1: Serial Algorithm for sampling over the posterior distribution p (µ, β, ε, σε, θ). Xmarkerj

represents column of X corresponding to the column j of the vector marker. Given that marker is
shuffled before sampling the effects, this is equivalent to permuting the order of the effects to be sampled.

Data: Coefficient matrix X, measurement vector y, prior hyperparameters v0, s2
0, iterations I

Result: mean µ, effects vector β, residual vector ε, residual variance σ2
ε and variance contributed by

the marker effects, σ2
G

1 Initialize β, µ, σ2
ε , σ

2
G, πφ ;

2 effects= 1, . . . , p;
3 ε = y− µ;
4 for i← 1 to I do
5 Sample µ;
6 Shuffle (effects);
7 for j ← 1 to p do
8 βoldj = βj ;

9 β̂j,l = XT
j (ε̃+Xjβ

old
j )

Σj,l ;
10 Determine mixture component and sample the new value βj ;
11 εnew = ε+

(
βoldj − βj

)
Xj ;

12 Sample σ2
ε ;

13 Sample σ2
G;

σ2
j = (Gj − µj1)T (Gj − µj1) /(n− 1) by definition): 694

num = (Gj − µj1)T

σj

(
ε+ βoldj

(Gj − µj1)
σj

)
= (Gj − µj1)T

σj
ε+ βoldj

(Gj − µj1)
σj

T (Gj − µj1)
σj

=
GT
j

σj
ε− µj

σj

n∑
i=1

ε+ βoldj (n− 1)

(41)

and we can do the same for the ε update: 695

εnew = ε+
(
βoldj − βj

) (Gj − µj1)
σj

= ε+
(
βoldj − βj

)
σj

(Gj − µj1) (42)

for which we only have to compute the difference of a sparse vector and a dense vector, and the sum 696

of two dense vectors. Finally, to avoid computing
∑n
i=1 εnew for each marker, we assign a variable to this 697

quantity and update it after each ε update as follows (with µj =
∑n
i=1 Gi,j/n by definition): 698

n∑
i=1

εnew =
n∑
i=1

ε+
(
βoldj − βj

)
σj

(
n∑
i=1

Gi,j − nµj

)
=

n∑
i=1

ε (43)

meaning that the sum of ε elements is constant during the algorithm execution (as expected as all involved 699

vectors are zero-mean). Therefore, the only quantity to be computed per run (apart from the ε update) is the 700

dot product GT
j

σj
ε which can also be reduced, as the elements of Gj can only be either {0, 1, 2} with sequence 701

data or hard-coded genotype. We call I1 the indicator function such that εI1 =
{
εj xj = 1
0 else

and similarly 702

εI2 =
{
εj xj = 2
0 else

which then gives the dot product as GT
j

σj
ε =

∑
εI1+2

∑
εI1

σj
meaning that multiple O (n) 703

multiplications are now O (nz) sums, and also that instead of storing in memory a sparse matrix of elements 704

plus its indexes, we just need to store three ragged arrays of indexes, one for the "1" elements, a second one 705

for the "2" elements, and a third one for the "M"issing elements. Those arrays contain information for all 706

markers processed by a MPI task and are of unsigned integer type (32 bits). They store indices of the 1, 2 707

and M elements within the marker (i.e. ranging from 0 to N − 1). It corresponds to the smallest integer type 708
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that allows us to scale to hundreds of thousands or millions individuals. On top of those 3 ragged arrays 709

there are two meta-data arrays for each element type which provide the starts and lengths of the 1, 2 and M 710

elements for each marker in the ragged arrays. They are loaded in memory from reading sparse data files 711

stemming from the conversion of the original Plink .bed file and accessed in parallel by the tasks with MPI 712

I/O. 713

Even though the sparse representation is optimal in number of operations, performance may vary 714

depending on hardware as a vectorised dot product may be faster than sparse dot product. Spatially, the 715

sparse representation is optimal as long as the columns are sparse. In genotype data, even though the 716

expected number of non-zeros per column is given by the average MAF (∼ 20% in the UK Biobank data 717

described below), the distribution is long tailed (Figure S4). These columns at the tail of the distribution can 718

dominate the total size of the data structure in memory. Encoding a single column has a constant size of 719

N × 2 bits in plink’s .bed file format (referred from now on as binary format), while in sparse representation 720

a column has varying size of nz × 32 bits. If we encode the columns with less than 6% of non-zeros as sparse 721

and the rest in the original binary format, we can have a total memory occupancy of 60% the size of the 722

original genotype matrix in Plink bed format. In (Figure S4) we represent on panel (b) the distribution of the 723

proportion non-zeros per column of a genotype matrix for ∼ 4× 105 individuals and ∼ 1.5× 107 SNPs, solid 724

line representing the mean of the distribution and slashed line the median. In panel (c) we show the total 725

size of the data in memory as a function of the threshold used to split between binary and sparse format, in 726

purple we see how the binary representations dominates the total size up until the mean of the distribution, 727

after which, the size of the sparse data structure starts to dominate and ends up being around four times 728

bigger than the original .bed file size(dotted horizontal line). We found the optimal threshold to be around 729

0.064(6.4%, Figure S4). 730

Finally, we implement a vectorized dot product for genotype data stored in the raw binary format based 731

on a couple of look-up tables, by writing the dot product as: 732

(Gj − µj1)T

σj
ε =

∑
i

ψi,jεi
σj

= 1
σj

(∑
i

aiεi − µj
∑
i

biεi

) (44)

with coefficients ai and bi being 0.0, 1.0 or 2.0 depending on the value of Gi,j and following Table 2. 733

Gi,j 0 1 2 NA
2-bit 11 10 00 01
ai 0.0 1.0 2.0 0.0
bi 1.0 1.0 1.0 0.0
ψi,j 0.0− 1.0µj 1.0− 1.0µj 2.0− 1.0µj 0.0− 0.0µj

Table 2. a and b coefficient values used for building up the two look-up tables needed for the vectorization
of the dot product computation when processing binary data.

As 1 byte of plink’s .bed can contain 44 = 256 different combinations of information for 4 individuals, we 734

can setup two lookup tables with 256× 4 entries each that will give for any byte the corresponding 4 ai and 735

bi coefficients, hence allowing for vectorisation of Eq. 44 by performing aiεi and biεi and accumulating them 736

for 4 individuals at once. Additionally, we use OpenMP to parallelize the loop over the marker’s bytes. This 737

greatly extends previously proposed sparse residual updating schemes and also facilitates the synchronous, 738

fully parallel bulk-synchronous Gibbs sampling scheme that we describe in the next section below. 739

Bulk-synchronous parallel Hogwild Gibbs sampling with sparse data 740

Bulk-synchronous parallel Hogwild Gibbs sampling [49] assigns block of columns from X to workers that 741

then sample from f
(
βj |β\j ,y

)
for each of the columns in their block. Workers can communicate between 742

each other exchanging the current values of the variables they are sampling, or the whole state of variables 743

for workers in particular. If we perform global synchronisation steps the algorithm is called Bulk-synchronous 744

parallel Hogwild (BSP), if on the other hand, workers exchange messages without a global synchronisation, 745

the algorithm is called Asynchronous parallel Hogwild (ASP) [50]. 746
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747

Algorithm 2: Hogwild Gibbs with ’∆ε-exchange’.
components :Define K parallel workers

1 Define global variables µ, β, ε,π, σ2
g , σ

2
e ;

2 Initialize variables;
3 for i← 1 to I do
4 Update µ;
5 Update β in parallel using DEpsX(K);
6 Update hyperparameters π, σ2

g , σ
2
e ;

748

749

We propose Algorithm 2, which is a modification of a BSP algorithm where we sample the individual 750

coefficients in parallel conditioned on the hyperparameters. We assign workers (MPI tasks) subsets of 751

coefficients to sample, and each worker performs local Gibbs steps until a global synchronisation is triggered. 752

This global synchronisation happens many times in each iteration, during the phase in which we sample the 753

individual coefficients βj . For this algorithm, we developed a synchronisation scheme called ’∆ε-exchange’as 754

outlined in Algorithm 3. In this scheme each individual worker is assigned a block of columns from X and is 755

in charge of sampling from f
(
βj |β\j ,y

)
for each of the columns in its block. We add an additional parameter 756

for the synchronisation rate Ω. After Ω columns have been sampled in all workers (around 5-10 in practice to 757

avoid divergence occurring), a synchronisation move is executed. 758

The purpose of the synchronisation move is to update all of the workers’ state based on the coefficients 759

sampled from t = 1 until t = Ω in all workers. The sufficient statistic for this state is contained in the residual 760

vector ε. Thus from t = 1 until t = ω each worker computes f (βj |εt=1) and keeps track of its local change in 761

ε which we denote ∆ε =
∑Ω

1 Xωβω for ω in the set of indexes for the current batch of variables in the workers 762

list of variables. For the synchronisation step, we use the MPI_Allreduce collective, meaning that each task 763

will receive the sum of locally accumulated ∆ε from all tasks to update its εt=1 =
∑w ∆εw for w = (1...W ) 764

workers. With the new εt=1, the worker proceeds to sample the next Ω-sized batch of columns from its set of 765

columns. This synchronisation scheme allows workers to exchange state information in compact form, as the 766

total size of memory occupied in total by the messages is O (NW ). 767

768

Algorithm 3: ’∆ε-exchange’for synchronising changes in backfitted residuals in our BSP Gibbs sampling
algorithm.

1 DEpsX (K)
components : Set of K workers, each one βk, Set of K messages, each one ∆εK , K sets of ∼ p

K
columns, each set of columns assigned to a worker.

2 foreach worker βk do
3 εk = ε;
4 ∆εk = 0;
5 foreach column i in a subset of size Ω of the columns assigned to βk do
6 βoldj =βi;
7 draw βi from f

(
βi | ε, σ2

ε , σ
2
G, π

)
;

8 ∆εk=∆εk-Xi

(
βi − βoldj

)
;

9 Wait until all workers are finished processing their Ω sets;
10 ε = ε+

∑
k ∆εk ;

769

770

Previous results point to BSP Gibbs sampling for a multivariate Gaussian converging if the covariance
matrix is strictly diagonal-dominant [50] with zero covariance of the markers split across workers. The risk
for genomic data, is that two markers in LD get updated at the same time in parallel, double counting their
effects, and leading to ε being mis-estimated after a synchronization has occurred. Suppose we have one
fixed causal marker and two other markers i and j that are assigned to different MPI tasks. Suppose that
the Pearson correlation between the causal marker and marker i or j is ρi and ρj , respectively. Finally,
let ρ denote the correlation between the markers i and j. For simplicity in this example suppose that the
inclusion probability of the causal marker is q and we make an assumption that the inclusion probability of
the marker i is then P (βi 6= 0) = qρi and for marker j it is P (βj 6= 0) = qρj , that means that the inclusion
probability is proportional to the correlation between causal and other markers. In reality, the effect size
estimate is actually proportional to the causal effect: β̂i = ρiβcausal and the function between posterior
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inclusion probability and causal effect size q(βcausal) is not linear for βcausal ≥ 0 as described in Eq.(12) and
thus we cannot assume that P (βi 6= 0) = qρi in practice. In the case of parallelising the markers between two
tasks we are interested in the probability that two markers from different tasks will absorb the effect of a
same causal variant. Thus, we are interested in the probability P (βi 6= 0, βj 6= 0|i, j ∈ U), where U is the set
of markers that are updated simultaneously in two different tasks. Thus, we can write:

P (βi 6= 0, βj 6= 0|i, j ∈ U) = P (βi 6= 0)P (βj 6= 0) = q2ρiρj .

We see that the probability of making a mistake is dependant on the product ρiρj . The correlation matrix 771

R of the three markers 772

R =

 1 ρi ρj
ρi 1 ρ
ρj ρ 1


has to be positive semi-definite and thus we can examine what are the possible values for the product

ρiρj given that we know ρ. Note that the value of ρ can be controlled by providing some blocking mechanism
that would assign SNPs to the tasks so that the correlation for the markers from different tasks would be
limited to ρ and this is what we advocate here, placing contiguous blocks of markers into different tasks,
so as to maximise the LD within a block (MPI task), but minimise the LD across blocks. The maximum
possible values for the product follow a linear function that depends on ρ as

max
ρi,ρj ,ρ=ρ̃

= 0.5 + 0.5ρ̃.

To get better estimates for the constraints for the product ρiρj then we need to make further assumptions
about the distribution of ρi or ρj . Therefore, we can say that P (βi 6= 0, βj 6= 0|i, j ∈ U) ≤ q2(0.5 + 0.5ρ). This
result and inequality only holds per sampled pair (i, j). We then multiply this result with the probability of
sampling the pair (i, j) that both have correlations ρi, ρj > 0. Denoting a set of markers that have a positive
correlation with one specific causal marker as the causal radius C, The probability of sampling any pair (i, j)
is

P (i, j ∈ U) = 1
T 2 ,

where T is the number of markers per one task. The probability of pair (i, j) belonging to C is P (i, j ∈
C) = c(<< 1), some reasonable values could be proposed or estimated for this (for example, c =
(#(markers−in−LD)

2T )2). Combining the results together we get that the probability of making a mistake
at one update of a pair (i, j):

P (βi 6= 0, βj 6= 0) = P (βi 6= 0, βj 6= 0|(i, j) ∈ U ; (i, j) ∈ C)P ((i, j) ∈ U)P ((i, j) ∈ C) =

P (βi 6= 0, βj 6= 0|(i, j) ∈ U) c
T 2 ≤ q

2(0.5 + 0.5ρ) c
T 2 .

This result goes for one fixed causal marker and it also represents the expected number of mistakes per
sampled pair (i, j) for one causal marker. If we want to find the expected number of mistakes per sampled
pair, we should sum across the P causal markers:

Errors ≤
P∑
i=1

q2
i (0.5 + 0.5ρ) c

T 2 = (0.5 + 0.5ρ) c
T 2

P∑
i=1

q2
i ≤ (0.5 + 0.5ρ)cP

T 2

To provide some intuition, we can think of an extreme scenario and assume that there are 100,000 variants 773

in the SNP marker data that would enter the model as they are in LD with underlying causal variants, that 774

each of these variants has posterior inclusion probability of 1, and that for each variant there are two blocks 775

with 30,000 markers in total of which 100 markers have LD = 1 with the causal variant, and that both blocks 776

contain 30,000 markers. Placing these values into what we derive above and sampling over 10,000 iterations 777

leads to probability of an error ∼ 0.1 throughout the sampling for this extreme example. Having derived a 778

stable highly parallel Gibbs sampling algorithm for large-scale genomics data, we then performed exhaustive 779

empirical validation of our algorithm in simulation study as described below. 780
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Implementation and processing setup 781

We implement algorithms 2 and 3 in C++ as a pure CPU MPI + OpenMP hybrid solution. All data 782

structures were properly aligned in memory to assist vectorization and assembly code was examined to ensure 783

that the code was properly vectorized where expected. We utilize the scientific libraries eigen and boost (see 784

Code Availability) and we profiled and benchmarked the code with Intel performance analysis tools such as 785

Advisor and Ampflier. Current implementation requires to be compiled with Intel compiler on an architecture 786

supporting at least AVX2 although support for AVX512 is recommended for performance. The code is freely 787

available from our Github repository and we also provide a statically compiled binary (see Code Availability). 788

All the results were generated on the cluster Helvetios from EPFL (see Code Availability) using 10 compute 789

nodes and setting 8 MPI tasks per node and dedicating 4 (physical) cores to each task. 10 is the minimal 790

number of nodes that was required to hold all the data in memory in its mixed-representation. 791

Simulation study 792

Our theory suggests that there will be increased variance of the regression coefficient estimates and, as a result, 793

an inflated estimate of the phenotypic variance attributable to SNP markers under high multicollinearity 794

for both mixed linear model approaches and a Dirac spike and slab mixture model. To demonstrate this 795

visually, we conducted a simulation study where for each of 50 replicates, we simulated 50 independent 796

genomic regions, each containing two SNP markers. In each simulation replicate, we simulated values for 797

5,000 individuals at each of the 50 SNP marker pairs, by first simulating from a standard multivariate normal 798

distribution with correlation set to either 0 or 0.99. From this, we obtained the integral from − inf to q of 799

the probability density function, where q is the z-score of the values obtained for each individual from the 800

multivariate normal. From these integrals, we then made two draws from the inverse of the cumulative density 801

function of the binomial distribution to obtain the marker value for each individual, with frequency 0.3. This 802

gave marker values (0, 1, or 2), with the pairs of SNPs having either all LD = 0, or all LD = 0.99. For each 803

of the 50 pairs of SNPs, we assigned effect size 0 to the first marker and 0.1 to the second marker. We then 804

scaled the SNP markers to zero mean and unit variance and multiplied the markers by the effect sizes to 805

obtain the genetic values for the 5,000 individuals, with variance 0.5. We then simulated the environmental 806

component of the phenotype from a normal distribution with zero mean and variance 0.5 and then created a 807

phenotype as the sum of the genetic values and the environmental values, with zero mean and unit variance. 808

We then analysed these 50 data sets using different methods of single-marker OLS regression (OLS), 809

mixed-linear model association (MLMA), ridge regression (Ridge), and a Dirac spike and slab mixture of 810

regressions model (BayesR), all of which are described above. For the frequentist approaches, we directly 811

solved the estimation equations, scaling the SNP markers to have zero mean and unit variance. For BayesR 812

we sampled the effects for 5000 iterations, with burn-in period of 2000 iterations to obtain the posterior mean 813

effect sizes, again scaling the SNP markers to zero mean and unit variance. We repeated these analyses many 814

times, each time fixing the estimated phenotypic variance attributable to the markers σ2
G to be a different 815

value. We selected (2, 1, 0.5, 0.1, and 0.01) and fixed the residual variance σ2
ε to be 0.5, to give different 816

lambda values λ = σ2
ε

σ2
G

, giving λ = 0.25, 0.5, 1, 5, and 50. Our aim here was to explore the pattern of effect 817

sizes that we obtain under these λ values. So first, we plotted the effect sizes obtained for each of the 50 818

SNP pairs obtained across the 50 simulation replicates in Figure S1, to show the differences in the variance 819

of the estimates obtained across approaches when the pairs of SNP markers were orthogonal (LD=0), or 820

collinear (LD=0.99), under different lambda values. Second, we then plot the distribution of the sum of 821

the squared regression coefficients in Figure 1d across approaches, when the pairs of SNP markers were 822

orthogonal (LD=0), or collinear (LD=0.99), under different lambda values, where the expectation is 0.5 823

(sum of the 50 squared 0.1 SD effect sizes). This simulation confirmed, that regression coefficients under 824

all approaches have higher variance under multicollinearity, resulting in inflation of the sum of the squared 825

coefficient estimates for all approaches when the variation attributable to SNP markers is overestimated, 826

resulting in a reduction in the lambda values. 827

We then further explored the performance of the MLMA and BayesR models under multicollnearity to (i) 828

better understand the interplay between the fixed GLS estimate obtained and the random marker effects, and 829

(ii) to better understand how the prior of the BayesR model changes with lambda and how this constrains the 830

inclusion probabilities of correlated markers. We first examined the influence of varying lambda and varying 831

the collinearity of markers on the variation of the effect size estimates obtained from the Henderson’s mixed 832

model equations, where one focal marker is estimated as fixed, and a further five markers are estimated as 833

random, with LD between the markers estimated as fixed and random. To do this, we simulated five markers 834

in the same manner as described above that were either (i) entirely orthogonal with LD = 0, or (ii) had 835
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LD = 0.99 among the first three markers, with the final two markers having LD = 0 with all others. We 836

assigned effect sizes to the five markers as beta = (0.25, 0, 0, 0.25, 0.25), multiplied these effect sizes by the 837

simulated marker values scaled to zero mean and unit variance to create the genetic values, and then added 838

an environmental component simulated from a normal distribution with mean zero and variance 1 minus the 839

variance of the genetic values (0.1875) to give a phenotype with zero mean and unit variance. We directly 840

solved the Henderson’s mixed model equations, fixing the lambda value at different levels (the appropriate 841

lambda from theory assuming orthogonal covariate would = (1− 0.1875)/0.1875 = 4.333). We find that even 842

with high shrinkage, a lambda value of almost 20 times greater than the theoretical orthogonal expectation is 843

required to produce effect sizes under collinearity, with similar variance to those obtained under orthogonality 844

(Figure S1). 845

For BayesR, we first explored the density of the posterior distribution by simulating draws from the prior 846

as we change the variance attributable to the SNP markers. Figure S1c shows these densities, revealing how 847

the prior becomes strongly centred on zero and almost exponentially distributed as the variance becomes 848

small. This is in contrast to the almost flat prior observed with high variance, which will do little to constrain 849

effect size estimates toward zero. We then conducted 1000 simulation replicates of paired SNP markers for 10 850

different scenarios of variance attributable to the SNP markers of 0.01, 0.05, 0.1, 0.2, and 0.5, for pairs of SNPs 851

with correlation of either 0 or 0.99. For each of these 10,000 data sets we simulate a pair of SNPs for 5000 852

individuals, assuming error variance of 0.5, effect size for the first marker of 0.01 SD and then we simulated a 853

sequence of 1000 different effect sizes from -0.05 to 0.05. Of these 10 million phenotypes and pairs of SNPs 854

obtained, we then determine the posterior inclusion probability of the second marker, given that the first 855

marker is in the model, with the effect size correctly estimated as 0.01, from the BayesR model derivations 856

presented above. The lines presented in Figure S1d go through the mean posterior inclusion probability of the 857

second SNP marker across the 1000 simulation replicates, for each of the 1000 different effect sizes from -0.05 858

to 0.05 for marker 2, with a different colour for each scenario of the variance attributable to the SNP markers. 859

The plot shows a reduction in the posterior inclusion probability of the second SNP marker as the variance 860

attributable to the SNP markers decreases under multicollinearity. Thus, if the hyperparameter estimates of 861

the variance contributed by markers is kept small, by having different hyperparameters for different groups of 862

markers, then the BayesR model acts to constrain the inclusion of any additional correlated markers in the 863

model. 864

Having confirmed our theory, we then conducted a further simulation study to replicate these observations 865

using real genomic data. We randomly selected 50,000 individuals from the UK Biobank study (see below) and 866

used the imputed SNP data from chromosome 22 as supplied in the data release. We simulated phenotypes 867

under contrasting generative models: 868

• We chose markers of high LD with other SNPs to be the causal variants and we assigned effects 869

proportional to the LD score of those markers and their minor allele frequency. To do this, we first 870

grouped the SNPs using the clumping procedure in Plink (see Code Availability) based on 1 - MAF, 871

selecting the highest frequency variants and removing any variants with LD < 0.01, to obtain 4988 872

independent SNPs. For these 4988 SNPs we calculated the LD score of the markers. We then assigned 873

effect sizes to these selected SNPs, drawing them from a single normal distribution with variance 874

∼ LD_score1MAF−1. We multiplied these effect sizes by the simulated marker values scaled to zero 875

mean and unit variance to create the genetic values with variance 0.5, and then added an environmental 876

component simulated from a normal distribution with mean zero and variance 1 minus the variance of 877

the genetic values to give a phenotype with zero mean and unit variance. 878

• We then took the same 4988 SNPs but assigned effect sizes to the markers at random from a normal 879

distribution with zero mean and variance 0.5/4988. We multiplied these effect sizes by the simulated 880

marker values scaled to zero mean and unit variance to create the genetic values with variance 0.5, 881

and then added an environmental component simulated from a normal distribution with mean zero 882

and variance 1 minus the variance of the genetic values to give a phenotype with zero mean and unit 883

variance. 884

• We then sampled randomly 4988 evenly spaced markers as causal variants, but assigned effect sizes 885

proportional to the LD score and minor allele frequency of the markers as described above. We 886

multiplied these effect sizes by the simulated marker values scaled to zero mean and unit variance to 887

create the genetic values with variance 0.6, and then added an environmental component simulated 888

from a normal distribution with mean zero and variance 1 minus the variance of the genetic values to 889

give a phenotype with zero mean and unit variance. 890
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• Finally, we then sampled randomly 4988 evenly spaced markers as causal variants and randomly assigned 891

the effect sizes from a normal distribution with zero mean and variance 0.5/4988. We multiplied these 892

effect sizes by the simulated marker values scaled to zero mean and unit variance to create the genetic 893

values with variance 0.5, and then added an environmental component simulated from a normal 894

distribution with mean zero and variance 1 minus the variance of the genetic values to give a phenotype 895

with zero mean and unit variance. 896

We analysed 50 simulation replicates of each of the four scenarios with our BayesR software, our BayesRR 897

software with 20 MAF-LD groups (deciles of MAF, each split into two groups based on median LD score 898

within each MAF decile), and a MLMA implemented in software GCTA (see Code Availability). For the 899

Bayesian methods we ran three chains with different starting values for each of the 200 simulation replicates 900

for 3000 iterations, removing the first 1500 iterations as burn-in and taking the posterior mean across the 901

three chains. In Figure 1a we plot the distribution of the posterior mean for BayesR and BayesRR, and 902

the MLMA point estimates, of the proportion of variance attributable to the SNP markers minus the true 903

simulated value obtained across the 50 simulation replicates for each of the four scenarios, showing inflation 904

of the MLMA estimates when selecting high LD variants, and inflation of the BayesR estimates with high LD 905

and random effect size estimates. In contrast, estimates obtained from BayesRR were unbiased across all 906

scenarios. By simulating an effect size MAF relationship ∼ LD_score1MAF−1, we are assigning the smallest 907

absolute effect size values to the most common SNPs, which appears to limit the inflation of the estimates 908

for BayesR, when selecting high LD SNPs as causal variants (Figure 1a). We then examined the effect 909

size estimates obtained from these three approaches across the MAF spectrum under the second scenario 910

of high LD causal variant selection, but random effect size allocation, to show using z-scores calculated 911

as the estimated effects minus the simulated effects, divided by the SD of the simulated effects. We find 912

overestimation of common variant effect sizes under BayesR, and dramatic inflation of effect size estimates 913

under MLMA showing poor recovery of the underlying effect size distribution (Figure 1b). Grouping effects 914

by MAF and LD in a BayesRR model resolved this overestimation issue (Figure 1b). 915

We then explore the ability of the model to recover annotation-specific variation using the same set of 916

50,000 randomly selected UK Biobank individuals and imputed genotype data for chromosome 22 grouped by 917

chromatin state annotations (15-state ChromHMM model) from the epigenome of primary mononuclear cells 918

from peripheral blood (E062) of the Epigenome Roadmap Project [20]. We simulated the genetic architecture 919

as follows : 920

• We first mapped SNPs to active and inactive chromatin states from the mnemonic bed files for E062 921

(see Code availability). 37,187 SNPs mapped to active chromatin states including transcription start 922

site (TSS) and their flanking regions, genic and other enhancers, untranslated transcribed regions 923

(UTR) and actively transcribed regions and zinc finger genes states. 27,224 SNPs mapped to inactive 924

states including heterochromatin, bivalent/poised TSS and their flanking regions, bivalent enhancers 925

and repressed polycomb states. The remaining 47,018 SNPs were grouped and labelled as Other SNPs 926

(Figure 1d). 927

• To simulate enrichment in both chromatin states, we randomly sampled 2000 SNPs as causal variants 928

from variants mapped to active chromatin states and another 2000 SNPs from variants mapped to 929

inactive chromatin states. We then assigned effect sizes to these 4000 selected SNPs, drawing them 930

from a normal distribution with zero mean and variance 0.35/2000 for active states and 0.15/2000 for 931

inactive states. 932

• We multiplied annotation-specific effect sizes by the simulated marker values scaled to zero mean and 933

unit variance to create the annotation-specific genetic values with variance 0.35 for active states, 0.15 934

for inactive states and 0 for other SNPs. We finally added an environmental component simulated from 935

a normal distribution with mean zero and variance 1 minus 0.5 (the sum of the genetic values) to give a 936

phenotype with zero mean and unit variance. 937

We analyzed 20 simulation replicates with our BayesRR software specfiying annotations (active states, 938

inactive states and other SNPs) with 2 LD groups based on median LD score within each annotation. We 939

compared our software to boltREML [22] and RHEmc [51] both multi-variance component methods that also 940

use individual-level data but provide single heritability estimates per genetic component. For BayesRR we 941

ran three chains with different starting values for each of the 20 simulations replicates for 3000 iterations, 942

removing the first 1000 iterations as burn-in and taking the posterior mean across the three chains. We then 943
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performed the same analysis but randomly assigning SNPs to each annotation resulting in mis-specification 944

of the underlying genetic architecture. In Figure 1d, we plot the estimated sum of the squared regression 945

coefficients that is evenly split across the three annotations when misspecifying the underlying genetic 946

architecture (labelled : Misspecification of groups) and shows enrichment when we properly assign SNPs 947

to annotation (labelled : Multiple group enrichment). We find that BayesRR performs as boltREML and 948

RHEmc, with RHEmc estimates showing higher variability. 949

We also further examined the ability of BayesRR to recover effect sizes compared to our BayesR software 950

by comparing 10 simulations of 5 chains with different starting values where each simulation has two groups in 951

high LD with an interdigitated structure where one in two SNPs is assigned to group 1 (Figure S2). We then 952

simulated phenotypes as previously described, randomly selecting 1000 causal variants in group 1 only, using 953

20,000 randomly selected UK Biobank individuals and imputed genotype data for chromosome 2 (with MAF 954

> 0.05). In Figure S2, we compare the proportion of markers entering the model in group 1 and group 2 at 955

different posterior inclusion probability thresholds. Annotation-specific estimates for BayesR are calculated 956

post-analysis for each group. We also compare the correlation of estimated genetic values with the truth when 957

using BayesRR and BayesR. For this, we conducted estimation of marker effects in an independent data set 958

to compare prediction accuracy. We simulated 10 new phenotypes and computed the genetic value ĝ = Xβ̂ 959

where X is the genotype matrix and β̂ is a vector of estimated marker effects for each individual. Figure S2 960

shows we improve the power of BayesR to recover effect sizes and infer underlying genetic architectures. 961

Next, we then explored the influence of increasing parallelism in our algorithm. We used the simulated 962

data described above for the randomly sampled 50,000 UK Biobank individuals with imputed genotype 963

data for chromosome 22, where we sampled randomly 4988 evenly spaced markers as causal variants and 964

randomly assigned the effect sizes from a normal distribution with zero mean and variance 0.6/4988 (the 965

fourth scenario). For each of the 50 simulation replicates, we compared the three chains obtained by running 966

the BayesRR model (with 20 MAF-LD groups) in serial, with a single MPI task and synchronisation rate of 1 967

(residual updating after sampling each SNP), to three chains obtained by increasing the number of MPI tasks 968

to 4 and then to 8, with synchronisation rates of 10 and 20 sampling steps before residual updating. For 969

each simulation, we ran three chains of our BayesRR model with different starting values for 3000 iterations. 970

Like with all MCMC chains of regression models, convergence and sampling properties will be problem 971

specific and dependent upon the LD of the markers, LD among the causal variants, the phenotypic variation 972

attributable to the SNP markers across the MAF and LD spectrum, the study sample size, the degree of data 973

parallelism per total marker number, and the synchronisation rate. Thus, the aim here is to simply show a 974

series of diagnostic tests that can be utilized to explore the properties of the posterior to highlight how the 975

different metrics can be used to identify convergence issues. We use the distribution, across simulations, of 976

the proportion of effective samples obtained for the hyperparameter estimate of the proportion of phenotypic 977

variance attributable to the markers of each group. This shows that for all ranges of parallelism, we achieve 978

more effective samples for low MAF and low LD variants. As high MAF SNPs are interchangeable in the 979

model to a large degree, their entry and exit from the model is correlated across iterations, and thus this is 980

entirely expected and is actually a consequence of the model mixing. With high synchronisation rates, where 981

many marker updates occur before residual updating by message passing a reduction in effective sample 982

sizes occurs. We also use the distribution of the Gelman-Rubin test statistic for the three chains, a general 983

metric to monitor convergence that compares within- and among-chain variance, as the number of iterations 984

increases. Finally, a Geweke statistic value can be used to test the equality of the means of the first and 985

last part of the Markov chains. We present the results of this simulation in Figure S3 also including the 986

distribution of z-scores of the posterior distribution of the phenotypic variance attributable to the markers 987

for each MAF-LD group from the simulated values, which show stability of the estimates obtained with 988

increasing data parallelism (tasks), but that a very high synchronisation rate with high parallelism can lead 989

to poor convergence rates, meaning that the chains would have to be run for longer (Figure S3). 990

Finally, we investigated the importance of controlling for multicollinearity for the control of population 991

genetic and data structure effects. Consider, two populations and a single focal SNP marker that has frequency 992

p1 in population 1 and frequency p2 in population 2. The difference in allele frequency between the two 993

populations is δ = p1 − p2 and the average allele frequency across all the data is p̂ = 0.5(p1 + p2). We define 994

FST as FST = 0.5(p1+p2)2

p̂(1−p̂ and note that under this definition, FST scales with allele frequency, with common 995

variants showing higher average FST than rare variants. The populations may have different mean value for 996

a given trait with the difference ȳ1 − ȳ2 = 2β(p1 − p2) + ∆, with β the effect size of the marker and ∆ the 997

non-genetic environmental contribution to the phenotypic difference. Eq. 2.3 of the Supplementary Note 998

of [52] gives the expected bias of an effect size from a linear regression as β̂ = β +
1
2 ∆(p1−p2)

2p̄(1−p̄(1+ 1
2FST ) , with β the 999
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true effect size and we note that the bias term c =
1
2 ∆(p1−p2)

2p̄(1−p̄(1+ 1
2FST ) is proportional to the allele frequency. In 1000

principle, a MLMA approach will control for bias with correlated markers (either local or long-range LD) 1001

fitted as random when testing for the effects of a focal SNP. For two markers, X1andX2 in LD correlation 1002

ρX1,X2 , with β2 = 0 we can express the MLMA fixed effect solution as a partial regression coefficient of the 1003

phenotype regressed onto the focal SNP after adjusting for X2 estimated as uX2 = XT
2 y

XT
2 X2+λI . Following our 1004

derivation above for a shrinkage estimator of a partial regression coefficient the effect size of X1 is estimated 1005

as β̂y,X1|X2 = N
XT

1 X1
× ρy,X1 −

ρX1,X2
1
N X2y

1−ρX1,X2
and in this two-SNP example the bias is accounted for in the term 1006

ρX1,X2
1
N X2y

1−ρX1,X2
when the fixed effect is estimated. Multicollinearity acts to increase the σG term of λ, reducing 1007

the denominator XT
2 X2 +λI in the estimation of uX2 , and increasing the variance of the estimates of common 1008

markers in high LD, those with the highest average FST and the greatest potential bias from population 1009

stratification. 1010

To confirm this, we conducted a simulation study using real genomic data from chromosome 22 where 1011

10,000 individuals were selected from 2 UK Biobank assessment centres (Glasgow and Croydon). First, 1012

causal variants were allocated to 5000 high-LD SNPs with effect sizes simulated from a normal distribution 1013

with variance proportional to the FST among the two populations at each SNP. Second, we selected the 1014

same high-LD SNPs as the causal variants, but simulated effect sizes to have correlation 0.5 with the allele 1015

frequency differences of the SNPs among the two populations, and thus not only is the effect size proportional 1016

to the FST , but there is also directional differentiation (trait increasing loci tend to be those with higher 1017

allele frequency in Croydon, trait decreasing alleles have lower frequency in Croydon). For each of these two 1018

scenarios, we simulated 50 replicate phenotypes where the phenotypic variance attributable to the causal 1019

SNPs is 0.5, there is a phenotypic difference where Croydon individuals have a phenotype that is 0.5 SD 1020

higher than Glasgow individuals (contributing variance 0.05), and residual variance was simulated from a 1021

normal with variance 0.45, to give a phenotype with mean of zero and variance of 1. The data were then 1022

analysed using a mixed-linear model association (MLMA) and a grouped Bayesian dirac spike and slab 1023

models (BayesRR). In the analysis, we either adjusted the phenotype by the first 20 PCs of the genetic data 1024

used in the simulation study, or we did not adjust the phenotype for the PCs, to examine the effects of this 1025

common methods of population stratification control. In a two-population scenario the leading eigenvector 1026

encapsulates the allele frequency differentiation between the populations and thus the expectation is that 1027

this should adjust for these differences when estimating the marker associations. The results are presented 1028

in Figure S5, where we find that an MLMA approach overestimates the variance attributable to the SNPs 1029

under all scenarios, both with and without adjustment for PCs. BayesRR returns accurate estimates when 1030

the variance of the marker effects is proportional to FST and underestimates the variance when there is a 1031

directional associations, with this underestimation being less severe with PC adjustment. 1032

UK Biobank data 1033

We restricted our discovery analysis of the UK Biobank to a sample of European-ancestry individuals. To 1034

infer ancestry, we used both self-reported ethnic background (UK Biobank data code 21000-0) selecting 1035

coding 1 and genetic ethnicity (UK Biobank data code 22006-0) selecting coding 1. We also took the 488,377 1036

genotyped participants and projected them onto the first two genotypic principal components (PC) calculated 1037

from 2,504 individuals of the 1,000 Genomes project with known ancestries. Using the obtained PC loadings, 1038

we then assigned each participant to the closest population in the 1000 Genomes data: European, African, 1039

East-Asian, South-Asian or Admixed, selecting individuals with PC1 projection < absolute value 4 and PC 2 1040

projection < absolute value 3. This gave a sample size of 456,426 individuals. 1041

To facilitate contrasting the genetic basis of different phenotypes, we then removed closely related 1042

individuals as identified in the UK Biobank data release. While the BayesRR model can accommodate 1043

relatedness similar to mixed linear models, we wished to simply compare phenotypes at markers that enter 1044

the model due to LD with underlying causal variants. Relatedness leads to the addition of markers within 1045

the model to capture the phenotypic covariance of closely related individuals, and this will vary across 1046

traits in accordance with the genetic and environmental covariance for each phenotype. For these unrelated 1047

individuals, we used the imputed autosomal genotype data of the UK Biobank provided as part of the data 1048

release. We used the genotype probabilities to hard-call the genotypes for variants with an imputation quality 1049

score above 0.3. The hard-call-threshold was 0.1, setting the genotypes with probability ≤ 0.9 as missing. 1050

From the good quality markers (with missingness less than 5% and p-value for Hardy-Weinberg test larger 1051

than 10-6, as determined in the set of unrelated Europeans) were selected those with minor allele frequency 1052

(MAF) > 0.0002 and rs identifier, in the set of European-ancestry participants, providing a data set 9,144,511 1053
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SNPs, short indels and large structural variants. From this we took the overlap with the Estonian Genome 1054

centre data to give a final set of 8,430,446 markers. From the UK Biobank European data set, samples 1055

were excluded if in the UKB quality control procedures they (i) were identified as extreme heterozygosity or 1056

missing genotype outliers; (ii) had a genetically inferred gender that did not match the self-reported gender; 1057

(iii) were identified to have putative sex chromosome aneuploidy; (iv) were excluded from kinship inference. 1058

Information on individuals who had withdrawn their consent for their data to be used was also removed. 1059

These filters resulted in a data set with 382,466 individuals. 1060

We then selected the recorded measures of BMI (UK Biobank variable identifier 21001-0.0) and height 1061

(variable identifier 50-0.0) collected during initial assessment visit (year 2006-2010). BMI and height 1062

phenotypes 6 standard deviations (SD) away from the mean were not included in the analyses. For Type 1063

2 Diabetes (T2D) in UKB we selected as cases very broadly as individuals who have main or secondary 1064

diagnosis (UKB fields 41202-0.0 - 41202-0.379 and 41204-0.0 - 41204-0.434) of “non-insulin-dependent diabetes 1065

mellitus” (ICD 10 code E11) or self-reported non-cancer illness (UKB field 20002-0.0 - 20002-2.28) “type 2 1066

diabetes” (code 1223). From respondents self-reporting just “diabetes” (code 1220), we selected as cases those 1067

who did not self-report “type 1 diabetes” (code 1222) and had no Type 1 Diabetes (ICD code E10) diagnosis. 1068

Individuals with self-reported “diabetes” and “type 1 diabetes”/E10 were also left out from controls. We 1069

also defined coronary artery disease (CAD) cases broadly as participants with one of the following primary 1070

or secondary diagnoses or cause of death: ICD 10 codes I20 to I28; self-reported angina (code 1074) or 1071

self-reported heart attack/myocardial infarction (code 1075). Participants with self-reported “heart/cardiac 1072

problem” (code 1066) were not included as cases but also excluded from controls. This gave a sample size 1073

for each trait of 25,773 T2D cases and 359,730 T2D controls, 39,766 CAD cases and 344,054 CAD controls, 1074

382,402 measures of height and 381,899 measures of BMI. 1075

All phenotypes were adjusted for age of attending assessment centre (UKB code 21003-0.0, factor with 1076

levels for each age), year of birth (UKB field 34-0.0, factor with levels for each year), UK Biobank recruitment 1077

centre (UKB field 54-0.0, factor with levels for each centre), Genotype batch (UKB field 22000, factor with 1078

levels for each batch) and final 20 leading principal components of 1.2 million LD clumped markers from the 1079

8,430,446 markers included in the analysis, calculated using flashPCA (see Code Availability). The residuals 1080

were then converted to z-scores with 0 mean and variance of 1. Similarly as for relatedness, population 1081

stratification is also accounted for within the BayesRR model through the addition of a background of marker 1082

effects entering the model, however we also wished to account for this in the standard manner by adjusting 1083

for the leading 20 PCs of the SNP data to get as close as possible to the inclusion of markers in the model 1084

that reflect LD with the causal variants. We note that as with any association model, while we take steps 1085

to adjust for known spatial (UKB centre), batch, and ancestry effects, and that the effects of each SNP 1086

is estimated jointly (and thus conditionally on the effects of all the other SNPs) environmentally induced 1087

covariance between SNP markers and a phenotype is still possible. 1088

We partition SNP markers into 7 location annotations using the knownGene table from the UCSC 1089

browser data (see Code Availability), preferentially assigned SNPs to coding (exonic) regions first, then in 1090

the remaining SNPs we preferentially assigned them to intronic regions, then to 1kb upstream regions, then 1091

to 1-10kb regions, then to 10-500kb regions, then to 500-1Mb regions. Remaining SNPs were grouped in a 1092

category labelled "others" and also included in the model so that variance is partitioned relative to these also. 1093

Thus, we assigned SNPs to their closest upstream region, for example if a SNP is 1kb upstream of gene X, but 1094

also 10-500kb upstream of gene Y and 5kb downstream for gene Z, then it was assigned to be a 1kb region 1095

SNP. This means that SNPs 10-500kb and 500kb-1Mb upstream are distal from any known nearby genes. We 1096

further partition upstream regions to experimentally validated promoters, transcription factor binding sites 1097

(tfbs) and enhancers (enh) using the HACER, snp2tfbs databases (see Code Availability). All SNP markers 1098

assigned to 1kb regions map to promoters; 1-10kb SNPs, 10-500kb SNPs, 500kb-1Mb SNPs are split into 1099

enh, tfbs and others (un-mapped SNPs) extending the model to 13 annotation groups. Within each of these 1100

annotations, we have three minor allele frequency groups (MAF<0.01, 0.01>MAF>0.05, and MAF>0.05), 1101

and then each MAF group is further split into 2 based on median LD score. This gives 78 non-overlapping 1102

groups for which our BayesRR-RC model jointly estimates the phenotypic variation attributable to, and the 1103

SNP marker effects within, each group. For each of the 78 groups, SNPs were modelled using five mixture 1104

groups with variance equal to the phenotypic variance attributable to the group multiplied by constants 1105

(mixture 0 = 0, mixture 1 = 0.0001, 2 = 0.001, 3 = 0.01, 4 = 0.1). We conducted a series of convergence 1106

diagnostic analyses of the posterior distributions to ensure we obtained estimates from a converged set of 1107

four Gibbs chains, each run for 6,000 iterations with a thin of 5 for each trait (Figure S6, S7, S8, S9). 1108
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Estonian Genome Centre data 1109

For the Estonian Genome Centre Data, 32,594 individuals were genotyped on Illumina Global Screening 1110

(GSA) arrays and we imputed the data set to an Estonian reference, created from the whole genome sequence 1111

data of 2,244 participants [53]. From 11,130,313 markers with imputation quality score > 0.3, we selected 1112

SNPs that overlapped with the UK Biobank, resulting in a set of 8,433,421 markers. 1113

We selected height and BMI measures from the Estonian Genome Centre data, in 32,594 individuals 1114

genotyped on GSA array and converted them to sex-specific z-scores after applying the same outlier removal 1115

procedure as in UKB and adjusting for the age at agreement. Prevalent cases of CAD and T2D in the 1116

Estonian Biobank cohort were first identified on the basis of the baseline data collected at recruitment, 1117

where the information on prevalent diseases was either retrieved from medical records or self-reported by the 1118

participant. The cohort was subsequently linked to the Estonian Health Insurance database that provided 1119

additional information on prevalent cases (diagnoses confirmed before the date of recruitment) as well as on 1120

incident cases during the follow-up. 1121

As the UK Biobank marker effects are estimated from traits that were standardized to a z-score prior 1122

to analysis, all effect sizes obtained are on the SD scale. Thus when we create a genomic predictor, for 1123

say coding SNPs, by multiplying SNPs mapped to coding regions genotyped in Estonia to the effect sizes 1124

obtained in the UK Biobank for each iteration, to obtain a genetic predictor for each iteration, providing 1125

a posterior predictive distribution that is also on the SD scale. For each trait, we created 2000 genomic 1126

predictors for each individual in the Estonian Biobank, at each of the 13 annotation groups, by selecting 1127

effect size estimates obtained every tenth iteration from the last 3000 iterations of each of the four Gibbs 1128

chains and combining them together in a single posterior. 1129

We calculated prediction accuracy as the proportion of phenotypic variation explained by the genomic 1130

predictor, and area under the receiver operator curve (AUC) for T2D and CAD using each individual’s mean 1131

genetic predictor. For each of the 13 annotation groups, we calculated the partial correlation of the genetic 1132

predictor of each of the 2000 iterations and the phenotype, and then used this to estimate the independent 1133

proportional contribution of each group to the total prediction accuracy, providing a metric of replication for 1134

our UK Biobank enrichment results. 1135

For height and BMI, we determined the probability that each Estonian individual’s predictor accurately 1136

reflected their phenotypic value. To do this, we calculated the proportion of posterior samples with abs(ĝ− y) 1137

of less than 1 for each individual, which gives a measure of the degree to which each posterior predictive 1138

distribution overlaps with the phenotype within +/- 1 SD. 1139

For T2D and CAD, we extended the PCF metric, typically defined as the proportion of cases with larger 1140

estimated risk the then top pth percentile of the distribution of genetic risk in the general population. We 1141

calculated the proportion of posterior samples for each individual with values in the top 25% of the distribution 1142

of genomic predictors for each trait. Thus for each individual, we calculate the probability that the posterior 1143

predictive distribution is in the top 25% of the distribution of genetic risk in the general population. 1144

Posterior summaries and discovery 1145

The ability of the additive regression model outlined and applied here to infer the underlying distribution of 1146

genomic effects is limited unless an additive model with many 0 coefficients holds as approximately true and 1147

the true number of underlying nonzero coefficients is << n. Various ad hoc penalty functions in machine 1148

learning, and the range of proper priors employed by members of the Bayesian alphabet and beyond, all 1149

impose a restriction on the size of the regression coefficients, and while these restrictions differ, they all 1150

provide shrinkage estimators that by their definition are biased as they are shrunk toward zero (this true of 1151

mixed-linear association models also). In other words, the penalty function (prior) will be important and 1152

will influence the inference made here. Thus, the inference we obtain can only be made with respect to our 1153

a priori assumption that many marker effects are zero, and that the effects of those that are not zero can 1154

be reflected by a mixture of zero centred Gaussian distributions. Given this, we focused on comparing the 1155

posterior distributions of different traits obtained under the same model, focusing on the hyper-parameter 1156

estimates obtained for MAF-LD-annotation groups, and comparing these across traits. It has been shown in 1157

Bayesian penalized regression models that what is learned about β is a function of what is learned about Xβ 1158

and thus by placing separate hyper-parameters over different genomic groups we can obtain inference as to 1159

the variance contributed by each group [54]. As we show through theory and simulation, MAF-LD-annotation 1160

specific hyper-parameters likely results in improved inference as to the distribution of genetic effects. However, 1161

with the exception of very rare variants with LD ∼ 0, we cannot treat each βj as independent and thus here 1162

we outline a strategy to identify associated genes, or genomic regions within a probabilistic framework. 1163
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For a simple example, consider two markers in LD that are correlated with a single causal variant, where 1164

either or both markers may be in the model at any one iteration and the expected posterior inclusion 1165

probability of each SNP is 0.5. In this scenario, we cannot use the posterior inclusion probability of each 1166

marker to assess association and thus instead, we take an approach of assessing the contribution of different 1167

genomic regions to trait variation whilst controlling the posterior type I error rate (PER), which is more 1168

suitable controlling for false positives, than controlling the genome-wide error rate (GER). Many papers have 1169

discussed the advantages of controlling the false discovery rate (FDR), and related measures rather than 1170

controlling GER [55] and here we follow [24] where the posterior probability that βj is nonzero for at least 1171

one SNP j in a window or genomic segment is used to make inferences on the presence of an association in 1172

that segment. 1173

Briefly, following [24], we will refer to this probability as the window posterior probability of association 1174

(WPPA). The underlying assumption is that if a genomic window contains a marker in LD with a causal 1175

variant, one or more SNPs in that window will have nonzero βj . Thus, WPPA, which is estimated by counting 1176

the number of MCMC samples in which βj is nonzero for at least one SNP j in the window, can be used as a 1177

proxy for the posterior probability that the genomic region contains a causal variant. Because WPPA for a 1178

given window is a partial association conditional on all other SNPs in the model, including those flanking the 1179

region, the influence of flanking markers on the WPPA signal for any given window will be inversely related 1180

to the distance k of the flanking markers. Thus, as the number of markers between a causal variant and the 1181

focal window increases, the influence of the causal variant on the WPPA signal will decrease and so WPPA 1182

computed for a given window can be used to locate associations for that given window [24]. 1183

This measure can be shown to control the PER, which in frequentest statistics would be associated with 1184

the test of a hypothesis. The null hypothesis in this case is that the genomic region does not contain any 1185

SNPs associated with the trait. Using this notation, WPPA is the conditional probability that the null is 1186

false given the observed data, while PER is the conditional probability that the null hypothesis is true given 1187

that it has been rejected based on some statistical test. Suppose the test is based on WPPA and the null 1188

is rejected whenever WPPA is larger than some value t. Then, PER is the probability that that the null 1189

hypothesis is true given WPPA is larger than t, and it can be written as: 1190

PER = Pr(H0is true|WPPA > t) = E[(1−WPPA)|WPPA > t] (45)

Thus, for any interval with WPPA > t the proportion of false positives among significant results will 1191

be ≤ (1− t). Here, we are interested in detecting genes and genomic regions that explain more than some 1192

proportion v of the total phenotypic variance attributable to the SNP markers (genetic variance). The 1193

genomic segment variance is defined as the sum of the squared partial regression coefficient estimates at 1194

each iteration and these are divided by the sum of all the squared partial regression coefficient estimates 1195

genome-wide to give a proportion for each genomic region at each iteration. Then we simply count the 1196

proportion of MCMC samples where the proportion of genetic variance is greater than a thresholds of 0.001% 1197

and we denote this metric as the posterior probability of window variance (PPWV). We estimate the PPWV 1198

of 50kb regions across the genome, then map SNPs to the coding region of genes, and to the closest gene 1199

+/- 50kb from the SNP position labelling them as located in a coding region, an intron, 1kb upstream of a 1200

gene using our functional annotations (Figure ??). Remaining snps are labelled as located in a cis-region (up 1201

to +/- 50kb from a gene). Finally, we mapped SNPs with greater than 50% posterior inclusion probability 1202

(PIP) across all 4 chains labelling them using our 7 location annotations (Figure S13). We report SNPs with 1203

PIP > 95% and their corresponding p-values from UKB GWAS summary statistics (fastGWA, see Code 1204

Availability) with ’body mass index’ entry for BMI, ’standing height’ for HT, ’angina / heart attack’ for CAD 1205

and ’diabetes’ for T2D (Supplementary Table S6). 1206

We also validate the use of PPWV in simulation study, first simulating 500 replicate data sets of 10,000 1207

SNP markers for 5,000 individuals for each of two scenarios. In the first scenario, 1000 SNPs are randomly 1208

selected to be causal variants and all 10,000 SNP markers are LD independent. In the second, the 1000 1209

causal variants are each in LD with four other variants with LD = 0.95, with the remaining 5000 variants 1210

having zero effect size and LD = 0. For each scenario, we simulate effect sizes as an equally spaced sequence 1211

from an effect size of -0.04 SD, to 0.04 SD giving genetic variance of 0.55, and we simulate residual variance 1212

from a normal distribution with zero mean and variance 0.45, to give a phenotype with zero mean and unit 1213

variance. For the first scenario, we calculate the posterior inclusion probability of each causal SNP. For the 1214

second scenario, we calculate the PPWV for each 5-SNP group. Across the 500 replicates of each scenario, we 1215

take the mean PPWV and mean PIP for each of the 1000 different effect sizes and compare these in Figure 1216

S12. Additionally, we grouped SNPs in 50kb regions and selected the number of regions that explain at least 1217

0.1%, 0.01% and 0.001% of the variance attributed to all SNP markers in 0.8% to 100% of the iterations 1218
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using the simulated data described above for the Multiple group enrichment scenario for chromosome 22 1219

in the UK Biobank. We then calculated the false discovery rate (FDR), defined as the proportion of 50kb 1220

regions identified that do not contain a causal variant, at PPWV thresholds ranging from 0.8% to 100%. We 1221

compare these in Figure S12 where as we lower the PPWV variance threshold, the number of false discoveries 1222

in the model increases but remains at ≤ 5% when the PPWV is ≥ 95%. 1223
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Figure S1. Theory and simulation study of SNP marker model parameters. (a) accompanies Eq.
(23) and shows the distribution of the point estimates of the effect sizes of two correlated markers of effect size (0,0.1)
under orthogonality (LD = 0) and collinearity (LD = 0.99) across 2500 replicates (50 independent genomic regions
for 5,000 individuals within each of 50 replicates) for a range of different models: a dirac spike and slab mixture of
regressions model (bayesR), a mixed linear association model (MLMA), single-marker ordinary least squares (OLS),
and ridge regression (Ridge). Panels give the lambda shrinkage parameter of the model, the error variance divided
by the phenotypic variance attributable to the SNP markers, showing that as lambda decreases the variation of the
estimates increases under multicollinearity. (b) accompanies Eq.(26) and shows the marker estimates obtained from
Henderson’s mixed model equations for a MLMA with the focal marker as fixed (beta) and random (u1), with four
other markers in the model. Markers were either uncorrelated (orthogonal, LD=0) or the focal marker was correlated
with the first two out of the four other markers (collinear, LD=0.99). Panels give the lambda shrinkage parameter,
showing that as lambda decreases the variation of the estimates increases under multicollinearity. (c) shows the prior
density of the BayesR model for different hyperparameter values of the phenotypic variance attributable to genetic
effects (variance), showing that as the variance attributable to the markers decreases, the prior has higher mass
around zero. Thus, with a grouped mixture of regressions model (BayesRR), each hyperparameter estimate will be
smaller and thus there will be higher prior density around zero. This then has consequences for marker inclusion in
the BayesRR model. Higher prior mass around zero makes little difference for the inclusion of uncorrelated markers,
but it results in reduced posterior inclusion probability for correlated markers as shown in (d). For (d), we calculated
the inclusion probability (PIP) of two markers with LD = 0 and LD = 0.99, as the variance attributable to the SNP
markers, and thus the prior distribution, changes assuming a background inclusion probability of 0.1, a sample size
of 5000, and an effect size of 0.01 SD for marker 1 (see Methods). (d) shows that the PIP of the second marker is
reduced across a range of possible effect size values (the average of 1000 replicated simulations for 1000 marker 2
effect values for each line) as the hyperparameter estimate decreases, and thus the smaller hyperparameter estimates
in a BayesRR model means that correlated markers are less likely to enter the model, controlling better for the effects
of multicollinearity.
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Figure S2. Classification power of BayesRR. Grouping effects in a BayesRR model improves the power
of BayesR to estimate effect sizes and infer the genetic architecture of common complex traits and diseases. This
setting compares 10 simulations of 5 chains with different starting values (chain length : 2500, burn-in : 500, thin
: 5) executed using BayesRR and our BayesR software. (a) Each simulation has two groups in high LD with an
interdigitated structure where one in two SNPs is assigned to group 1 and all genetic variance is assigned to group 1
with 1000 QTL. Annotation-specific estimates for BayesR are calculated post-analysis for each group. (b) Estimation
of markers effects in an independent data set. BayesRR improves on correlation between predicted and simulated
genetic values. This increase in prediction implies that adding functional information to BayesR better fits the data
and improves prediction accuracy. (c) Genetic variance and (d) proportion of markers entering the model at posterior
inclusion probability (pip) thresholds summarized across 10 simulations for group 1 and group 2. The proportion of
markers included in the model is closer to the truth (dotted grey line) when using BayesRR compared our BayesR
software. Effects are thus more likely attributed to the correct group using our approach, which also explains why
we estimate more accurately the group genetic variance compared to the baseline. Simulation setting: N = 20, 000
unrelated European individuals from the UK Biobank, M = 328, 385 markers (chromosome 2). Dots in box plots
show the mean of the correlation between predicted and simulated genetic values.
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Figure S3. Simulation study of increasing task parallelism and increasing message passing rate
for our hybrid-parallel sampling scheme. We aimed to compare (a) the effective samples obtained, (b) the convergence rate of
the algorithm, (c) the accuracy of the estimation, and (d) the stability of the estimates obtained as data parallelism increases within a burn-in period of the
initial 3000 iterations. For 50,000 randomly selected UK Biobank individuals, and 111,425 imputed SNP markers of chromosome 22, we simulated 50 replicate
phenotypes by randomly selecting 4,988 SNPs as causal variants and randomly allocating effect sizes from a normal distribution, with SNP heritability of
0.5. For each simulation, we ran three chains of our BayesRR model with different starting values for 3000 iterations. The SNP marker data was grouped
into deciles of the distribution of minor allele frequency (MAF) and within each decile the markers were further grouped these into two groups based on the
distribution of linkage disequilibrium (LD), giving twenty groups in total (1l = MAF decile 1, low LD; 1h = MAF decile 1, high LD; ...; 10l = MAF decile 10,
low LD; 10h = MAF decile 10, high LD). We repeated the three chains, but with increasing data parallelism: (1) in serial where one MPI task is used and the
residual is updated after each marker is sampled (tasks_1_sync_1); (2) where the markers were split across four MPI processes with synchronisation occurring
by message passing after 10 markers have been updated (task_4_sync_10); (3) where the markers were split across four MPI processes with synchronisation
occurring after 20 markers have been updated (task_4_sync_20); (4) with 8 MPI processes and synchronisation of 10 (task_8_sync_10); and (5) with 8
MPI processes and synchronisation of 20 (task_8_sync_20). (a) shows the distribution across simulations of the proportion of effective samples obtained
for the hyperparamter estimate of the proportion of phenotypic variance attributable to the markers of each group. For all ranges of parallelism, we achieve
more effective samples for low MAF and low LD variants. With high synchronisation rates, where many marker updates occur before residual updating by
message passing a reduction in effective sample sizes occurs. (b) gives the distribution of the Gelman-Rubin test statistic for the three chains, a general
metric to monitor convergence that compares within- and among-chain variance, as the number of iterations increases. On the x-axis, 1 gives the distribution
of the statistic across chains and MAF-LD groups for the first 500 iterations showing divergence of the chains (y-axis value >> 1) across all MAF-LD groups,
2 gives the distribution for the first 1000 iterations, and 3 gives the distribution for the whole chain showing convergence of the chains by the end of this
initial 3000 iteration sampling period irrespective of the data parallelism, with the exception of a few groups with infrequent synchronisation and high data
parallelism which have yet to converge within this burn-in phase. (c) gives the distribution of z-scores of the posterior distribution of the phenotypic variance
attributable to the markers for each MAF-LD group from the simulated values, showing stability of the estimates with increasing data parallelism (tasks),
but not with infrequent synchronisation within the 3000 iterations run here. (d) shows the distribution of the Geweke statistic value which is a test of the
equality of the means of the first and last part of the Markov chains. On the x-axis, 1 gives the distribution of the statistic calculated using all iterations
across all MAF-LD groups, 2 gives the distribution discarding the first 500 iterations, and 3 gives the distribution discarding the first 1000 iterations. (a) -
(d) suggest that our hybrid-parallelism sampling scheme achieves the same accuracy and convergence rates as a serial sampling scheme, provided that frequent
synchronisation occurs and data parallelism is kept moderate. At high data parallelism and infrequent synchronisation, our theory shows that we are more
likely to make a sampling mistake, preventing chains from converging and requiring longer sampling times. Convergence and accuracy of the MCMC Gibbs
sampling chain will be problem specific and dependent upon the LD of the markers, LD among the causal variants, the phenotypic variation attributable to
the SNP markers across the MAF and LD spectrum, the study sample size, the degree of data parallelism per total marker number, and the synchronisation
rate. Therefore, like with all MCMC chains, a series of diagnostic tests can be utilized to explore the properties of the posterior and here we show how
different metrics can be used to identify convergence issues.
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Figure S4. A mixed representation bulk synchronous hybrid-parallel Gibbs sampling scheme
for genomic data.(a) The minimum seconds per iteration achieved for 382,466 unrelated individuals from the UK
Biobank data genotyped at 8,430,466 markers, with an increasing number of message-passing interface (MPI) tasks
used. The total seconds is given in blue and this is subset into (i) the time taken to process the markers and estimate
all of the 8,433,421 marker effects and hyper-parameters (proc), and (ii) the time taken to synchronise the estimates as
they are being obtained (sync). With increasing data parallelism parameter estimation times drop quickly to less than
5 seconds with 160 MPI tasks, however the time taken to synchronise the estimates increases as the number of tasks
increases. The SD was 1 second, with variation in sampling times induced by fluctuations in networking speed that
influenced the synchronisation times. Each MPI task was able to used 4 CPUs. (b) the distribution of the proportion
non-zeros per column of a genotype matrix for ∼ 4 × 105 individuals and ∼ 1.5 × 107 SNPs taken from UKB, with
solid line representing the mean of the distribution and dashed line the median. (c) the size in memory in TB of the
data as the coding of the SNP markers moves from binary to the sparse indexed format, the optimal threshold is
achieved between mean and median of the distribution of non-zeros in the genotype matrix. Above this threshold
columns are coded in binary format below in sparse index. Through a combination of a mixed data representation
and highly vectorized look-up tables, memory usage is reduced while maintaining fast computational speed.
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Figure S5. Comparison of a mixed-linear association model (MLMA) and a grouped dirac spike
and slab model (BayesRR) when genetic effects have variance proportional to FST (labelled
’variance’), or correlated with allele frequency differentiation across populations (labelled ’di-
rectional’).Simulation study using real genomic data from chromosome 22 where 10,000 individuals were selected from 2 UK
Biobank assessment centres (Glasgow and Croydon). First, causal variants were allocated to 5000 high-LD SNPs with effect sizes
simulated from a normal distribution with variance proportional to the FST among the two populations at each SNP (labelled
’variance’, see Methods). Second, we selected the same high-LD SNPs as the causal variants, but simulated effect sizes to have
correlation 0.5 with the allele frequency differences of the SNPs among the two populations, and thus not only is the effect size
proportional to the FST , but there is also directional differentiation (trait increasing loci tend to be those with higher allele
frequency in Croydon, trait decreasing alleles have lower frequency in Croydon). For each of these two scenarios, we simulated 50
replicate phenotypes where the phenotypic variance attributable to the causal SNPs is 0.5, there is a phenotypic difference where
Croydon individuals have a phenotype that is on average 0.5 SD higher than Glasgow individuals (contributing variance 0.05),
and residual variance was simulated from a normal with variance 0.45, to give a phenotype with mean of zero and variance of 1.
The distribution across simulations of the estimated phenotypic variance attributable to the SNP markers is shown for each
of the two causal effect size allocation scenarios when the data was analysed using a mixed-linear model association (MLMA,
distribution of the point estimates) and a grouped Bayesian dirac spike and slab models (BayesRR, distribution of the posterior
means). In the analysis, we either adjusted the phenotype by the first 20 PCs of the genetic data used in the simulation study
("adjusted") or we did not adjust the phenotype for the PCs ("unadjusted").
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Figure S6. Convergence diagnostics of model chains for UK Biobank analysis.(a) traceplot of the
phenotypic variance attributable to SNP markers for each trait across functional annotation of exonic regions, intronic regions,
promoters (prom) 1kb upstream of coding regions, enhancers (enh) 1kb to 10kb upstream of coding regions, transcription factor
binding sites (tfbs) 1kb to 10kb upstream of coding regions, other snps 1kb to 10kb upstream of coding regions, enh 10kb to
500kb upstream, tfbs 10kb to 500kb upstream, other snps 10kb to 500kb upstream, enh 500kb to 1MB upstream,tfbs 500kb to
1Mb upstream, other snps 500kb to 1Mb upstream and SNP markers elsewhere in the genome (other), with colours representing
the different chains. (b) a time series of the running mean of each chain, for each annotation group and each trait showing all
chains approach the same mean value for each parameter.
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Figure S7. Convergence diagnostics of model chains for UK Biobank analysis.(a) lagged autocorre-
lation plot of each chain, for each annotation group and each trait and (b) effective number of uncorrelated sampled obtained for
each annotation group and each trait. As phenotypic variance is being partitioned it is not expected that posterior estimates
obtained are entirely uncorrelated. (c) Geweke z-score statistic comparing the initial part of the chain to the final part, for each
annotation group and each trait.
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Figure S8. Convergence diagnostics of model chains for UK Biobank analysis.(a) overlapped density
plots to compare the target distribution by chain showing each chain has converged in a similar space, for each annotation group
and each trait. (b) overlapped density plots comparing the last 10 percent of the chain (green), with the whole chain (pink),
showing that the initial and final parts of the chain are sampling the same target distribution for each annotation group and
each trait.

43

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.04.20188433doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.04.20188433
http://creativecommons.org/licenses/by-nc-nd/4.0/


●

●

●

●

●

●

●

●

●

●

●

●

●

1Mb.enh
1Mb.tfbs

1Mb.others
500kb.enh
500kb.tfbs

500kb.others
10kb.enh
10kb.tfbs

10kb.others
1kb.prom

exons
introns
others

1.0 1.1 1.2 1.3 1.4 1.5
Rhat

HT

●

●

●

●

●

●

●

●

●

●

●

●

●

1Mb.enh
1Mb.tfbs

1Mb.others
500kb.enh
500kb.tfbs

500kb.others
10kb.enh
10kb.tfbs

10kb.others
1kb.prom

exons
introns
others

1.0 1.1 1.2 1.3 1.4 1.5
Rhat

BMI

●

●

●

●

●

●

●

●

●

●

●

●

●

1Mb.enh
1Mb.tfbs

1Mb.others
500kb.enh
500kb.tfbs

500kb.others
10kb.enh
10kb.tfbs

10kb.others
1kb.prom

exons
introns
others

1.0 1.1 1.2 1.3 1.4 1.5
Rhat

CAD

●

●

●

●

●

●

●

●

●

●

●

●

●

1Mb.enh
1Mb.tfbs

1Mb.others
500kb.enh
500kb.tfbs

500kb.others
10kb.enh
10kb.tfbs

10kb.others
1kb.prom

exons
introns
others

1.0 1.1 1.2 1.3 1.4 1.5
Rhat

T2D

a

1Mb.enh
1Mb.tfbs

1Mb.others
500kb.enh
500kb.tfbs

500kb.others
10kb.enh
10kb.tfbs

10kb.others
1kb.prom

exons
introns
others

1M
b.

en
h

1M
b.

tfb
s

1M
b.

ot
he

rs
50

0k
b.

en
h

50
0k

b.
tfb

s
50

0k
b.

ot
he

rs
10

kb
.e

nh
10

kb
.tf

bs
10

kb
.o

th
er

s
1k

b.
pr

om
ex

on
s

in
tr

on
s

ot
he

rs

HT

1Mb.enh
1Mb.tfbs

1Mb.others
500kb.enh
500kb.tfbs

500kb.others
10kb.enh
10kb.tfbs

10kb.others
1kb.prom

exons
introns
others

1M
b.

en
h

1M
b.

tfb
s

1M
b.

ot
he

rs
50

0k
b.

en
h

50
0k

b.
tfb

s
50

0k
b.

ot
he

rs
10

kb
.e

nh
10

kb
.tf

bs
10

kb
.o

th
er

s
1k

b.
pr

om
ex

on
s

in
tr

on
s

ot
he

rs

BMI

1Mb.enh
1Mb.tfbs

1Mb.others
500kb.enh
500kb.tfbs

500kb.others
10kb.enh
10kb.tfbs

10kb.others
1kb.prom

exons
introns
others

1M
b.

en
h

1M
b.

tfb
s

1M
b.

ot
he

rs
50

0k
b.

en
h

50
0k

b.
tfb

s
50

0k
b.

ot
he

rs
10

kb
.e

nh
10

kb
.tf

bs
10

kb
.o

th
er

s
1k

b.
pr

om
ex

on
s

in
tr

on
s

ot
he

rs

CAD

1Mb.enh
1Mb.tfbs

1Mb.others
500kb.enh
500kb.tfbs

500kb.others
10kb.enh
10kb.tfbs

10kb.others
1kb.prom

exons
introns
others

1M
b.

en
h

1M
b.

tfb
s

1M
b.

ot
he

rs
50

0k
b.

en
h

50
0k

b.
tfb

s
50

0k
b.

ot
he

rs
10

kb
.e

nh
10

kb
.tf

bs
10

kb
.o

th
er

s
1k

b.
pr

om
ex

on
s

in
tr

on
s

ot
he

rs

T2D

−1

0

1

b

Figure S9. Convergence diagnostics of model chains for UK Biobank analysis.(a) the potential
scale reduction factor comparing the among- and within-chain variance for each annotation group and each trait. (b) the
cross-correlation between all parameters for each annotation group and each trait.
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Figure S10. Genetic architecture of height, body-mass-index (BMI), cardiovascular disease
(CAD) and type-2-diabetes (T2D).(a) Shows violin plots with boxplots giving the 95% credible intervals for the
posterior mean of the phenotypic variance attributable to the SNP markers in each trait. We find that SNPs contribute 57.66%
(95%CI 56.09, 59.14) for height, 28.74% (95%CI 27.62, 30.00) for BMI, 5.94% (95%CI 5.30, 6.67) for CAD and 8.45% (95%CI
7.83, 9.18) for T2D. Values are summed over annotation, MAF and LD groups. (b) Violin plot with boxplots giving the 95%
credible intervals of the proportion of the total genetic variance attributable to each annotation group. Values are summed over
MAF and LD groups. All four traits show the same pattern of annotation-specific genetic variance, with main contributions from
intronic regions, exonic regions, and SNPs located 10kb to 500kb upstream of genes to the genetic variance in the population.
(c) Bar plots with error bars giving the 95% credible intervals for the proportion of variance of each annotation group that is
attributable to each of the four non-zero mixtures for each trait. Values are summed over MAF and LD groups. (d) Bar plots
with error bars giving the 95% credible intervals for the proportion of variance of each annotation group that is attributable
to each of the three MAF groups for each trait. Values are summed over LD groups. Within each annotation, variation is
(c) attributable predominantly to variants with MAF>0.05 and (d) attributable predominantly to small (0.0001) to moderate
(0.001) effect sizes variants with little differences across traits, except for BMI which has higher polygenicity compared to height,
CAD and T2D.
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Figure S11. Marker inclusion and effect estimate overview.(a) Barplots of the number of markers entering
the model for each mixture group (x-axis), within each MAF-LD group (y-axis facets, with top row MAF and bottom row
LD), within each annotation (x-axis facets). Mixture 1 = 0.0001, 2 = 0.001, 3 = 0.01, 4 = 0.1. (b) Boxplots of the posterior
distribution of the average effect size of markers in the model for each annotation group, scaling the effects to their frequency
and split by mixture.
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Figure S12. Posterior inclusion probability (PIP) and posterior probability of window variance
(PPWV).(a) We validate the use of PPWV in simulation study, first simulating 500 replicate data sets of 10,000 SNP markers
for 5,000 individuals for each of two scenarios. In the first scenario, 1000 SNPs are randomly selected to be causal variants and
all 10,000 SNP markers are LD independent. In the second, the 1000 causal variants are each in LD with four other variants
with LD = 0.95, with the remaining 5000 variants having zero effect size and LD = 0. For each scenario, we simulate effect
sizes as an equally spaced sequence from an effect size of -0.04 SD, to 0.04 SD giving genetic variance of 0.55, and we simulate
residual variance from a normal distribution with zero mean and variance 0.45, to give a phenotype with zero mean and unit
variance. For the first scenario, we calculate the posterior inclusion probability of each causal SNP. For the second scenario, we
calculate the PPWV for each 5-SNP group. Across the 500 replicates, we take the mean PIP for each SNP of the 1000 different
effect sizes for the first scenario and the mean PPWV of each of the 1000 5-SNP windows for the second scenario, and these are
the points on the figure. (b) Shows mean and 95% credible interval of the false discovery rate (FDR), defined as the proportion
of regions identified that do not contain a causal variant, at PPWV thresholds ranging from 0.8% to 100%. Here, we grouped
SNPs in 50kb regions and selected the number of regions that explain at least 0.1%, 0.01% and 0.001% of the variance attributed
to all SNP markers in 0.8% to 100% of the iterations using simulated data for chromosome 22 in the UK Biobank (see Methods).
We compare the FDR at these different PPWV thresholds and as we lower the PPWV variance, the number of false discoveries
in the model increases, but remains at ≤ 5% at PPWV ≥ 95%.
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Figure S13. Contribution of SNPs with posterior inclusion probability (PIP) > 0.5 to height,
body-mass-index (BMI), cardiovascular disease (CAD) and type-2-diabetes (T2D).(a) Shows the
distribution of mean effect sizes for SNPs with PIP > 0.5 attributed to exons, introns and 500kb upstream of genes in each
trait. (b) We then plot the relationship between mean effect size and posterior inclusion probability for SNPs with PIP > 0.5
attributed to the annotation groups (exons, introns, SNPs located 1kb, 1-10kb, 10-500kb and 500-1Mb upstream of genes and
other un-mapped SNPs). We labelled the closest gene to the SNP with the highest mean effect size in each trait.
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